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Abstract. Consider the Diricblet space associated with a direct 
product diffusion process. Dirichlet forms having the same domain 
as it can be expressed by integro-differential forms 171. We establish 
two estimates for harmonic functions with respect to such Dirichlet 
forms, which correspond to Harnack's inequalities in the theory of 
partial diflerential equations. Further we show the continuity of such 
harmonic functions. Then we apply those results to study some 
properties of diffusion processes associated with Dirichlet forms as 
above. 

Let mi, 1 < i  < d (d 2 2), be nonnegative Radon measures on R1 such 
that 

(0.1) m i ( d t ) 8 A d t ,  l < i < d , t ~ l ? ' ,  

for some 0 < A < 1 < A4 < co, where dt is the one-dimensional Lebesgue 
measure. 

Let us define d-dimensional Radon measures m, v i j ,  1 < i ,  j < d ,  and v as 
foIlows : 
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Let i2 be a domain in Wd and Fg(L2; {v i i } ) ,  ,FZ(B; ( v i i ) )  be the function 
spaces defined in [7], that is, ,F;(iJ; { v i i ) )  and F2(52; { v i i ) )  are the com- 
pletions of C,"(Q) and C,"(D), respectively, with respect to the norm 
I l l  Illa,fi,piip 

\ R R 

where C," (S2) denotes the space of all infinitely differentiable functions with 
compact support in SZ and C,"(a) stands for the space of all restrictions to fi 
of functions in C,"(R"). Let E be a subdomain of a. We define a bilinear 
form 8E on 9 9 E ;  {v i i j )  x F L ( E ;  {v i i ] )  by 

where each Di u is the weak derivative defined in [ 7 ] ,  Section 1, and ai j ,  
1 d i, j 4 d, are measurable functions on 8 satisfying 

for some y 2 1. 
A function u  is called a solution of LC!?,, S 2 ( E ;  (vii))]  if it belongs to 

I Y2 ( E ;  {v i i ) )  and satisfies 8, (u, cp) = 0 for every q E C$ ( E ) .  IEl stands for the 
Lebesgue measure of E. 

In Section 1 we show the following 

THEOREM 1. Assume (0.1) and (0.2). Let E be a domain with E n  52 # a) 
and u be a nonnegative solution of ~ ' ( E n i - 2 ;  :v i i ) ) j  such that 
IEn{u>O)I  >OincaseoJ 'E  c52, or such that u = c o n s t > O o n  En852 and 
IE-fi l>O in case o f E n i ? i - 2 # 8 .  Then 

26(x)>O for v-a.e, X E E ~ O .  

This fact is obtained by Moser [3] for m,(dt) = dt, 1 < i < d. We know 
[7] that some inequalities of Sobolev type hold for functions belonging to 
9; (Q; (v i i ) )  or P2 (52; { v i i ) ) .  Therefore we can employ his methods in our 
case. 

In Section 2 we are concerned with continuity of solutions of 
[&El S Z ( E ;  { v i i ) ) ] .  In case of mi(dt) = dt,  1 d i < dl Moser [3] showed that 

! Harnack's inequality leads us to Hlilder continuity of solutions of 
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[gE, F ~ ( E ;  ( v i i j ) ] .  Though it may be hopeless to obtain such results in our 
general case, we can extend his results in the following direction: 

THEOREM 2. Assum (0.1) and (0.2) as weIl as 

(0.6) lim mi((ai -@, ai +e))/p(log llog ql) l l (d- l j  = 0, 
aio 

a =(al, ..., a,,)~82, 1 < i < d .  

Let E be a domain with E n O  # 0) and u be a solution of 
[gEnn, s2 ( E  n Q; [ v i i ] ) ] .  Further, if E n 862 # a, suppose that for every 
a f E  n 80 there is a cone included in E - Q  with vertex at a and u = const on 
E n dO. Then u is c~ntinuous on E n D. 

In Section 3 we show another type Harnack's inequality under the 
additional condition: 

(0.7) d = 2. For any rectangle K = 1' x l2 there are a real number S 
= 6(K)  2 2 and sequences of partitions of Ii's, 

where 1 = Nb < N', < . . . too and Jk,,'s fulfil the following properties for 
every i, j, k ,  I ,  n: 

(0 mi (Jb .k )  > 0, 
(ii) J i k n J t , , = Q )  if k # 1 ,  

(iii) IJkkl = sup Jkk- inf J i k  and lim max IJ;,,( = 0, 
"Tm l S k d N L  

(iv) 0 ,< IJb,kl < 6mj(J;,,), 

(v) J ~ , R  = U J :+ l , p  and m i  d J + , p y  PEP;,, 
pEp'n,lt 

where {Pi,,,: 1 d k d Ni) is an. appropriate partition of (1 ,  2, . . . , N t +  ,). 

THEOREM 3. Suppose (0.1), (0.2) and (0.7). Let E be a subdomain of !2 and u 
be a nonraegative solution of [g,, F ~ ( E ;  [vii))J. Then for any compact set 
K (c E) there is a positive constant C independent of u such that 

m-ess max u < C m-ess min u. 
K K 

Moser [4] proved this theorem for the case rq(dt) = dt, 1  < i ,< d,  He 
made good use of an important estimate on functions of bounded mean 
oscilIations due to John and Nirenberg [Z]. Under condition (0.7) we can 
give an analogous estimate on functions of bounded mean oscillations with 
respect to m. Thus we can utilize ideas in [4]. We will discuss on condition 
(0.7) in Section 3. 
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. Now Iet n be a Radon measure on P such that 

for some 1 6 A c a, dx being the d-dimensional Lebesgile measure. Let 
(9, 4 be a Dirichlet space relative to L2 (9; n) such that d = Fi (a; (v,)) 
and b ( u ,  v)  = 0 if u = const on Supp [ u ] .  Then d can be expressed by 

where ail, 1 < i ,  j < d fulfil (0.4) and (0.5) (see [7]). It is known [I] that there 
is a diffusion process on 8 associated with (9, 8). This diffusion process has 
the resolvent density [7 J. The estimate in Theorem 1 implies the positivity of 
the resolvent density, Theorem 2 leads us to the continuity and the estimate in 
Theorem 3 gives us a comparison theorem of the resolvent density with that 
of a direct product diffusion. These facts and some other properties will be 
proved in Section 4. 

Finally, I would like to thank Professor Yukio Ogura for his valuable 
suggestions. 

Throughout this section we assume (0.1) and (0.2). Given E c 51, we call a 
function u a sabsolution of [g,, S 2 ( E ;  {vii))] if u e g 2 ( E ;  {vii>) and 
8, (u ,  9) < 0 for every nonnegative ip E 9; (E ;  {vii}). 

Put 
Q(a, Q) = ( x = ( x , ,  ..., x , )~Rd:  Ixi-ail < e ,  1 < i  < d l ,  

Q(a, el = Q n Q(a,  el, 

p (a, e) = max mi ((a, - Q ,  ai + Q ) ) / ~ Q  for a = ( a l ,  . . . , ad) and Q > 0. 
l < i $ d  

In order to prove Theorem 1 we need two lemmas. The lirst one is a 
small modification of [7j, Theorem 2.5. 

LEMMA 1.1. Let Q (a, e) l= f2 or U E  dSE. Let u be a subsolution of 

[baa,,l, @(a, e); [vii])] such that u < @ (= const) on 8 2  n Q (a,  Q) if 
QE af2. Then 

v-ess max u < $+c, (Q-r)-d12( j (u-  612 dv)'t2, 0 < r < Q ,  
R(o,r) n(0.e) 

for a positive constant C, = C, (A ,  d, y), where & = 0 i f  aE a, 8 = 9 v 0 if 
a E 8R. 

Proof.  Put Q(r) = Q(a, r), Q(r) = Q(a, r )  and E = Q(a,  Q). For all t 2 6, 
v s (u - t )  v 0 is nonnegative subsolution of I&,, F2 (E; {vii))] and, in par- 
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ticular, if a E dSa, then v vanishes on 862 n Q (Q). For each 0 < e2 < Q, 6 q we - 
choose a function q E C,"(Q (p)) such that q = 1 on Q (el), cp = 0 outside 
Q (el) and IqI 6 1, IDi cpI 6 2 / ( ~ ,  - g,). Since goLv belongs to . F ~ ( E ;  (vii)j and 
is nonnegative, we have &,(v, cpZ v )  < 0. Hence 

that is, 

I .... C J 'p2 4 vDj vq ,  dvii < 4C j v2 Di cpDj qaij dvij . 
i,j E i.i E 

By condition (0.5) 

Therefore, by using Holder's inequality and [7], Proposition 1.4, we 
I obtain 

, J (u-t)=dv 
~ Q ~ ) " P > ~ I  

d j (vv)' dv - 
E 

< (1 1 (pulq d ~ ) ~ ~ ~  v (E n Iqv # 0))'- 2k 
E 

< Cz v(E n ( q v  # 0)j21dC J(vDi q+qDi vj2 dvii 
i E  

< 8C2(l + 4 ~ ' ) ( ~ ,  -g2)-2(t-~)-41d( J ( u - ~ ) ~ d v ) ~ + ~ / ~ ,  
n(el)nIu>s) 

for % < s < t, where 2 < q < 2d/(d-2) and Cz = C2(A, d).  Taking 

as q(t ,  r) in [ 5 ] ,  Lemma 5.1, we get the assertion, q.e.d. 

LEMMA 1.2. Assume Q(a, pl) c Q or a €  8Q. Let Q, > Q, > e3 > 0 and let u 
be a nonnegative solution of [ c ? ~ ~ , ~ , , ,  P2(61(u, g,); {vii)fl such that 
IO(a, q2) n (u 2 111 2 ~1Q(a ,  e2)l for some E > 0 in case of Q(a, Q,) c 4 or 
such that u = comt 2 1 on a62 n Q (a, el) and IQ (a, e2)- 81 2 E tQ (a, e2)l for 
some E > 0 in case of a E 8Q. Then 
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v-ess min u 
R(a.~3) 

1 112 ~ e x ~ ~ - ~ , - i ' @ : e : ( e ~ - e ~ ) - ~ ( e ~ - e 3 ) - ~ ~ ( f l , @ l ) ~ - ~ ~ ( a , @ , ) ~ -  1 
for some positive constant C3  = C3 (A ,  d ,  y, 6) .  

Remark. When m,(dt) = dt, 1  G i G d, taking Q = el = 2g2 = 4@3 shows 

ess min u 2 exp ( - 2d C3) ,  
SMa.eI4) 

which is the result due to Moser 131. 

Proof.  Put E = Q ( a ,  Q,). Fix an arbitrary ~ECO, 1) and let f(x) 
= ,'-log (x+ rj)] v 0. In spite of f  (0) > 0, the proof of Proposition 
1.3 in [7] works in showing ~ ' ( u ) E ~ ~ ( E ;  (vii]). Since f is convex, 
gE (f (u), p) G 8E (u, f ' (u )  p) = 0 for every nonnegative q E C," (E), that is, 
f (4 is a subsolution of 8 ,  ( E ;  v Noting f  (u) = 0 on 
dl2 n Q (a ,  e2) if a E ai2, we have, by Lemma 1.1, 

(1.1) v -ess max fa@) < C, ( Q ,  - Q,)  - d / 2  ( j f (u) d ~ ) l / ~ .  
fW+@g) n [ 0 3 g 2 )  

In the same way as in the proof of Proposition 1.2 in [7], we see that 

J I' (4 dv 4 c4 P (a, e#- ' ( .f f 2  (4 + e: C (Dif (4)' h i )  
nla.e2) fXa,&z) i ma,ez) 

for some positive C, = C4 ( A ,  d). 
Set N = Q (a ,  e2) n (u 2 1)  or N = Q (a ,  Q,) - Q according to 

Q ( a ,  el) c ln or a ~ a a .  By virtue of [3] ,  Lemma 2, we obtain 

J f (u) G C5 Q: C J (Dif ( ~ 1 ) ~  dvii 
n(o,ez) i 4 a . e ~ )  

with C, = C, ( A ,  d, E). Therefore 

Moreover, we have 

(1.3) C I ( D ~ ~ ( u ) ) ~ ~ ~ ~ ~ G ~ ~ Y ~ ( Q I - Q z ) - ~ v ( Q ( ~ , @ I ) ) .  
i W , e z l  

Because 8, (u, f ' (u)  rp2) = 0, rp E C; (Q (a ,  Q , ) )  and f" > (f I)', and hence 

In order to get (1.3) we may take a cp~C,"(Q(a ,  el)) with rp = 1 on 
Q ( a ,  e2), IDi ql d 2/(e1 - ez) ,  1  G i 6 d. It follows from (1.1)-(1.3) that 

v less max - lbg (u + t.t)I I 

R,I0,@3) 
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Cl IC&S +I) 14y2 (el - ad-'(ez - e X d  e22)'I2 x 

x { A a ,  edd-' v P (a, el))}"' 
< C1 0% (CS + 1) 16yZ(el - ad-' (el - e3)-* eeZ) 

x ( p b ,  e,Id-l d(2~1)* ~ ( a ,  ~ , ) ~ - l ) ' / ~ .  

Since q is arbitrary, we get the desired estimate, q.e.d. 
Proof  of Theorem 1. We can take a cube Q(a, 3 ~ )  c E and a positive 

constant C,  such that E = IQ (a, 2 ~ )  n {u 2 C6)l/lQ (a , 2 ~ ) i  > 0 in case o£ 
E c SZ, or such that u = C, on E n d Q  and E = JQ(a,  2~)-Ql/lQ(a, 2e)J > 0 
otherwise. Namely, u/C, satisfies the conditions in Lemma 1.2. Therefore 
u ( x )  2 C,  ( A ,  d ,  y ,  E ,  Q) > 0 for v-a.e. x EL?(u, Q). Repeating this argument, 
we obtain the concIusion, q.e.d. 

As an immediate consequence of Theorem 1 we get the following 

COROLLARY 1.3. Let E be a subdomain of Q. If u is a nonnegative 
continuous solution of [gE,  .F2(E; {vii))], then u is positiue or identically zero 
in E. 

First of all we give 
Proof of Theorem 2. Fix an U E E  n8. If a ~ d Q  by the assumption of 

the theorem there is an E, 0 < E < 1/2, such that 

inf I Q  (a, r)  - QIAQ (a,  r)l 2 E .  
r 1 0  

Put C, = C, (A, d ,  y ,  E )  2d+1 and fix an u ~ ( 0 ,  C, 'I) and a 8 ~ ( 0 ,  1) 
such that ad- C ,  < (1 -B)' 1). Since y (a, Q ) ~ - '  < ad- ' log llog el for 
sufficiently small e, putting = /3" gives us 

exp (- C8 (1 -en+ 1/eJ-dJ2-1 P(Q,  @Ad-'1 

for n 2 no, no being a certain number depending only on a and C,.. 
Now set 

S = v-ess max u and I = v-ess min u. 
Maven) -,en) 

By Lemma 1.1 we have -GO < I < S <  +GO.  If I < S ,  we put u, = 
2 (u - I ) /@ - 0, u2 = 2(S - u)/(S - I ) ,  which are nonnegative solutions of 
Cgmr,pn) s2 (Q (a,  e3 ; {vii))] 

5 - Probability Math Statistics 511 
, 
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Let us take r = (q,+ Q,, ,)/2. Obviously /O(a, r) n {ui 3 111 2 IO(a, r)1/2 
2 a19(a, r)i for i = 1 or 2 and if a€ 80, then ui = const 3 1 on di2 n Q ( a ,  r) 
and lQ@, r)-Dl 3 ~ 1 Q ( a ,  r)l for i = 1 or 2. In view of Lemma 1.2 we obtain 

v-ess min ui 
f layen + 11 

d -  1) 112 3 exp 1-C3(A,  d ,  Y, ~ ) ( e ~ r ~ ( e , - ~ ) - ~ ( r - e , + ~ ) - ~ ~ I a ,  edd-' ~ ( a ,  r) 1 
= cxp I -C, ( A ,  d ,  y ,  E) Yl2(1 +@)(l - ~ , , + ~ / ~ , ) - ~ ~ ~ - ~ p ( a ,  ~ J ' ~ - ~ ) l ~ p ( a ,  r)(d-1)/2], 

2 exp (- ~g (1 -q,+ l/e,J-d/2-1 ~ ( 0 ,  e3" '1 
3 l/n [log B!, 
where i = 1 or 2. 

Therefore S 2 u 2 I + ( S  - 1)/2n (log 81 or I ,< u ,< S -(S - I)/2n llog 8) 
Y-a.e. on G(a, g,, ,). This implies 

~ ( e , + ~ )  E V-ess max u-v-ess min u < (1- 1/2nJlog PJ)o(@,J 
Manen + 1 1 ma.@n+ 1 )  

ti n 

< n (1 - 1/2k !log Bl) (eno) < exp -( - 1/2k [log PI 1 w(e,,), 
k = n o  k = n g  

whence . 

Thus we can get a continuous version of u, q.e.d. 
Now let n satisfy (0.8) and put gE,,(u, V )  = gE(u, v)+L(u, u), for E c Q 

and A >  0, ( , ), being the inner product in L'(E; n). A function u is called a 
solution of [8E,A, A S; ( E ;  /vii))] j, S2 ( E ;  Ivii))]) i f  u belongs to 
9; (E; {vii]) -(resp. 9' (E ;  {v i i ) ) )  and satisfies gEP1 (u, (P) = (f, q),, for every 
JY Fi ( E ;  {vii]) - 

PROPOSITION 2.1. Assume (0.1) and (0.2). Let E be a bounded domain of Q 
and u be a solution of f, 9 $ ( E ;  (vii))], where f E LP(E; n) with p .> d 
and R 2 0. Then 

rn-ess max lul < Cg r n ( ~ ) ~ ~ ~ - ' I ~ ( J j f  lPdn)l1! 
E E 

with some Cg = Cg(A ,  d ,  M ,  p, y ,  A). 
Noting Sobolev's inequalities ([7], Proposition 1.4), we can use the same 

methods as in [5] ,  Theorem 4.2. So we omit the proof. 

THEOREM 2.2. Suppose (0.1), (0.2) and (0.6). Let E be a domain with 
E n B  # (3 and u be a bounded solution of ic?,,,,, f, 5F2(E n 52; (vii))] with 
f E LP(E n 9; n), p > d and 1 2 0. Moreover, $ E n 851 # 0, suppose that for 
every a E E n ai2 there is a cone included in E -a with vertex at a and u 
= coast on E n dQ. Then u is continuous on E n a. 



Proof. Fix a p > d, an f €LP(E n52; n) and a iE 3 0. Let u be a bounded 
solution of [i?,,,,, f, g 2 ( E  n 62; ( v i i ] } ] .  Put g = f -Au. Since m is a con- 
tinuous measure, for any E > 0 and for any ~ E E  nfi we have a Q > 0 for 
which O (a, Q) c E and 

It follows from Riesz theorem and 571, (1.11), that there is a unique 
solution w of [gsna,el,oy g ,  F t ( P ( a ,  g); (v i i>) ] .  By Proposition 2.1 

rniess rnax IwJ < ~ / 4 .  
90,e) 

Set v = u-w. Then v is a solution of [R~, , , ,  .~*(dZ(a, Q);  (vi i)n such 
that v = const on Q ( a ,  p) n aQ if 

By Theorem 2, u is continuous at a. We thus have an r ~ ( 0 ,  Q) such that 
the oscillation of v in &)(a, r)  is smaller than ~ / 2  and hence that of u in 
Q(a, r) is smaller than E, which shows the assertion of the theorem, q.e.d. 

3. PROOF OF THEOREM 3 

We can obtairi Theorem 3 in case of d 3 3 if (0.7.i~) is replaced by 

(iv)' lJk,kl 2 S-,' mj (Ji , , ) .  

However (0.1), (0.2) and (0.7) with (iv)' in place of (iv) are satisfied if and 
only if mi (dt) = mp (t)  dt, A < m,!'(t) G M a.e, 1 < i < d. Putting bij = a,, n mi 

gE (u , v) = j Di u (x) Dj v (x)-bij (x) dx . 
ij= 1 E 

The matrix (bii) is symmetric and positive definite. Moreaver, F i ( E ;  fvii]) 
and F ~ ( E ;  bii}) coincide with HA(E) and H1(E) (= Sobolev spaces), respec- 
tively, and Di u's are the distributional derivatives. Thus the case where d 2 3 
and (0.1), (0.2) and (0.7) with (iv)' in place of (iv) are satisfied is reduced to the 
case treated in [4]. Therefore we restrict ourselves to the case of d = 2. At 
the end of this section we will find some examples satisfying (0.1), (0.2) and 
(0.71, which contain every continuous measure. 

Now Theorem 3 can be easily deduced from the following Theorem 3.1, 
so that we omit the proof of Theorem 3 itself. 

THEOREM 3.1. Let Q.(a, e l )  c IR and el > Q, > p3 > Q, > 0. If u is a 
solution of [&Q~.,P1), 9"Q(a ,  el);  {vii)fl and it is positive on Q(a ,  e2), then 

m-ess rnax u G {Clo ( l  -e4/e3)-' p(a,  Q ~ ) ) ~ "  rn-ess min u 
Q(o,eq) Q(o.eq) 
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for Clo = Clo(A,  y)  and Cll = (y)S5/'(l -Q~/&)-' p(a, e2)'12, where 6 is 
a positiue number as in (0.7) for K = Q(a ,  e3). 

To prove this we have to prepare some lemmas. Following (0.7) we take a 
positive number S = s ( Q ( a ,  p3)) and sequences 

' A:: {q-Q,, a,+@,)= U Ji,k, i =  I ,  2. 
1 s k 6 ~ ;  

Put X = (3APkl O J ~ , ~ ~ ;  1 < ki < NL, i = 1, 2, n 3 0). We may assume 
that u is strictly positive on Q ( a ,  Q,) without lass of generality. 

LEMMA 3.2  Set u = -log u and vH = j u dm/m (H). Then 
R 

1 IY-vHI dm 6 24 yS1IZ(1 - . Q ~ / Q ~ ) - '  p(a, e z ) ' 1 2 m ( ~ )  
A 

Jbr every HE A@. 
Proof. By Lemma 1.1, u is bounded on Q(a, p,) and hence v belongs to 

F ~ ( Q ( ~ ,  ez); {v i i ] ) .  Let H = J:,,, X J ; , ~ ~ E X .  Holder's inequality gives us 

for cp E C g  (Q (a, Q~)) with cp = 1 on H, where the last inequality is shown in 
the same way as for (1.4). 

Choose a q~ C," (Q(a ,  Q,)) such that cp = 1 on the set Q(a, Q,), IDi ql 
< 2/(e2 - Q,). Since . . 

C I J'.,kil mi (J:,ti) d 2Sm (H) 
i 

by (0.7.iv), we have 

q.e.d. 
The following lemma is a modification of the one in [2]. For complete- 

ness we give the proof at the last section. 

LEMMA 3.3. If there i s  a constant CIZ such that 



then 

where C13 = 1/ea2 Cl and 0 < t < 1.  

Since 

from Lemmas 3.2 and 3.3 we obtain immediately 

where Q = Q (a, e3), 0 < t < 1, and C,, = CL (y)d- 'j2 (1 - &/&) p (a, e2)-  I 1 2  
LEMMA 3.5. Set Q = Q (a, e2) and w = uk with k E R1. If k # 1/2, then 

for every cp E C$ (Q). 
Noting that u"-' belongs to 9' (Q ; {vii)) and gQ (u, u'" ' rp') = 0, 

~ E C $ ( Q ) ,  we can get above lemma. So we omit the proof. 

P r o o f  of Theorem 3.1. We may assume C,, 6 1. Fix a positive integer 
N such that 6C;: 1 3' < 18C;a. Set t = 2(3NC14)-1 and a = k c l 4  t 
= +2/3N. Then 9-' < t g 3-' and 3"cr # 1, n = 0, 1, 2, ... 

Put wn = uSn4j: r = Q + (  - ) ( n +  1 ,  Qn = Q(a, r,,), n - 0, 1, 2, . . . 
For each n we take a function q , , ~  C$(Qn) with rp, = 1 -on 
IDi cp,I < 2(rn-rn+I)-1. Appealing to Proposition 1.4 of 171 and Lemma 3.5 
we get 

C 4C1 s m(Q,)lf3 {l + y2 (3"~/(3"u - 1))') (rn -rn+ ,)- ' j w: dv 
Qn 

for some constant C,, = CIS (A). . 

For all n, (3nu/(3na-1))' < 1 if a = -Cl,t or 1 4  if ir = C14t, and r, 
- rn+ 1 = (@3 - @4)/(n+ 1)(n+ 2) 2 (e3 - e4)/(n + 2)'. Therefore we have 
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Putting U ,  = J ta3""dm leads us to 
Q. 

< C3+32+...+3n 
W ~ G ( C I ~ ( ~ + ~ ) ~ U ~ - I ) ~ \  16 

3 32 ((n+ 1) ra . .. 23'34 u:", 
where C,, = 8Ai1  C,,(1 +4yZ)(@, -e4)-2na(~,)113. Hence 

m-essmaxua=lim u , ~ - ~ < C ~ ~ ( Q ~ - ~ ~ ) - ~ ~ ( Q ~ ) ~ ~ ~  $ uadm 
Qfa,eq) n? m Q(a,eg) 

for an appropriate C,, = C,, (A, y). Combining Lemma 3.4 with this and 
noting 1/9 < t < 113, we obtain 

4 ( 2 4 ~ ~ ~  (1 -@~p,) - l  ~ ( o ,  ~ ~ ) ~ ) l ' " ~ ~ m - e s  min u, 
Q(a.04) 

which proves the theorem, q.e.d. 

COROLLARY 3.6. Let E be a subdomain of 52 and u a continuous solution of 
.F2 (E; { v i i ) ) ] .  I f  u ~ttains the maximum (minimum) inside E, then u is 

constant. 
Pro of. Assume 

u(a) = max u = p. 
E 

Choose a compact set K(c E) containing a. For any E > 0 let v = p-u 
+E; then v is a positive solution of [gE,  F2(E; (vii))] and 

Therefore 

r n a x ( p - u + ~ ) d C ~ ~ ~ ,  thatis, p < ~ ( C ~ ~ - l ) + m i n u .  
K K 

Letting E 10, we get 

min u = p. 
K 

Since K is arbitrary, we have u = p inside E, q.e.d. 

Now we exhibit examples satisfying our assumptions. 

PROPOSITION 3.7. Let 3, i = 1, 2, be continuous measures and assume (0.1) 
and (0.2). Then (0.7) follows automatically. 

R em a r  k. Measures 4's are not necessarily absolutely continuous with 
respect to dt. 
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Proof. Let 1' =(ai, b'), i = 1, 2. By the continuity of mi, for each i, n 
there are the points 

i "ch that q((c;,,-,, d,3) = 2-"mi(Ii) ,  1 6 k G 2". P U ~  I;,, = [c;,,- ,, c,,)- 
- {ai), 1 G k G 2"; (0.7) is satisfied by the following: 

6. = 2 v [ A  - ' max. q (li)/mj (ij)] , 
1 6 i , j S  2 

q.e.d. 

where each TF$ is a continuous measure. 
Assume (0.1) and (0.2). Then (0.7) follows if for given intervals I', i = 1, 2, 

there is a positive number R such that 

where 4 . k  = ( I :  d f ~ l i , ~ ,  a: < 2 - ' + ' e ( P ) )  and {I:,,: 1 < k $ 2') is a partition 
of I' with mf (l:,k) = 2 - " @ ( 1 ~ ) ,  1 d k < 2", as mentioned above. 

- Remark. (3.1) is satisfied if one of the following holds for i = 1 or 2: 

(3.2) # { I :  uf >0)  < 00 ;  

(3.3) sup # { I :  as < a; < as- l )  < m for an a ~ ( 0 ,  1 ) ;  . 
s B  1 

(3.4) m,'(dt) = dt,  af' = 1-8, di = I - # + '  E ii = (0, 1 ) ,  E 3 2, with @ > I .  

Indeed, (3.1) is trivial in case of (3.2). If (3.3) holds, 

x = sup # (1 :  2-"*(Ii) <a;: < 2--"+l @(zi)) < a, 
s B  l 

whence 

which implies (3.1). 



~f (3.4) is satisfied, then 

1:,=[(k-1)2-', k2-)-{0),  1 C k d Z s ,  ' sa l ,  

G C,, 2-", [2(s+a-1Mfl] + 1 ,( k < ZS, s 2 2, 

where C,,, C2, depend only on fi and [a] denotes the smallest integer not 
exceeding a. Therefore (3.1) follows. 

Proof o f  P r o p o s i t i o n  3.8. Let 

We define sequences of partitions {A:].,"=,, i = 1, 2, as follows. Set 

A:: I' = U , where N', = 1. 
I S ~ C N ~  

(3.5) Case of n s - , + l < n < n , - 1 ,  s = 0 , 1 , 2  ,... : 
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where I:,,'S are intervals mentioned in the proof of Proposition 3.8, that is, 
{I: , , :  1 < k < 2s) is a partition of I' and m;(16.,) = 2-"pn;{ii). 

(3.6) Case of n = n s ,  s = 0 , 1 , 2  ,... : 

Obviously Nk + co (n + co) and (0.7.i)-(0.7.iii) are fulfiled. We prove that 
there is a positive number 6 satisfying (0.7.i~) and (0.7.~). 

By (0.1) and the definitions of It,, and Ls we have 

in case (3.5). By the same reason 

I J ~ , k l < A - 1 2 - S - 1 ~ ( ~ i ) < ~ - ' m i ( ~ ~ k ) ,  l < k q N h ,  

in case (3.6). Therefore 

O <  l ~ b , ~ l / q ( ~ j , , )  d A-I max wrf(P)/m;(li) 
1 <i , j<2 

for i , j = 1 , 2 ,  l g k ,  Z,<Nk, n20. 

This means that (0.7.i~) is satisfied if 

6 2 A-I max w$ (Ii)/m; (lj). 
iJ 

In order to show (0.7.v) let 

as in (0.7). Clearly c, is a single-point set or a two-points set. The latter 
case occurs if and only if either of the following is satisfied: 

(3.8) n = n, - 1 ,  J ; , ~  is not a single-point . 
4 

In case of (3.7), putting P;,, = (p, q ) ,  p < q, we actually see that 
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for some 1 E E ~ ,  1 < k < Y, and hence, in case of s = 0, we have 

@(Ii) < mi(Ji+l ,p)  ,( max af d R, 
1eL; 

m 

rnf(ii) < rn i (Jk , , ,~  d mf(ii)+ orf f mf(li)+R; 
I =  1. 

for s 2 l we have 

2-rq!(1) =m:(Ji+l,q) < m i ( J ~ + , , q ) 4  m;(~i+,,d+ uf C 2- ' t@(P)+R.2-".  

l ~ L : , k  

Therefore 

mi (J;,J/{~~ ( ~ f  + A mi (Jb+ l,J) 3 v (2+R/mfi l i ) l .  

It is obvious that mi (Jk,,)/mi ( J h +  = 2, p ~ p ' , , ~  in case of (3.8). We thus 
take 

6 = max {A- max nf (Ii)/m; ( I j ) ,  3, 2 + R / { 4  ( I 1 )  A 4 (1 'I]), 
16i,j<2 

4. APPLICATIONS TO ElWFUdON PROCESSES 

Let 8 be a bounded rectangle whose faces are paralie1 to coordinate axes. 
We consider the Dirichlet space relative to L'(Q; n) such that 9 
= 9i(G?; (vi i j )  and b(u, v) = 0 if u = const on Supp [ v ] .  Note that b is 
given by (0.9). Further we assume (5.4) in 171. Namely, 

(4.1) (3, 8) can be extended to a Dirichlet space (3, g) relative to 
L2(Rd; n) which is given by (0.9) with Rd, Zij in place of O, aij, 
respectively, where Zij, 1 < i, j < d, are measurable, satisfy (0.4) 
and (0.5) for fi = Rd and for another positive constant y', and Zij 
= qj on O. Moreover, for any bounded domain E, f E Cg(Q and 
12 0, every solution of [8,, f, E] belongs to C ( E ) .  (See [7] for 
significations of above symbols.) 

Let (G,: A 2 0) be the resolvent associated with (9, 6: 4fA(GAf ,  rp) 
= (f, rp), f E L2(52; n), VE 9. Under assumptions (0:1), (0.2) and (4.1) we have 
a unique diffusion process X = [x,, (, P,], x~S2 ,  such that 

i 
G f ( x )  = ~,[je-"f(x,)dt], A 2 0 ,  f~C,(51) 

0 

(cf. E7], Theorem 5.1). This diffusion X has the resolvent density g, (x ,  y) such 
that for each d 2 0 
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(4.3) gn(x, *) =gi ( ' ,  X)E C ( ~ - { X } ) ,  . X E Q  

(cf. [7], Theorems 5.6 and 5.8). Moreover, in view of [7] (5.22), and 
Corollary 1.3, we find 

From now on we write g ( x ,  y) instead of g,(x, y). 
For an open set E c G? let 

TE = (U E 9: u 3 1 n- a.e. on  E ) ,  

inf b ( u , u )  if Y E # @ ,  

otherwise. 

For any set E c P let 

Cap (E)  = inf (Cap (G): G is open, G 3 E )  . 
oE stands for the hitting time for E of X: a, = inf {t > 0: X, E E )  . 
For 1 d i  < d ,  UER' ,  put 

and denote by @f the inverse function of t ~+  Uf (t). 

THEOREM 4.1. Assume (0.1), (0.2) and (4.1). Then for a given point a 
= (a,, . . . , a,) E 61, the following (i)-(iv) are equivalent: 

(i) Cap ({a)) > 0, 
(ii) g(a, a) lim max g(x, a) c oo, 

el0 I x - a l = e  

( i )  P a  4 ) > 0 XE 52, 
r d  

(iv) J { n 9 ((a, - yi (t), ai + % (t)))) -' dt converges for some r > 0. 
0 i = l  

Further, g(a, a) = 1/Cap ({a)) wheneuer one of conditions (i)-(iv) is 
satisfied. 

Proof. By virtue of (4.4) and [7], Theorems 5.5 and 5.10, we obtain the 
equivalences: (i) o( i i i )  o(iv). 

Let B(a, Q) be a closed ball with center a and radius Q, where 0 < e 
< dist (a, dS2). It follows from [7), Theorem 5.10, that 

(4.5) min g (a, x) < l/Cap (B(a, Q)) d max g (a, x), 
J x - n l = p  Ix-a1 =Q 
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which yields l/Cap ({a]) ,< q(a, a) and the implication (ii) (i). Conversely, 
when (i) is satisfied, by using [7], (5.27), we see that 

and hence we get (ii) as well as g(a, a) = l/Cap ({a)), q.e.d. 

We proceed our arguments under condition (0.7). Given two data {at)), 
{a$)) satisfying (0.4) and (0.5), let X(l), X'21 be the corresponding diffusions as 
above. For each i we mark the characteristics of X(') with (i): g(')(x, y), 
Cap'') (E), etc. 

THEOREM 4.2. Assume (0.1), (0.21, (0.7) and (4.1). For any ~ E O  and any 0 
< Q < dist (a, dO)/2, there is u positiue constunt C,, swh that 

Remark.  (i) In the case of d 2 3, mentioned at the beginning of Section 
3, the same inequality is given by [53, Theorem 8.5. 

(ii) C,, depends on A, y and the behavior of m near Q(a,  p). 

(iii) Let af' = Sij/2. Then S2) is no other than a direct product diffusion 
(cf, [7]), Therefore g(l) (x, y) can be compared with that of the direct product 
diffusion. 

Proof .  By Theorem 3 we have 

max g(')(x,a)<C,, min g(')(x,a), i = l , 2 .  
Ix-al=@ Ix-al=e 

0 

On the other hand, noting (0.5) and (0.91, we find 

Y - *  Cap(21 (B(a, q)) < Cap(l)(B(a, Q)) < y 2   cap(')(^ (a, Q)). 

Combining these with (4.5) shows the conclution, q.e.d. 

Finally we observe the following examples. 
Example  4.3. Let m, be a nonnegative measure on R1 with (0.1) and 

(0.2), and mi (dt)  = dt,  2 < i < d. Let n (dx) = dx and consider a Dirichlet 
spacs (B, &) as above. We assume on (0.9) expressing 8 that each aij belongs 
to C '-class, where do = [(d - 1)/2] + 1. (Of course (0.4) and (0.5) are fulfiled.) 
Then (4.1) is satisfied as it is claimed in 161. 

Thus we have a unique diffusion process on D associated with (.9, 4, 
whose resolvent is continuous and whose resolvent density has properties 
(4.2)-(4.4). Moreover, Cap ((a)) > 0 if and only if 
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for some r > 0 or, equivalently, d = 2 and 
r 

J U , ' l ( t ) 1 f 2 d t < ~  forsome r > 0 .  
0 

Further, if rn, satisfies the condition of Proposition 3.8, then (0.7) follows. 
In this case let Xt2) be the diffusions corresponding to {a{;'), {a$)> of 
C1-class with (0.4) and (0.5). Then we have . 

I. ._. I where Cz3, C2, are positive constants depending only on A and y. 
Example  4.4. Suppose (0.1), (0.2) and (0.6). In view of Theorem 2.2, we 

then get that GA f belongs to C, (a) for every bounded function f and 1 2 0, 
where Co (0) denotes the set of all continuous functions vanishing on dl2. 
Therefore we obtain the diffusion process uniquely associated with (F, 4, 
whose resolvent density g,  (x, y) possesses (4.2) -(4.4) and, moreover, 

limg,(x,y)=O for x ~ 5 2 , a ~ a 0 .  
Y - 0  

Since the integral in (iv) of Theorem 4.1 always diverges in this case, 
Cap ( (a) )  = 0, U E D .  Each m, is a continuous measure and hence (0.7) is 
satisfied in case of d = 2. Writing 

= 2 v A-I mix mi((ai -a,  ai +e))/mj((aj-Q, a,+@)) < C,, log llog el 
1 < i , j C Z  

for some CZ5 = C25 (A), we find that for the diffusions X(k), k = 1, 2, 
corresponding to (a!;)) with (0.4) and (0.51, 

where C2,, C,, depend only on A, y. 

5. PROOF OF LEMMA 3 3  

, It suffi~es to show the following 
PROPOSITION. Under the same- assumption as in Lemma 3.3 

m ( { x c H :  In ( * ) -vd  > a))  < 3 e - C 1 3 " r n ( ~ ,  n > 0, HE*. 

In fact, putting f (s) = exp (C,, ts) and p(s) = m ({x E H: Iv(x) - uHI > s)), we 
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find 

which proves ~ e & m a  3.3. 
Now we give 

P r o o f  of Propos i t ion .  We divide it into three steps. 
S t ep  1. Let w be a function satisfying 

for some s > 0 and some HE 2. Then we have a sequence {Ilk),"=, such that 

(0 for each k,  Hk $ H and H k € X  whenever H,  # 0, 
(ii) H , ~ H , = Q )  if k # l ,  

(iii) 

Indeed, we may set H = Jf,,,,, x J ~ ~ , , , ,  with some no 2 0, 1 < kOi < N;,, 
i = 1 ,  2. Let 

Since 

! we have by means of (0.7~) - 
! 



Hartmck's inequalities 

Next Iet 

= tJ . [ H " E H ~ : H " $ H ' , ~ ~ ( H " ) ~  JIwtdrn) .  
W G A ~  -.q H" 

Then 

Repeating ths argument, we obtain a denumerable set 2: u 2: u .. . ' 

whose elements are denoted by HI, H z ,  . . . Then properties (i)-(ii) are trivial. 
In the same way as (5.1) and (5.2), we see 

srn(Hk) d 1 Iwl dm < ii2 sm(H,),  k 3.1. 
Hk 

Hence (iv) follows and 

which is (v). Further, by virture of (0.7.iii) for any XEH-  U Hk we have a se- 
k 

quence (H:'),,,  such that 

with some 1 < k,, < N;,,,, i = 1,  2, and 

j Iwl dm < sm(H:'). 
Hi' 

Therefore (iii) is valid. 
S t ep  2. Let F(a) be the supremum of 

which is taken over the set of all H E X  and all u such that 

(5.3) J l u - u H l d m < m ( H ) ,  H E X ,  
H 

where we put 0/0 = 0. If a 2 a2, then 



Indeed, fix a set H E  2 and a function u satisfying (5.3). Let w = u - u N :  
then w fulfils (5.3), w, = 0 and 

Since by the lait inequality there is a sequence Hk],31 with (i)-(v) ir 
Step 1, we see 

m ( { x ~ H :  Iw(x)l > a)) 6 ~ ~ ( { x E H , :  Iw(x)l > a}) 
k 

Since H and u are arbitrary, we get (5.4). 
S t ep  3. Let a = 1/B2 e and #I = 6' e/(e- 1). An easy calculation shows 

F(u)  < g-' < p-' < e -(p+aZe) < A e p a a ,  p < cr < p+d2e .  

Hence, by (5.4) with s = e, 

, F(a) < e - l F ( ~ r - 6 ~ e )  4 e-"", flf S Z e  6 cr < B+2d2e. 

Iteration of this argument leads us to F(a) 6 exp (-aa) for B < a. Setting u 
= v /CI2 ,  we find 

for H E  %, cr 2 C, , B. Obviously, 

~ ( ( x E H :  lu-u,l >a)) < m ( H )  < 3e -aa/c12 
m(H), 0 < a 4 Clz 8. 

Thus we complete the proof, q.e.d. 
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