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Abstract. In this paper differential representations for stationary 
stochastic processes with quotients of analytic functions of minimal 
type as spectral characteristics are given. Such a process is a limit (in 
the mean square sense) of stationary stochastic processes y,(t) (n 
= 1, 2, . . .) which are solutions of an inhite-dimensional system of 
stochastic differential equations. There are some recurrent connec- 
tions between ym(t) and for that reason we call the differential 
representations considered in t b  papaper recurrent. The represen- 
tations are apvlied to find a neoessary and sufficient condition for 
absolute continuity of measures generated by Gaussian stationary 
processes with spectral characteristics mentioned above. This con- 
dition takes the form 

s, (4 
- 1. lim - - 

.I-m g x ( 4  

Thereby the Feldman theorem is generalized. 

1. Introduction. On the probability space (a, P, P) solutions of many 
problems of statistics of stochastic processes (for instance filtration, predic- 
tion, interpolation, testing of hypothesis) are effective for processes of 
the form 

where F(s), B(s) are stochastic processes on (a, F,  P) and W(s) is the Wiener 
process. The last integral in (1) is understood as Ito's stochastic integral (see 
VI, IV. 

We may rewrite (I) in the form 

dy(t) = F(t)dt+B(t)dW(t) 

and call it stochastic dgerential representation for y(t). 



The particular form of stochastic differential represetitations are stochas- 
-tic differential equations (see [I], IV) 

This explains, why it is important to obtain theorems presenting a gven 
stationary process as a solution of stochastic differential equation. The 
theorem like that for stationary processes with rational spectral densities can 
be find in [I] (see Theorem 15.4). The purpose of this paper is to find 
differential representations for more general stationary processes. The re- 
presentations will be applied to investigate absolute continuity of measures 
generated by these processes. 

2, Recurrent differential representations. We consider the class of functions 
g (A) = Ih (in)(' where 

m 

and Q ( i A ) = n  (3) 414 = 3 

k =  1 k =  1 

The products P(i3,) and Q(iA) are absolutely convergent. 
The function g(Rj will play a role of spectral density of a stationary 

stochastic process, for the reason some assumptions will be imposed on :ak) 
and {b , ) .  These assumptions will turn out necessary (see Remark 1) for 
existence of recurrent differential representation for stationary process. , 

We assume' 

and the series 

is convergent. 
Define fh, (ill)) as 

1 
h1 (M) = - 

i A 
1 -- 

and 

Therefore, for n > 1, 

for n > 1.  
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ill 
1 -- 

b n -  1 hn(iA) = hn- ( iA)  
iL ' 

1 -- 
' an 

Now we prove a technical lemma: 

LEMMA. If (4)  and ( 5 )  hold, then 
(a) h(iA) = 1.i.m. h,,(id); 
(b) there exist constants 0 a d  on such that 

t ..I 
, I iAh(ia)- CT = 1.i.m. iAhn(iA) n,,; 

i 
where "1.i.m" stands for "limit in m a n  in the L2 sense7'. 

Proof.  (a) From assumption (4) and 

we obtain 

But 

therefore, applying (3, we conclude 

A- 1 
ah+ 1 

= -a ,  and ai = -a ,  n-- for n > 1 
r = 1  bk 
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By (5) the product 
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is absolutely convergent, hence 

is well defined. 
Write 

Since 

we have 

where 

Consider the sequence 

From Vieta's formula we obtain 

dn- 2 Cn- 1 
- = - (bl+b2+ ... +bn- , )  and - - - -(al+az+ ... +an),  
dn- I cn 
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therefore 
n- 1 

Am = Eal + 1 - bk)] 
k =  1 

and {A,,] is by (5) absolutely convergent, which implies in the similar way as 
in the first part of the proof 

, . ... 

Hence 

COROLLARY. Considering the limits 

lim Ern liAhn(il) - ~~1 
A-m n-tm 

and applying (8) we obtain 

I (9) h iAh (iA) = D. 
I A-m 

Now we can define processes y(t) and y,(t) as 

(10) y ( t )  = e" h (ill C (dl), y,, (t) = j eitA h,, (in) @ (dA), 
aP R 

where @(dA) denotes an ortdogonal spectral measure: 

THEOREM 1. Under ass~niptiom (4) and'(5) the process y (t) is o limit, in the 
rwrm 

of processes yn(t) which me solutions of the followiq system of stochastic 
dgerentid equations: 

where 

Remark. It can be proved that W{t)  is a Wiener process in wide sense 
(see C11, Xv). 
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Proof of The or em 1.  We will use the following relations (see Lemma 
15.3 in [I]): 

If h (iA) is spectral characteristic, 
I 

Ilh(iAl12dA<m R and y( t )= jd t%h( iA) ) , (d l ) ,  R 

then, with probability 1, 
1 

JIy(s)lds < my t < a, 
0 

and 

(a) The fist equation of system (11) we may rewrite in the form: 

Applying (12) we obtain 

t f 

(ii) 1 y, (u) du = [ reiu% (ii.)@ (dl) du 

From (ii) we obtain 

hence y ( t )  satisfies equation (i). 
(b) The n-th equation of system (11) we may rewrite in the following 

form: 
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For the sake of simplicity we put s = 0. 

r 
il. 

therefore yn(t) satisfies equation {iii). 

(c) Since 

= E j eiuA (h,, (ii) - h ( i  A)) @ (di) j eitA (hm (il) - h (jA)) @ ( d l )  
R R 

= J /hn (iA) - h (iA)/ dl, 
a .  

we conclude (see Lemma) that yn(t) tends to y (t) in the mean square norm. 
In order to take into account applications we describe system (11) in 

another form. The recurrence with reference to stochastic differential of the 
n-th equation will be replaced by a recurrence with reference to coefficients of the 
n-th equation of the system. 

THEOREM 2. System (11) is equivalent to the system of stochastic diflerential 
equations 
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where 

( a1 Yl(t) fur n = 1, 

and 
7 

for n = 1, 

ti51 
-a1 n - for la > 1. 

I k = l  bk 

Moreover, 

Eyn(0 )W(f )=Ey(O)W(f )=O for n = 1 , 2 , . . .  

Pro of. For n = 1 (11) is equivalent to (13). For n = 2 

I a2 
dy2 (t) = - d y  1 (t) + a2 (Y 2 (t) - Y 1 (0) dt I i 

I b 1 

Assume that for the (n- 1)-th equation systems (11) and (13) are equiva- 
lent. Then from (I I), (14) and (15) we obtain 
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Hence systems ( 1 1 )  and ( 1 3 )  are equivalent. 
Now for each n we may rewrite a part of system (13) in the form 

where 

K ( ~ ) = ( . Y I ( ~ , Y Z ( ~ ) ,  - . . ,ym(t))* ,  S n = ( a , , ~ i 7  ..., g,J* 

and R, = (ri,) where i, j = 1, 2, . . . , n, and 
i- 1 

for j < i, 
f ' . .  = 

LJ for j = i ,  
[ O  for j > i. 

Since eigenvalues of the matrix R, lie in the left half-plane, the proof of 
E y,,(O) W ( t )  = 0 is the same as in [ I ] .  

The equation E y(0) W ( t )  = 0 foIIows from inequality 

because 

COROLLARY. There are the following connections between the processes 
F,(t) and the constants a,: 



L. Bielak 

6, = 
for n >  1. 

These formulas follow from (14), (15) and the proof of Theorem 2. 

THEOREM 3. The process y ( t ) ,  dejned by (lo), has the diflmential 
representation 

y It) = 1.i.m y,(t) ,  F ( t )  = 1.i.m F,(t) and a = lim a,. 

Moreotler, for y,(t), F,(t)  and a, formulas (11), (16), (17) respectively hold. 

Pro of, From Theorem 2 we have y (t) = 1.i.m y, (t) and from (5) we get CT 

= lim 6,. System (13) implies 

F,  ( t )  = j eitA ( i l k  ( i l l  - a,,) @ ( d i ) ,  
R 

therefore the convergence of F( t )  = li.m F,(t)  is a consequence of part (b) of 
Lemma. 

Since iAh( iA)-a~L*( i t ) ,  we can apply (12). In view of 

2'" 1 
y ( t ) - y (0 ) -OW@)  = IT(i ih( iA)-3@(dA) 

R 

and 

f e ' s y i ~ h  (iA) - a)  9 (dA) = F (s) , 
R 

we obtain 
t 

y ( t ) - y ( o )  = S F ( S ) ~ S + U W ( ~ ) .  
0 

Remark 1. If we assume that there exists a constant a such that 

then instead of assumption (5) we can assume that 

I is absolutely convergent. 
I 
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Since 

expression (20) is equivalent to the convergence of the sequence {on). 
Under assumptions (4), (19) and (20) we obtain Theorems 1 and 2 and 

also representation (18). 
Note that instead of the convergence 1.i.m Fn(t) = F( t )  we obtain in this 

case the convergence of the integrals 

Indeed, since (20) is equivalent to the convergence of the series 

inequality (6) holds. Therefore we obtain part (a) d Lemma and also 
Theorems 1 and 2. Under assumption (19) we can apply (12) and, in the 
similar way as in the proof of Thbrem 3, we get 

t 

Hence 
I I 

d y  ( t )  = P ( t )  dt + odW(t) ,  where 1.i.m. j F ,  (s) ds = J F (s)ds. 
0 0 

Remark 2. If y ( t )  is a Gaussian process, then a, and CJ are real positive 
constants (see [Z]). 

Remark 3. If spectral density of process y ( t )  is a rational function 

then the problem of the differential representation for y( t )  is reduced to 
considering finite systems of stochastic differential equations. In this case 
from Theorem 2 we obtain a theorem analogous to Theorem 15.4 from [ I ] .  
The difference is that our stochastic differentials for y,(t) (n = 1 ,  2, . . . , m), 
the processes F,,(t) and the constants a, satisfy some recurrent formulas. 

Therefore we obtain: 
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THEOREM 4. Let y ( t )  and y , ( t )  be stationary processes defined by (10). Let 
g (A) ,  defined by (21), be the spectral density of process qr ( I )  = y, (t) . Then y, (t) 

is a component of the m-dimensional stationary stochastic process Y,(t) 
= (yl (t), . . . , ym It))*, The processes y,  ( t )  satisfy the system of stochastic dger-  
ential equations 

w h e  F,(t) and a, are defined by (14) and (15). W ( t )  is defined in Theorem 1 ,  

Moreover, for y , ( t ) ,  F,(t)  and a, recurrent relations (ll), (16), and (17) 
respectively hold. 

3. Absolute continuity of Gnwisaa stationary processes. The purpose of 
this section is to give a necessary and sufficient condition for absolute 
continuity of measures generated by Gaussian stationary processes with 
spectral densities of the form f (A) = lh(iA},)J2, where h(ii?) is the spectral 
characteristic given by (3). 

A well-known necessary and sufficient condition for absolute continuity 
and singularity of measures for Gaussian stationary processes with rational 
spectral densities is given below. 

Let gi(i.) (i = 1, 2) denote spectral ,densities for stochastic processes xi([), 
and 1 1 , ~  - measures generated by x i ( t ) .  Then 

sl(4 
pX1 - k2 if and only if lim - = 1 

A-m 92 (A)  

for Gaussian stationary processes xi( t )  with rational spectral densities g,(A). 
The necessity of 

for absolute continuity of measures px, and px2 follows from Baxter's 
Theorem (see [6], [7]). The necessity of condition (22) can be proved for a 
class of spectral densities larger than the class of rational spectral densities 
(see [3]-[6]). However, sufficiency of (22) was proved, as far as we know, 
only for the class of rational spectral densities, 

Now we apply the results of previous section (the differential represen- 
tation for stationary process) to generalize in a simple way Feldman's 
rheorem (concerning sufficiency of (22)) for the 'class of spectral densities 
given by (3). 
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THEOREM 5. Let y( t )  and x(t) be Gaussian stationary processes with 
spectral densities f (A)  and 9(;1), respectively, such that 

Assume that for (a,) and (b,)  as well as {c,} and idk) expressions (4) and 
(5 )  hold. Then 

f (4 
p,, p if and only if lim - = 1, 

a*mg(J) 

where py and p, are measures generated by the processes y(t)  and x ( t ) ,  
respectively. 

Proof.  From Theorem 3 we have 

Note, if @(dl.) from (10) is Gaussian, then W ( t )  (from Theorem 1) is a 
Wiener process (in usual sense). 

From well-known theorems concerning the absolute continuity of 
stochastic processes having differential representation (see [I], VII, or [6]), 
we obtain 

(24) , ,  - p if and only if a, = a,. 

But, on the other hand, (9) yields 

lim lirlhy (M)( = layl and lim liAh,(i;l)l = faxJ, 
A*m A+m 

where h,(iJ) and h,(iA) are spectral characteristics for y(t)  and x(t) ,  respecti- 
vely, so 

lim i2 f (A) = cr; and lim 1' g (A) = a:. 
2 + m a-m 

Since ay and ax are positive constants (see [2J), 

A 2 f  (4 
a, = a, if and only if Iim - - - 1. 

A + W A ~ ~ ( ~  

This fact and (24) imply (23). 
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