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Abstract. Consider the Dirichlet space associated with a direct
product diffusion process. Dirichlet forms having the same domain
as it can be expressed by integro-differential forms [7]. We establish
two estimates for harmonic functions with respect to such Dirichlet
forms, which correspond to Harnack’s inequalities in the theory of
partial differential equations. Further we show the continuity of such
harmonic functions. Then we apply those results to study some
properties of diffusion processes associated with Dirichlet forms as
above.

0. INTRODUCTION
Let m;, 1 <i<d (d>2), be nonnegative Radon measures on R' such
that ‘
(0.1) ' m;(dt) > Adt, 1<i<d, teR,
0.2) m([,j+1) <M, 1<i<d, j=0, t1, £2,...,

for some 0 < A4 <1< M < oo, where dt is the one-dimensional Lebesgue
measure. .

Let us define d-dimensional Radon measures m, vij, 1 €i,j<d, and v as
follows:

m(dx) = m(dx,...dx;) = [] m(dx,),

‘1<k<d
[ mi(dx)dx; ifi=j,
vii(dx) = v;(dx,...dx) =< **
j j\aXy d [1 m(dx)dx;dx; if i#j,
K#i,j

=3 W

1<isd
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Let Q be a domain in R and F2(Q; {vs)), #2(; {v4)) be the function
spaces defined in [7], that is, #3(Q; {v;}) and F2(Q; {v;}) are the com-
pletions of C®(2) and C(£), respectively, with respect to the norm

|” “IZ,Q.{Vii}’
d ou \2 1/2 ) 1/2
betsan = 3 (|35 )+ Jan]
Q

N Q

where CZ(€2) denotes the space of all infinitely differentiable functions with
compact support in Q and C& () stands for the space of all restrictions to
of functions in C(RY). Let E be a subdomain of 2. We define a bilinear
form & on F2(E; {v;}) x F*(E; {v,}) by

(0.3) Eg(u, v) = zd: [ Dyu(x) D v(x) a;;(x) v;; (dx),

i,j=1 E ,

where each D;u is the weak derivative defined in [7], Section 1, and g,
1 <, j <d, are measurable functions on Q satisfying

(0.4) ay=ay, 1<i,j<d,
d d
(0.5) y ! Z fizvii(dx) < Z & éjaij(x)vij(dx)
. i=1 ij=1

d
S?Z éizvii(dx)! éERd,XEQ,
i=1

for some y > 1.

A function u is called a solution of [&g, F2(E; {v;})] if it belongs to
F2(E; {v;)) and satisfies & (u, ) = 0 for every pe CP(E). |E| stands for the
Lebesgue measure of E.

In Section 1 we show the following

THeorEM 1. Assume (0.1) and (0.2). Let E be .a domain with ENQ # Q
and u be a nonnegative solution of [Eg.q; F2(ENQ; v;})] such that
|[En{u>0}| >0 in case of E = Q, or such that u = const >0 on E N 0Q and
|[E—Q| >0 in case of EnoQ # Q. Then

u(x) >0 for v-ae. xeEnQ.

This fact is obtained by Moser [3] for m;(dt) =dt, 1 <i<d. We know
[7] that some inequalities of Sobolev type hold for functions belonging to
F3(Q; {vi}) or F2(Q; {v;}). Therefore we can employ his methods in our
case.

In Section 2 we are concerned with continuity of solutions of
[&e, F2(E; {vs})]- In case of m;(dt) = dt, 1 <i<d, Moser [3] showed that
“Harnack’s inequality leads us to Holder continuity of solutions of
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[&5, F*(E; {v))]. Though it may be hopeless to obtain such results in our
general case, we can extend his results in the following direction:

THEOREM 2. Assume (0.1) and (0.2) as well as
(0.6) lim m;((a;—e, a;+@))/e(log|log g))*/“~ 1 = 0,
el0 . ’

a=(ay,...,a)e, 1<i<d.

Let E be a domain with EnQ#@ and u be a solution of
[Egngy FHENQ; {vy))]. Further, if EndQ # @, suppose that for every
ac E n dQ there is a cone included in E—Q with vertex at a and u = const on
EnoQ. Then u is continuous on EnQ.

In Section 3 we show another type Harmack’s inequality under the
additional condition:

(0.7) d=2. For any rectangle K =I'xI? there are a real number &
= 6(K) > 2 and sequences of partitions of I”s,

A= (y B, i=1,2 n=0,1,2 ..,

1<k<NE
where 1 = Njp < Ni <...fo and Ji,’s fulfil the following properties for
every i, j, k, 1, n: '
(1) m;(Jhx) >0,
() , JounJi, =@ if k#l,
(i) Wi =sup Ji,—infJi, and lim max [J,] =0,
nto 1 <k<N
(iv) | L0 < Omyl),
v) mk = U Jarr,p, and  m(Jh) < om;(Jos1p),  PEPLL,
pePy '

where {P,;: 1<k < N} is an.appropriate partition of {1, 2,..., N5, ,}.

THEOREM 3. Suppose (0.1), (0.2) and (0.7). Let E be a subdomain of Q and u
be a nonnegative solution of [&g, F*(E; {vy})]. Then for any compact set
K (< E) there is a positive constant C independent of u such that

m-ess max u < C m-ess min u.
K K

Moser - [4] proved this theorem for the case m;(dt) =dt, 1 <i<d. He
made good use of an important estimate on functions of bounded mean
oscillations due to John and Nirenberg [2]. Under condition (0.7) we can

. give an analogous estimate on functions of bounded mean oscillations with

respect to m. Thus we can utilize ideas in [4]. We will discuss on condition
(0.7) in Section 3.




62 M. Tomisaki

Now let n be a Radon measure on R? such that
(0.8) A~ Vdx < n(dx) < Am(dx), xeR,

for some 1< A4 < o, dx being the d-dimensional Lebesgue measure. Let
(&, &) be a Dirichlet space relative to L?(2; n) such that & = F3(Q; {vi})
and &(u, v) =0 if u =const on Supp [v]. Then & can be expressed by
d
0.9) &, v)= Z jDiu(x) Dj.”(x) aij(x) Vij (dx),
Li=1 0

where q;;, 1 < i, j < d fulfil (0.4) and (0.5) (see [7]). It is known [1] that there
is a diffusion process on Q associated with (%, &). This diffusion process has
the resolvent density [7]. The estimate in Theorem 1 implies the positivity of
the resolvent density, Theorem 2 leads us to the continuity and the estimate in
Theorem 3 gives us a comparison theorem of the resolvent density with that
of a direct product diffusion. These facts and some other properties will be
proved in Section 4.

Finally, I would like to thank Professor Yukio Ogura for his valuable
suggestions.

1. PROOF OF THEOREM 1

Throughout this section we assume (0.1) and (0.2). Given E = Q, we call a

function u a subsolution of [&, F 2(E vadl if ue F2(E; {v;})) and

Eg(u, @) < O for every nonnegative pe F3(E; {vy)).
Put
Q(a, @) ={x=(x1, ..., x)e R*: |x;—a) <g,1<i<d},
Q(a, 9) =2nQ(a, o),

pu(a, @) = max m;((a;—¢, a,+0)/2¢ for a=(ay,..., a;) and g > 0.

1<isd . :

In order to prove Theorem 1 we need two lemmas. The first one is a
small modification of [7], Theorem 2.5. '

Lemma 1.1. Let Q(a,0) =Q or acdQ. Let u be a subsolution of
[Eaae F2(R(a, @); (vi})] such that u< ® (=const) on I2nQ(a, o) if
acdQ. Then

v-ess max u < 8+C, (g—r)"¥*( j' w—-®)2dv)'2, O<r<og,
Xa.r) Ha.@)
for a positive constant C, = C,(A, d, y), where 8 =0 if aecQ, S=d v O if
ae 0Q.

Proof. Put Q(r) = Q(a, 1), 2(r) = Q(a, r) and E = Q(a, g). For all t > &,

v =(u—1) v 0 is nonnegative subsolution of [ &g, 9"2 (E; {vs})] and, in par-
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ticular, if ae 8, then v vanishes on 8Q N Q(g). For each 0 < g, < g; < g we

choose a function peCg(Q(g)) such that ¢ =1 on Q(g,), ¢ =0 outside
Q(ey) and |of < 1, |D; | < 2/(, — 0,)- Since ¢*v belongs to F3(E; {v;}) and
is nonnegative, we have &g(v, ¢?v) < 0. Hence

Z j.(pz Di UDjva,-jdv,-j S —22 _f(vai UDJ (paijdvij

i.j E i,j E
<2(Y. [ @2 D;vD;va;dvy)* (Y fszi oD; pa;;dv;)'/2,
il E il E
that is, '

i,j E ij E

Z J‘ (pz D( UD} Uau dv,-j S 42 jvz D.' (ij (Pa,-j dv,-j.
By condition (0.5) | .

Y [(@D;v)? dVﬁ. <4’y [(wD; @) dv;.

i E i E

Therefore, by using Hdlder’s inequality and [7], Proposition 1.4, we
obtain :
[ (u—t)iav

f;(ez)ﬁ{“>t)
< J(gv)*dy
E
< (flovl* vy v(E n v # 0})' 2/
E

< Cyv(En {ov # 0}y {(vD; ¢+ @D;v)* dv;;
i E
< 2C,(1+4P)v(E N (oo # O Y. [(0D; )2 dvy
: i E

<8C,(1+4) (01— VEN{pv £ 0D [ (u—tydy

Hey)nfu>t}
<8C (1+4%) (0, — ) 2t —9)"*( | (u—s)*dv)'*?,
’ 2eq1)nfu>s) '
for ® <s<t, where 2 <g <2df(d—2) and C, = C,(A, d). Taking
[ (—tdv
Q) u>1)

as ¢@(t, r) in {5]), Lemma 5.1, we get the assertion, g.e.d.

LemMa 1.2. Assume Q(a, ¢,) = Q or ac0Q. Let g, > 0, > ¢3 > 0 and let u
be a nonnegative solution of [Egug,, F2(R(a, ¢1); {vi})] such that
1Q(a, @) N~ {u =1} = &|Q(a, @,)| for some ¢ >0 in case of Q(a, ¢;) =Q, or
such that u = const = 1 on 02 N Q(a, 0,) and |Q(a, ¢,)— | = £|Q(a, g,) for
"some ¢ >0 in case of aec0dQ. Then
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v-ess min u
a03)

> exp[—Cs {ef 03 (01 —02) " *(e2—03) ™ la, e1)*~ " pi(a, o)~ 1}*]
Jor some positive constant C3 = C5(A, d, v, €).
Remark. When m;(df) =dt, 1 <i < d, taking ¢ = 9, = 20, = 4¢3 shows
ess min u = exp (—29C,),
$Ha,0/4)
which is the result due to Moser [3].

Proof. Put E =Q(a, ¢,). Fix an arbitrary ne(0,1) and let f(x)
={-log(x+n)} v 0. In spite of f(0)>0, the proof of Proposition
1.3 in [7] works in showing f(ue #2(E; {v;}). Since f is convex,
Ex(f (), ) < g(u, f'(u) @) =0 for every nonnegative @peC§(E), that is,
f) is a subsolution of [&g F2(E; vy})]. Noting f(u)=0 on
02 nQ(a, g,) if ae o2, we have, by Lemma 1.1,

(1.1) v-ess max f (u) < C;(e2—03) " ¥*( | fz(u)dv)l/z.
. Ha,e3) fXNa,e3)

In the same way as in the proof of Proposition 1.2 in [7], we see that
[ FPwdv<Cipla, e '( | fPwdx+a3), [ (Dif W) dvy)
Ka,e3) Xa.g3) i fXa,ep)

for some positive C, = C4(4, d).
Set N=Q(a,9)n{u=1}  or N=Q(a,e;)—R according to
0O(a, 01) = Q or aedQ. By virtue of [3], Lemma 2, we obtain

j f2(wdx < Cs sz _[ (Dif (u))2 dv
" Na,e3) - i ae)l)
with Cs = Cs(4, d, é). Therefore _
(1.2) j fz(u)dv Co(Cs+1)@2pu(a, g2 1), I (Dif(u))zdvii'
Xa,e3) i HAae3) )

Moreover, we have

(1.3) Z j (D,-f(u))z dvy; < 16}’2(91 —Qz)_ZV(Q(a, 01))-
i Ha,ey)
Because &g (u, f'(u) 9?) =0, qoeCS"(Q(a, 01)) and f” > (f)%, and hence

(14) Y [(eDif WY dvy <4*Y, [(D;0)’dvy, @eCT(Q(a, 1))
i E i E
In order to get (1.3) we may take a @eCg(Q(a, ¢1)) with ¢ =1 on
Q(a, ¢;), |ID; 0l < 2/(01—02), 1 <i<d. It follows from (1.1)-(1.3) that

" yless max {—16g (u+n)}
2,(a,03)



Harnack’s inequalities 65

:‘ < C, {C4(Cs+1)16y* (0, —Qz)_z(Qz‘Qs)—dQ%}llz X

x {u(a, g2 v(2(a, 0,))}"?
< Cy {Cy(Cs+1)16y* (0, —02) % (02— 03) 03} 1/* x

x {u(a, @2)" " d(2¢,) u(a, o)1}V,
Since 7 is arbitrary, we get the desired estimate, q.e.d.
Proof of Theorem 1. We can take a cube Q(a, 39) = E and a positive
constant C, such that &=|0(a, 20) " {u = Cq}l/|Q(a, 20)f >0 in case of
E < Q, or such that u =Cgs on EnoQ and & =|Q(a, 2g)—2|/|Q(a, 20) >0
'1 otherwise. Namely, u/Cq satisfies the conditions in Lemma 1.2, Therefore
u(x) = C;(4,4d, v, 6,0 >0 for v-ae. xeQ(a, g). Repeating this argument,
we obtain the conclusion, q.e.d. A
As an immediate consequence of Theorem 1 we get the following

CoroLrArY 13. Let E be a subdomain of Q. If u is a nonnegative

continuous solution of [ &5, F2(E; {v;})], then u is positive or identically zero
in E.

2. CONTINUITY OF SOLUTIONS

w First of all we give
‘ Proof of Theorem 2. Fix an acE n Q. If aedQ, by the assumption of
‘the theorem there is an ¢ 0 <g < 1/2, such that

inf 0@, N—-QQ(a, Nl > 2.

Put Cg = C53(4,d, 7,£2%! and fix an ae(0, C3 ¥~ V) and a Be(0,1)
. such that o~ 1 Cy < (1—p)'*¥2(< 1). Since u(a, 0)* ' < a? ! log |log ¢ for
i sufficiently small g, putting ¢, = B" gives us

| | exp {—Cs(1—@n+1/0)™"* " p(a, @'}
| > exp {—Cg(1—B)"¥* 1% 1 log (nflog f))} .
> 1/n|log Bl

for n = ny, ny, being a certain number depending only on « and Cg..
Now set

S=v-essmaxu and I =v-ess min u.
) Ha,0p) Aa,0,)
By Lemma 1.1 we have —o0 <I<S< +o0. If I <S, we put u; = |
2w—DAS—1), u, =2(S—u)(S—I), which are nonnegative solutions of !
[(gﬂ(a,qn)a g‘-Z (Q(as Qn)’ {vii})]‘ .

5 — Probability Math. Statistics 5/1
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Let us take r =(g,+0y+1)/2. Obviously [2(a, r) N {u; > 1}| = |2(a, r)}/2
> ¢g|Q(a, 7)) for i=1 or 2 and if ae 09, then u; = const > 1 on Q2N Q(a, r)
and |Q(a, r)— Q|- = ¢|Q(a, )| for i =1 or 2. In view of Lemma 1.2 we obtain

v-€ss min ;
HAa.op+1)

>exp [~C3(4, d, y, &) {eir*(@a—1) " *(r—ns 1) * ula, 0*" ' pila, 1)
=exp!—Cs(4, d, y, & 22 (L+ B)(1 —ns1/0) ™" " ptla, @)™V pfa, r)4= 102}
> exp {—Cs(1—gns1/0)” ¥ u(a, e}

= 1/nllog B,

where i =1 or 2.

~ Therefore Szu=I+(S—I)/2njlogf] or I<u< S—(S—I)/2h|log Bl
v-a.e. on Q(a, @,+,). This implies '

d—l}l/l]

®(@n+1) = v-ess max u—v-ess min u < (1—1/2nllog ) w(e,)

KAaog+1) - XAa.ep4 1)
< [1 (1=1/2kllog B w(ga,) < exp {— Y. 1/2k|log BI} w(en),
. k=ng k= ng

whence

I liTm ®(gn+1) = 0.
Thus we can get a continuous version of u, q.ed.

Now let n satisfy (0.8) and put &y ;(u, v) = E(u, v)+A(u, v), for Ec Q
and A >0, ( , ), being the inner product in I?(E; n). A function u is called a
solution of [&g.. [, FEE; v ((Ee. /> F2(E; {vi})]) if u belongs to
FLUE; {vy}) (resp. F2(E; |vy}) and satisfies & ;(u, @) =(f, ), for every
pe FH(E; {vi))- -

ProrosiTioN 2.1. Assume (0.1) and (0.2). Let E be a bounded domain of Q
and u be a solution of [&g,;, f, FEHE; {vy})], where feI’(E;n) with p>d
and 2= 0. Then : ,

m-ess max |u| < Cg m(E}”"‘””(ﬂfl"dn)"’f
E E

with some Cy = Cgy(A, d, M, p, v, A).

Noting Sobolev’s inequalities ([7], Proposition 1.4), we can use the same
methods as in [5], Theorem 4.2. So we omit the proof.

THeOREM 2.2. Suppose (0.1), (0.2) and (0.6). Let E be a domain with
EnQ+ @ and u be a bounded solution of | &g g1, f» FE N 2; {v;})] with
fel’(EnQ;n), p>d and 4 = 0. Moreover, if EndQ # @, suppose that for
every acE R there is a cone included in E—Q with vertex at a and u
= const on En 0. Then u is continuous on E n §. '
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Proof. Fixap>d, an feI’(EnQ;n) and a 1 > 0. Let u be a bounded
solution of [&gng1, fo F2ENQ; {v;})]. Put g =f—Au. Since m is a con-
tinuous measure, for any ¢ >0 and for any acEnQ we have a ¢ > 0 for
which Q(a, g) = E and

Com(Q(a, Q)= 17( | |g|Pdn)'/? < &/4. |

Ra,e) ‘

It follows from Riesz theorem and [7], (1.11), that there is a unique
solution w of [Epap.0: 9. ZF5(2(a, 0); {vs})]. By Proposition 2.1 '

m-ess max (w| <gf4. , \

Xa,0) :

Set v =u—w. Then v is a solution of [Epg,, F2(2(a, 0); {v4})] such |

that v = const on Q(a, ¢) " 02 if aedQ. !
By Theorem 2, v is continuous at a. We thus have an r<(0, g) such that
the oscillation of v in Q(a, r) is smaller than &2 and hence that of u in
Q2(a, r) is smaller than & which shows the assertion of the theorem, g.e.d.

3. PROOF OF THEOREM 3

We can obtain Theorem 3 in case of d > 3 if (0.7.iv) is replaced by
(ivy L 0T my (.

However (0.1), (0.2) and (0.7) with (iv)’ in place of (iv) are satisfied if and
only if m;(dt) = mP(t)dt, A< mP() < M ae, 1 <i<d. Puttlng bj=ay;[]|m}

k #i
if i=j, by=a; [ mp if i), we get
k#i,j
d
Exlu,v)= Y [D;u(x)D;v(x)yb;(x)dx.
ij=1E
The matrix (b)) is symmetric and positive definite. Moreover, #2(E; ! ,,})

and #2*(E; {v;}) coincide with H{(E) and H!(E) (= Sobolev spaces), respec-
tively, and D;u’s aré the distributional derivatives. Thus the case where d > 3
and (0.1), (0.2) and (0.7) with (iv)’ in place of (iv) are satisfied is reduced to the
case treated in [4]. Therefore we restrict ourselves to the case of d = 2. At
the end of this section we will find some examples satisfying (0.1), (0.2) and
(0.7), which contain every continuous measure.

Now Theorem 3 can be easily deduced from the following Theorem 3.1,
so that we omit the proof of Theorem 3 itself.

. Tueorem 3.1. Let Qfa, ¢;) = Q and ¢, >pz >03>0,>0. If uis a
‘ solution of [é"Q(a.el), F2(Q(a, @1); {vy})] and it is positive on Q(a, 0,), then

m-ess max u < {Cyo(1—gqf0s)~* p(a, 03)} '  m-ess min u
i Q(a.04) Ola,oq)
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Jor Cio=Cio(4,y) and Cyy = C11 (1 0°2(1—@3/a2) ™' u(a, @2)''?, where 6 is
a positive number as in (0.7) for K = Q(a, 03)-

To prove this we have to prepare some lemmas. Following (0.7) we take a
positive number & = 6(Q (a, ¢3)) and sequences {4;},,,

i A:x (ai—QB’ ai+g3)= U Jnks l=1 2.
1 <k<N'

Put # = {J,,,¢1 "kz; 1<k<N,i=1,2,n>0}. We may assume

that u is strictly positive on Q(a, g,) without loss of generality.

LEMMA 3.2. Set v = —log u and vy = [vdm/m(H). Then
{
_HU“UH| dm < 2*y6'2(1—4/07)™ ' u(a, Qz)”zm(H). -
H

for every He 5.
Proof. By Lemma 1.1, u is bounded on Q(a, g,) and hence v belongs to
F*(Q(a, 02); {va}). Let H = J3,, xJ3%y, € #. Holder’s mequahty gives us

(Jlo—tal dmf? < m(ED) | 0=og?dm =} ] [ (0(3)— 00 m(d m(dy)

H
< m(H)ZIJnk,' m; (Jt, k)j(Di v)* dvy;

<4y’mH)Y |, klm:(J k)Z { (DY dvy
i . Q(a,e3)
for peC§F(Q(a, 02)) with ¢ = 1 on H, where the last inequality is shown in

the same way as for (1.4).
Choose a ¢eC§(Q(a, Qz) such that ¢ =1 on the set Q(a, ¢3), |D; ol

< 2/(02—@3)- Since
ZIJ,.klm(J i:) 26m(H)

by (0.7.iv), we have .
([ lo—vg) dm)? < 2° 2 Sm(H)* (02— 03)*¥(Q(a, ¢2))
& ,

< 2892 0m(H)* (1—0s/ez) ™ > 1(a, 02),, *

qged. -
The following lemma is a modification of the one in [2]. For c0mplete-

ness we give the proof at the last section.
Lemma 3.3. If there is a constant C,, such that

{lo—vgldm< Ciom(H), HeX,
H :
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then
o—v 1
feclatl H gm < Tt—m(H), Hes#,
H
where Cy3 =1/e6>Cy; and 0 <t < 1.
Since

Jvuiclafdm= Ieicmwd"'Seicl:’ngeclylu_vgldm,
Q Qo
from Lemmas 3.2 and 3.3 we obtain immediately

LemMma 34.
_ 2t
- fuc14'dm Ju €14 g < (ll—-l_—m(Q))
[ Q

where Q = 0(a, 03), 0 <t <1, and Ciy = C14(y)0 (1 —gs/02) u(a, @)~ 1%
Lemma 3.5. Set Q =Q(a, ¢;) and w =u* with keR'. If k # 1/2, then

Z 7 j((PDi w)? dv; < )’2 (2k/(2k"1))2 Z I(WDi o) dvy

i=1,2 Q . i=1,2 Q

for every peCg§(Q).

Noting that 4®*~'! belongs to #2(Q; {v;}) and &,(u, u* 12 =0,
9eCq (Q), we can get above lemma. So we omit the proof. )

Proof of Theorem 3.1. We may assume C,, < 1. Fix a positive integer
N such that 6Ci) <3¥<18Cy}. Set t=2(3"Cyy)™! and o= +C,, ¢
= +42/3" Then 97'<t<3 Yand 3"a %1, n=0,1,2, ...

Put w, = u3"a;‘2, r,= Q4+(Q3—Q4)/(n+1)5 Qn = Q(a; 7'"), n— 0, 15 29
For each n we take a function ¢,eC&(Q,) with ¢,=1 -on Q,.,,

ID; @, < 2(r,—7,+1)"*. Appealing to Proposition 1.4 of [7] and Lemma 3.5
we get : ‘

([ wedm)'®< (I(cp W)t dm)'® < Csm(Q)PY [ (D;(@uw))dv
Qp+1 i 9y
< 4Cy5 m(Qu)”3 {1+y* (33" a— D)} ra—ras )2 [ widy
2
for some constant C,5 = C,5(4). .
For all n, (3"0/3"a—1)P <1 if a = —Cyyt or <4 if « =Cy t, and r,
~Fpr1 = (03— 04)/(n+1)(n+2) > (05 —04)/(n+2)>. Therefore we have

( j" w6dm)1’3<8A 1Cis(1+4yY)(03—04)” zm(Qo)lls("+2)4fW2dm
On+1 Q'l
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Putting U, = [ u*™dm leads us to
n

U, < (Cre(+1)* Uy < R (4 102" UR
where C15 =8A4"! Cls(l +4'?2)(Q3—Q4)_2m(Q0)1/3_ Hence

m-ess max u* = lim U3™" < C,;(03—04) > m(Qo)/> | udm
Qla,eq) ntoo Q(a.e3)

for an appropriate C;; = C,,(4, y). Combining Lemma 3.4 with this and
noting 1/9 <t < 1/3, we obtain

m-ess max u < (Cy7 (1+20(1—1)" " (e3—24) > m(Qo )3"2)2’6141m ess min u

Q(a.e4) Qla.e4)
‘ _ \18/C .
< (3C17 (03—04) 3 m(Qo)slz) ! 14 m-ess min u
Q(a,e4)
< (24C17 (1—0af0s) " ? ula, @2))) 14 m-ess min u,
(2,04)

which proves the theorem, g.e.d.

CoROLLARY 3.6. Let E be a subdomain of Q and u a continuous solution of
(e, F2E; {vi})]. If u attains the maximum (minimum) inside E, then u is

constant.
Proof. Assume

u(a) = max u = p.
E

Choose a compact set K(< E) containing a. For any ¢ >0 let v = u—u
+¢; then v is a positive solution of [&5;, F*(E; {v;})] and
min v = ¢.
K
Therefore

"max (u—u+e) < C,ze, thatis, pu<e(Cig—1)+minu.
K K

Letting £ | 0, we get
min 4 = [.
K
Since K is arbitrary, we have u = u inside E, q.ed.
Now we exhibit examples satisfying our assumptions.

ProrosiTiON 3.7. Let m;, i = 1, 2, be continuous measures and assume (0. 1)
and (0.2). Then (0.7) follows automatically.

Remark. Measures m;’s are not necessarlly absolutely contmuous with
_respect to dt. '
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Proof. Let I' =(d', b’), i = 1, 2. By the continuity of m;, for each i, n
there are the points
@ =Cho<Ch <...<C =Y
such that m((ck—1, chu)) = 27"my(I), 1<k <2" Put I, =[c},_;, c)—
—{a'}, 1 <k<2" (0.7) is satisfied by the following:

d:I'= \J L, N =2" n20, i=1,2,

1<ksNE
0.=2v [A™! max. m(I)/m;(I)],
1<i,j<2
g-ed.

ProrosiTioN 3.8. Let

my(di) = mE(d)+ ¥, 04y (d), >0, Y aj<oo, i=1,2,
=1 )

Iz1
where each m{ is a continuous measure.

Assume (0.1) and (0.2). Then (0.7) follows if for given intervals I', i =1, 2,
there is a positive number R such that

G (Na)v(Z S a)<R i=1,2, 1<k<?, s=1,2, ...,
=1 leLi

s,k
where L, = {I: dieli,, of <27** nf(I)} and {I',: 1 < k <2} is a partition
of I' with m{(I%;) = 27mf(I'), 1 < k < 2%, as mentioned above.

Remark. (3.1} is satisfied if one of the following holds for i =1 or 2:
(3.2 # {I: aj >0} < o0;

(3.3) sup #{I: ¥ <al<a*"!'} <o foran ae(0, 1);

s21
B4 md)=dt, =17 d=I1P*"1eF=(0,1), I>2, with f>1.
Indeed, (3.1) is trivial in case of (3.2). If (3.3) holds, '
* = Sup #{: 27m () < of <275 (1)} < o0,
whence
Z al < xm,?(Ii)f 27 = 4eemg (1275, -
teL! t=s :

8.k
which implies (3.1).
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If (3.4) is satisfied, then
fo=[k—127% k279—10}, 1<k<2, s>1,

T od< Y FP<2(B-1)Tt@UETI—1) I

leLi 1>25/B— 1)
Z 0(, B- 1)_11( ll(p_l)—z—S/(ﬂ—l))—ﬂ+1_
leL'

_((k_1)—1/(ﬂ—1)+2—s/(ﬁ—1))—g+1} 9

<Co27% 2Lk[2MVI], 522,

Z a <(ﬁ 1)—1]2s(2(s 1)/8 __ 1)—ﬂ+1_
lsl.l

_((k_1)~1/(B—1)+2~s/(p—1))—ﬂ+1}2—s
< Cpo2%. [26FF-VF41<k<2, 522, '

where Ci9, Cy0 depend only on f and [a] denotes the smallest integer not
exceeding a. Therefore (3.1) follows.
Proof of Proposition 3.8. Let
Ly= [l o =>mf (), L={27mI)<ud <2 'miI)}, s=1,2,...,
Ls={ls,1"' l i x;: #Ls5 .

S\ ¥g f7

n.; =0, ng= Z w} v ul+s+1,
.

dis,)=di , 1<j<#, s>0.
~ We define sequences of partitions {A';,},‘;L,, i=1, 2, as follows. Set
A = ) Ji,, where Np=1.
’ 1$k$1\lil

(3.5) Case of n,_;+1<n<n—1,5=0,1,2,...

j=0
[ t—1 t—1 . t

{d (e, k= 3, )} if Yr<k<Yod, 0<t<s—1;

j=0 ' i=0 j=0
X s—1 s—1
Thw =1 di(s, k= ¥ #i)) if Y% <k<N-—2,

j=0 j=0

I:k Nz+28 L) il,k. lf . N;_2s<k<N'm

C 1<k<Ni 28
- n
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i where I;,k’s are intervals mentioned in the proof of Proposition 3.8, that is,
{Io: 1<k< 2} is a partition of I' and m{(I%,) = 27> mS(I).
(36) Case of n=n,s=0,1,2,...:

5
NY=Ni 42 = ¥ a2+,
j=0

J

t—1 t—
e (k= S ) i
i=0 j=0 .
I:‘Fl,k*Ni -1 U Ji—l,k if :-l_l—23<k<N£!.‘

n=1  1<ksNE_

1 t
i ”‘;<k$2%}, 0<t<s,
Jn.k= j=0

1

Obviously N),— o (n — o0) and (0.7.i)-(0.7.ii) are fulfiled. We prove that
there is a positive number ¢ satisfying (0.7.iv) and (0.7.v).
By (0.1) and the definitions of I{, and L we have

! Vil S AT 'm{(JL) < AT 27°m(I) < A" 'my(JL), 1<k< N,
in case (3.5). By the same reason
Wl SAT12757 MM (B < A7 ' m(Jh), 1<k <N,

in case (3.6). Therefore
O < |Joul/m;(Jh) < A™Y max  mi(F)/mS(F)

1<i,j<2
for i,j=1,2, 1<k I<SN,n>0.
This means that (0.7.iv) is satisfied if

6 > A~" max nm(I')/ms ().
i,j

In order to show (0.7.v) let
J:.l,k = U J£|+1,p

peP:',k
as in (0.7). Clearly P:,k is a single-point set or a two-points set. The latter
case occurs if and only if either of the following is satisfied:

&) . n_,<n<n—2, J, 2, n{d: lel}#Q,
(3.8) n=n—1, 'Jf,,k is not a single-point.

1Y

In case of (3.7), putting P, = {p, q}, p < g, we actually see that

. . N . ] .
i _ i i R (] i
“n+1l,p — {dl}a- Jn+1,q — 5k U Jn+ 1,k
‘ ISksNy - 28
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for some lel, 1 <k <2 and hence, in case of s =0, we have

mi (') < my(Jh4 1) < max o < R,

i
leL0

mi (1) < m(Jhy 1,9 S m{(F)+ Y o <mi(I)+R;
=1

for s =21 we have

270 (1) < My (T y,p) < 27° i (1),

27 mE (1) = mf (Jos 1,9 S My (T 1,0) S M Ty 1,9+ Z % <27 mi(I)+R-27.

i
leL’ s,k

Therefore

m; (T )/ {m; (Tos1,p) Ami(Jhv1,9} <3 v {2+ R/mi(I')}.
It is obvious that m;(J% )/m(Jiy,,,) =2, pe Py, in case of (3.8). We thus
take
8 =max {A”' max m{(F)m(l’), 3, 2+ R/{m(I') A m5(I)}},

1€i,j€2

q.é.d.

4. APPLICATIONS TO DIFFUSION PROCESSES

Let Q be a bounded rectangle whose faces are parallel to coordinate axes.
We consider the Dirichlet space relative to I[*(Q;n) such that %
= F5(Q; {v;}) and &(u, v) =0 if u =const on Supp [v]. Note that & is
given by (0.9). Further we assume (5.4) in [7]. Namely,

(41) (&, &) can be extended to a Dirichlet space (F, &) relative to
L*(R’; n) which is given by (0.9) with R% &; in place of Q, a;,
respectively, where &;;, 1 <i, j <d, are measurable, satisfy (0.4)
and (0.5) for 2 = R* and for another positive constant 7, and a;;
= a;; on Q. Moreover, for any bounded domain E, feCg(E) and
4= 0, every solution of [&;, f, E] belongs to C(E). (See [7] for
significations of above symbols.)

Let {G,: A >0} be the resolvent associated with (#, &): £,(G.f, ¢)

=(f, ¢), feI*(Q; n), e F. Under assumptions (0.1), (0.2) and (4.1) we have
a unique diffusion process X = [x,, {, P,], xe €, such that

G.if (x) = E, [?e“'f(X.)dt], 420, feCy(@)

(cf. [7] Theorem 5.1). This diffusion X has the resolvent den51ty g.(x, y) such
that for each A >0
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(4.2) Gif (%) = Jg:(x, NFIndy), xeQ, feBy

43) gi(x, ") =g: (-, )eC(@~{x}), xeQ

(cf. [7]), Theorems 5.6 and 5.8). Moreover, in view of [7], (5.22), and
Corollary 1.3, we find

(44) g}.(xa y) > 0: X, yEQ, X 7‘" y.

From now on we write g(x, y) instead of go(x, y).
For an open set E < Q let

FLy={ueF: u>=1 n-ae onkE},

inf &u,u) if Lr+#0,

Cap (E) = % ue¥p
o0 otherwise.

- For any set E = Q let |
Cap (E) = inf {Cap (G): G is open, G o E}.

og stands for the hitting time for E of X: oz =inf {t > 0: x,€E]}.
For 1 <i<d, aeR', put

Ui = _tfm,-((a—s, a+s))ds
0

and denote by @ the inverse function of t+— Ui(?).

Tueorem 4.1. Assume (0.1), (0.2) and (4.1). Then for a given point a
=(ay, ..., a))€Q, the following (i)-(iv) are equivalent:

(i) Cap ({a}) >0,
(i) g(a, @) = lim max g(x, a) < oo,
el0 [x—a|l=g.

(lll) ?x(g(a} < C) > 0, XEQ,

Gv) [{TT mi((a— 5,0, &+ 2% ()} Ydt converges for some r > 0.
0 i=1

Further, g(a, a) =1/Cap ({a}) whenever one of conditions (i)-(iv) is
satisfied. .

Proof. By virtue of (4.4) and [7], Theorems 5.5 and 5.10, we obtain the
equivalences: (i) <> (iii) < (iv).

Let B(a, g) be a closed ball with center a and radius g, where 0 < g
< dist (a, 09Q). It follows from [7], Theorem 5.10, that

(4.5) min g(a, x) < 1/Cap (B(a, 0)) < max g(a, x),

Ix—al=¢ |x—al=¢
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which yields 1/Cap ({a}) < g(a, a) and the implication (ii) = (i). Conversely,
when (i) is satisfied, by using [7], (5.27), we see that

g(X, a) Cap g{a})=Px(o-{a}<C)<1, XE.Q,

and hence we get (ii) as well as g(a, a) = 1/Cap ({a}), q.ed.

We proceed our arguments under condition (0.7). Given two data {a}},
{af?} satisfying (0.4) and (0.5), let X, X® be the corresponding diffusions as
above. For each i we mark the characteristics of X® with (i): g®(x, y),
Cap® (E), etc.

THeOREM 4.2. Assume (0.1), (0.2), (0.7) and (4.1). For any acQ and any 0
< g < dist (a, 0Q)/2, there is a positive constant C,y such that

Citg?(a, b)) <gM(a, b) < Cy19P(a, b), la—bl=¢.

Remark. (i) In the case of d > 3, mentioned at the beginning of Section
3, the same inequality is given by [5], Theorem 8.5.

(i) C,, depends on A, y and the behavior of m near Q(a, o).

(i) Let a’ = 6,;/2. Then X® is no other than a direct product diffusion
(cf. [7]). Therefore g™ (x, y) can be compared with that of the direct product
diffusion.

Proof. By Theorem 3 we have

max gP(x,a) < Cy, min gP(x,a), i=1,2.

Ix—al=e . Ix—al=e

On the other hand, noting (0.5) and (0.9), we find

y~2 Cap?(B(a, 0)) < Cap™(B(a, 0)) < y* Cap?(B(a, 0)).
Combining these with (4.5) shows the conclution, g.ed.

Finally we observe the following examples.

Example 4.3. Let m; be a nonnegative measure on R' with (0.1) and
(0.2), and m;(dt) =dt, 2<i<d. Let n(dx) =dx and consider a Dirichlet
space (J #) as above. We assume on (0.9) expressing & that each a;; belongs
to C™-class, where dy = [(d—1)/2]+1. (Of course (0.4) and (0.5) are fulfiled.)
Then (4.1) is satisfied as it is claimed in [6].

Thus we have a unique diffusion process on Q associated with (&#, &),
whose resolvent is continuous and whose resolvent density has propertles
(4.2)-(4.4). Moreover, Cap ({a}) > 0 if and only if

(UL @92 dt < oo
0 .
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for some r > 0 or, equivalently, d =2 and

JUz, )" "?dt <0 for some r > 0.
0

Further, if m, satisfies the condition of Proposition 3.8, then (0.7) follows.
In this case let XY, X® be the diffusions corresponding to {a{}’}, {a?} of
C'-class with (0.4) and (0.5). Then we have -

, , | 2. 200)5/2 172
max _ g®(a, /g% (a, %) < (Ca3 p(a, @) 242N a0

15i,j<2
xja—x|=¢

where C,;, C,, are positive constants depending only on 4 and 7.

, Example 4.4. Suppose (0.1), (0.2) and (0.6). In view of Theorem 2.2, we
then get that G,f belongs to Cy(f2) for every bounded function f and 4 > 0,

where C,(£2) denotes the set of all continuous functions vanishing on aQ.

Therefore we obtain the diffusion process uniquely associated with (%, 4),

whose resolvent ‘density g,(x, y) possesses (4.2)-(4.4) and, moreover,

limg,(x,y)=0 for xeQ, acdQ.
y—a
Since the integral in (iv) of Theorem 4.1 always diverges in this case,
Cap ({a}) =0, aeQ. Each m; is a continuous measure and hence (0.7) is
satisfied in case of d = 2. Writing

3(0@, o), , | |
=2V ATt max m((a—o, a+e)m(a—e, a;+0) < Css log |log ol

, 1<ijs2
for some C,5 =C,s(A4), we find that for the diffusions X"" k=1,2
corresponding to {a{} with (0.4) and (0.5),

max_g(x, 1)/g®(x, ») < (Cz6 log llog )27,

1<i,j<2
|x—yl=g;

where Cié, C27 depend only on 4, y.

5. PROOF OF LEMMA 33

, It suffices to show the following ‘
ProrosITION. Under the same assumption as in Lemma 3.3
m({xeH: |v(x)—vgy >0o}) < 3¢ Y mH), o0>0, He.

In fact, putting f (s) = exp (C;3 ts)and p(s) = m({xe H: |v(x)—vy| > s}), we
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find

f e 13 VH gy = ff(lv—vnl)dm =Cy3t f u(s)e™ > ds+p(0)
H 1}

H
b 142
S{3C13tje C13ti=n ds+1}m(H)=%m(H),
J .

" which proves Lemma 3.3.

Now we give
Proof of Proposition. We divide it into three steps.
Step 1. Let w be a function satisfying

{Iwldm < sm(H)
H

for some s > 0 and some He #. Then we have a sequence {H, ) ; such that

(i) for each k, H, & H and H, e whenever H, # Q,
(iii) lw(x)| < s m-ae. xeH— ) H,,
. k
(iv) [ Iwldm < 6%sm(H,), k=1,
. i .
1
v) S m(H) < lel dm.
, H
Ilndzec'til: we may. set H =J; 40 xJi ... with some ny > 0, 1 < ko; < Niy,
i=1, 2. Let

%1 = {Jillo"'l,kl XJ72l0+1,k2 < H: 1 < ki S il0+1’ i = 19 2}’
HY={HeA: HEH, smH)< [ |wdm}.
-

Since

= 1 2 . i s —1 -9
r}fl - {Jn0+ L,p ><‘In0+1,p2' pieP:lo,kOia = 19 2}9

.we have by means of (0.7v) .

(5.1) sm(H)< [|wldm< [Iwldm < sm(H) < *sm(H'), H'e#,.
H H ’
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Next let
f2= U '{J,11'0+2’k1xJ30+2,k2CH’: lgk;SN;0+2,i=1, 2},
H'EWI—JY’?
Hi= \J {H'eA,: H'gH,smH")< | |wldm].
Hexy—n9 H"
Then
(5.2 sm(H") £ j lwldm < 62sm(H"), H"eH,.
H .

Repeating this argument, we obtain a denumerable set #7 U #%uU...
whose elements are denoted by H,, H,, ... Then properties (i)-(ii) are trivial.

In the same way as (5.1) and (5.2), we see

sm(H) < | [wldm < 8*sm(H), k=>1.
Hy,

Hence (iv) follows and
1 1
SmH) <=) |Iwldm<- ||lwdm,
. 55 s
H, o

which is (v). Further, by virture of (0.7.iii) for any xe H— ) H, we have a se-
k .
quence {H,'},>; such that ’

o {0 me oyl 2
O Hn = 1Xg, Hn e Jno+n,kn1 XJn0+n,k,,2 cH
nzl

with some 1 < ky < Nj4p i=1,2, and

[ Iwldm < sm(H}").

H’l

Therefore (iii) is valid.
Step 2. Let F(o) be the supremum of

m({xeH: lu—uy| > a})/|lu—ug|dm
H
which is taken over the set of all He# and all u such that
(5.3) [lu—uyldm <m(H), Hed#,
H

where we put 0/0 = 0. If ¢ > 6% then
(5.4) F(o)<s 'F(o—58%s), 1<s<é 2a.
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Indeed, fix a set He # and a function u satisfying (5 3). Let W=uU—ug;
then w fulfils (5.3), wy =0 and

{ 1wl dm S m(H) < sm(H).
H

Since by the last inequality there is a sequence |H,l.», with (i)-(v) i1
Step 1, we see

m({xeH: w(x)| > ¢}) < Y. m({xeH,: |w(x)| > 0})

k

<Y m({xeH: [w(x)—wg] >&—52s})<F(a—523)Z § Iw—wpg,|dm

< F(o—6%9)) m(H) <s ' F(ag—075) [ |w| dm.
P H

Since H and u are arbitrary, we get (5.4).
Step 3. Let a = 1/6%e and B = %ef(e—1). An easy calculation shows
Flo)<o l<pige ®*Porge e  B<o<f+oe. |
Hence, by (5.4) with s =e, . '
Flo)<e 'F(c—0%e)<e™ ™, p+dé2e<o < p+26%.

Iteration of this argument leads us to F (o) < exp (—ao) for f < a. Setting u
= U/Clz, we find

m({xeH: [v—vy| > 0}) < F(0/Cy3) Ci5 [lv—vpldm < e 12 ()
H

for He ##, ¢ = C,, . Obviously, _
m({xeH: [v—vy| > o)) <m(H) < 3e “"“Zm(H), 0<0<Cp,f
Thus we complete the proof, g.e.d.
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