RATE OF CONVERGENCE IN THE STRONG LAW OF LARGE NUMBERS

BY
SÁNDOR CSORGÓ (Szeged) and ZDZISlaw RYCHLIK (Lubliv)

Abstract. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent random variables such that $\mathrm{E} X_{n}=0, \mathrm{E} X_{n}^{2}=\sigma_{n}^{2}<\infty, n \geqslant 1$. For each $n \geqslant 1$ let

$$
S_{n}=\sum_{k=1}^{n} X_{k}, \quad \mathscr{S}_{n}^{2}=\sum_{k=1}^{n} \sigma_{k}^{2}
$$

then, under some additional conditions, $S_{n} / \mathscr{S}_{n}^{1+a} \rightarrow 0$ as $n \rightarrow \infty$ with probability 1 for any $\alpha>0$.

The main purpose of this paper is to give the order of magnitude of

$$
\sum_{n=1}^{\infty} P\left(\left|S_{n}\right| \geqslant t \mathscr{S}_{n}^{1+2 a}\right)
$$

as $t \rightarrow \mathbf{0}^{+}$. The rate of convergence in the random strong law of large numbers is established too.

1. Introduction. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent random variables with $\mathrm{E} X_{n}=0$ and $\mathrm{E} X_{n}^{2}=\sigma_{n}^{2}<\infty, n \geqslant 1$. Define

$$
S_{n}=\sum_{k=1}^{n} X_{k}, \quad \mathscr{S}_{n}^{2}=\sum_{k=1}^{n} \sigma_{k}^{2}, \quad n \geqslant 1
$$

It is well known that if $\mathscr{S}_{n}^{2} \rightarrow \infty$ and $\mathscr{S}_{n+1}^{2} / \mathscr{S}_{n}^{2} \rightarrow 1$ as $n \rightarrow \infty$, then $S_{n} / \mathscr{S}_{n}^{1+2 \alpha} \rightarrow 0($ as $n \rightarrow \infty)$ with probability 1 for any $\alpha>0$ provided that for every $\varepsilon>0$

$$
\sum_{n=1}^{\infty} P\left(\left|X_{n}\right|>\varepsilon \mathscr{S}_{n}^{1+2 \alpha}\right)<\infty
$$

as is necessary (cf. [6], [16]).
Many authors (cf. [13]-[15], [17], [3]) have studied the rate of convergence in the strong law of large numbers (SLLN) under the assumption that
$\mathrm{E} X_{n}^{2}=1, n \geqslant 1$. The most general result in this direction belongs to Chen [3] who proved the following

Theorem 1. Suppose that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of independent random variables such that $\mathrm{E} X_{n}=0, \mathrm{E} X_{n}^{2}=1, n \geqslant 1$. If there exists a function g such that
(1) $g(x)$ is nondecreasing on the interval $(0, \infty)$, is even on $(-\infty, \infty)$, and $g(x) \rightarrow \infty$ as $x \rightarrow \infty$;
(2) the function $x / g(x)$ does not decrease on $(0, \infty)$;

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} n^{-1} \sum_{k=1}^{n} E X_{k}^{2} g\left(X_{k}\right)<\infty \tag{3}
\end{equation*}
$$

(4) for some constant α

$$
\sum_{n=1}^{\infty}(\log n) / n^{2 \alpha} g\left(n^{1 / 2}\right)<\infty \quad(0<\alpha \leqslant 1 / 2)
$$

then we have

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{1 / \alpha} \sum_{n=1}^{\infty} P\left(\left|S_{n}\right| \geqslant t n^{1 / 2+\alpha}\right)=C_{\alpha} \tag{5}
\end{equation*}
$$

where

$$
C_{\alpha}=\pi^{-1 / 2} 2^{1 / 2 \alpha} \Gamma(1 / 2+1 / 2 \alpha)
$$

This result extends to the nonidentically distributed case the theorem of Wu [17] and gives a deeper understanding of the SLLN's.

Recently Ahmad [1] has presented a random version of Theorem 1. Namely he proved that if $\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer-valued random variables not necessarily independent of $\left\{X_{n}, n \geqslant 1\right\}$, then, under some additional assumptions on $\left\{X_{n}, n \geqslant 1\right\},\left\{N_{n}, n \geqslant 1\right\}$ and the function g,

$$
\begin{equation*}
\lim _{t \rightarrow 0} t^{1 / \alpha} \sum_{n=1}^{\infty} P\left(\left|S_{N_{n}}\right|>t n^{1 / 2+\alpha}\right)=\lambda^{1 / 2 \alpha} C_{\alpha} \tag{6}
\end{equation*}
$$

where λ is such a positive constant that $N_{n} / n \rightarrow \lambda$ with probability 1 as $n \rightarrow \infty$.

It should be mentioned here that the proof of Lemma 4 given in [1], based on "the argument of Landers and Rogge [8]", has a gap. In order to prove Lemma 4 [1], using the ideas of Landers and Rogge [8], one needs extensions of Lemmas 7 and 8, given in [8], for any sequence of independent random variables $\left\{X_{n}, n \geqslant 1\right\}$ with $\mathrm{E} X_{n}=0$ and $\mathrm{E} X_{n}^{2}=1, n \geqslant 1$. Lemma 8 [8] can be extended to this case, which in fact is done in the proof of Lemma 4 [1]. But the extension of Lemma 7 [8], to the nonstationary case of $\left\{X_{n}, n\right.$ $\geqslant 1\}$, by the argument of Landers and Rogge, needs the inequality (*) [8, p. 281], which, in general, in this case is incorrect. Taking into account Lemma

1 [10] or Lemma 6.1 [11], one can easily notice that the proof of Lemma 4 [1], based on the argument of Landers and Rogge [8], requires the following assumption: there exist positive constants b_{1} and b_{2} such that for every n, k, $n>k \geqslant 1$,

$$
\begin{equation*}
b_{1} P\left(S_{n}-S_{k} \geqslant 0\right) \leqslant P\left(S_{n}-S_{k} \leqslant 0\right) \leqslant b_{2} P\left(S_{n}-S_{k} \geqslant 0\right) \tag{**}
\end{equation*}
$$

Let us observe that if $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of symmetrical random variables, then (**) holds. On the other hand, if $\left\{X_{n}, n \geqslant 1\right\}$ satisfies the central limit theorem, then

$$
\lim _{n \rightarrow \infty} P\left(S_{n} \leqslant 0\right)=1 / 2=\lim _{n \rightarrow \infty} P\left(S_{n} \geqslant 0\right)
$$

which proves that if, in addition, $\left\{X_{n}, n \geqslant 1\right\}$ is stationary, then (**) holds too, and this is just the case considered in [8] and, therefore, in [1].

Unfortunately, in Lemma 1 [10] the assumption (**) is omitted too but in the proof we used it (cf. [10], p. 233, lines 5 and 6).

We would also like to mention that Lemma 3 in [1] does not follow from Petrov's Theorem 10 [9], because, under the assumed assumptions, the variance of $S_{N_{n}} /(n \lambda)^{1 / 2}$ need not be equal to one (as is required in Theorem 10 [9]) even if $N_{n}, n \geqslant 1$, are assumed to be independent of $\left\{X_{n}, n \geqslant 1\right\}$.

Let h be a finite and positive function defined on [0, ∞). Assume that n has a continuous derivative $h^{\prime}(x)$ for all $x \geqslant 0$. Furthermore, let, for every $t>0, f_{t}$ be an increasing and positive function which has a continuous derivative $f_{t}^{\prime}(x)$ for all $x \geqslant 0$. Let us put

$$
\begin{gathered}
A_{n}\left(h, f_{t}\right)=\sum_{k=1}^{n} h(k) P\left(\left|S_{k}\right|>\mathscr{S}_{k} f_{t}(k)\right), \\
A_{\infty}\left(h, f_{t}\right)=\lim _{n \rightarrow \infty} A_{n}\left(h, f_{t}\right), \\
F\left(h, f_{t}\right)=2 \sum_{n=1}^{\infty} h(n) \Phi\left(-f_{t}(n)\right),
\end{gathered}
$$

where Φ denotes the standard normal distribution function.
The main purpose of this paper is to study the order of magnitude of $A_{\infty}\left(h, f_{t}\right)$ and $F\left(h, f_{t}\right)$ as $t \rightarrow 0^{+}$. The results obtained generalize the theorems given by Chen [3], Wu [17], Severo and Slivka [13], Szynal [15], Ahmad [1], Sirazdinov Gafurov and Komekov [14].
2. The rate of convergence in the SLLN's. Let G be the class of functions satisfying (1) and (2). For a given function g of the set G let

$$
b_{n}(g)=\sum_{k=1}^{n} \mathrm{E} X_{k}^{2} g\left(X_{k}\right) / \mathscr{S}_{n}^{2} g\left(\mathscr{S}_{n}\right), \quad n \geqslant 1 .
$$

Theorem 2. Suppose that

$$
\sum_{n=1}^{\infty} h(n) n^{-r}<\infty \quad \text { for some number } r \geqslant 2
$$

If there exists a function g in G such that $b_{n}(g) \rightarrow 0$ as $n \rightarrow \infty$ and

$$
\begin{equation*}
T\left(h, f_{i}, g\right)=\sum_{n=1}^{\infty} b_{n}(g) h(n) \log n /\left(1+f_{t}^{2}(n)\right)<\infty \tag{7}
\end{equation*}
$$

then

$$
\left|A_{\infty}\left(h, f_{t}\right)-F\left(h, f_{t}\right)\right| \leqslant C\left(1+T\left(h, f_{t}, g\right)\right)
$$

provided $F\left(h, f_{t}\right)<\infty$, where C is some positive constant independent of the function f_{t}.

Proof. At first let us observe that, by our assumptions and the central limit theorem, $F\left(h, f_{t}\right)<\infty$ implies $A_{\infty}\left(h, f_{t}\right)<\infty$. Thus, taking into account that $F\left(h, f_{s}\right)<\infty$, we get

$$
\begin{equation*}
\left|A_{\infty}\left(h, f_{t}\right)-F\left(h, f_{t}\right)\right| \leqslant \sum_{n=1}^{\infty} h(n)\left|P\left(\left|S_{n}\right|>\mathscr{S}_{n} f_{t}(n)\right)-2 \Phi\left(-f_{t}(n)\right)\right| \tag{8}
\end{equation*}
$$

Let us put

$$
\Delta_{n}(x)=\left|P\left(S_{n}<x \mathscr{S}_{n}\right)-\Phi(x)\right| ;
$$

by Theorem 5 [9] we have

$$
\Delta_{n}=\sup _{x} \Delta_{n}(x) \leqslant C b_{n}(g)
$$

Hereafter C denotes a positive constant (independent of the function f_{t}), and the same symbol may be used for different constants. Choose an integer n_{0} such that, for every $n \geqslant n_{0}, \Delta_{n} \leqslant e^{-1 / 2}$. This can always be done because of $b_{n}(g) \rightarrow 0$ as $n \rightarrow \infty$. Now we get

$$
\begin{equation*}
\sum_{n=1}^{n_{0}} h(n)\left|\left(\left|S_{n}\right|>\mathscr{S}_{n} f_{t}(n)\right)-2 \Phi\left(-f_{t}(n)\right)\right| \leqslant 2 \sum_{n=1}^{n_{0}} h(n) \leqslant C \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P\left(\left|S_{n}\right|>\mathscr{S}_{n} f_{t}(n)\right)-2 \Phi\left(-f_{t}(n)\right)\right| \leqslant \Delta_{n}\left(f_{t}(n)\right)+\Delta_{n}\left(-f_{t}(n)\right) . \tag{10}
\end{equation*}
$$

On the other hand, by Theorem 11 [9], for every $n \geqslant n_{0}$

$$
\begin{equation*}
\Delta_{n}(x) \leqslant C \Delta_{n} \log \Delta_{n}^{-1} /\left(1+x^{2}\right) . \tag{11}
\end{equation*}
$$

Hence, putting $A_{0}=\left\{n: \Delta_{n} \leqslant n^{-r}\right\}, A_{1}=\left\{n \geqslant n_{0}: \Delta_{n}>n^{-r}\right\}$, where the number $r \geqslant 2$ is given in the assumptions of Theorem 2, we obtain

$$
\begin{equation*}
\sum_{n \in A_{0}} h(n) \Delta_{n}\left(\pm f_{t}(n)\right) \leqslant \sum_{n \in A_{0}} h(n) n^{-r} \leqslant C \tag{12}
\end{equation*}
$$

and, by (11),

$$
\begin{equation*}
\sum_{n \in A_{1}} h(n) \Delta_{n}\left(\pm f_{t}(n)\right) \leqslant C \sum_{n \in A_{1}} b_{n}(g) h(n) \log n /\left(1+f_{t}^{2}(n)\right) \tag{13}
\end{equation*}
$$

Thus Theorem 2 follows from (8)-(13).
Suppose $f_{t}(n) \rightarrow \infty$ as $n \rightarrow \infty$. Let $G_{t}(x)=h(x) \Phi\left(-f_{t}(x)\right)$. Then, by the Euler-Maclaurin sum formula [4], p. 122, we have

$$
2 \sum_{n=0}^{m} G_{t}(n)=G_{t}(0)+G_{t}(m)+2 \int_{0}^{m} G_{t}(x) d x-2 \int_{0}^{m} P(x) d G_{t}(x)
$$

where $P(x)=[x]-x+1 / 2$ and $[x]$ denotes the integral part of x. Thus, by the monotone convergence theorem,

$$
2 \sum_{n=0}^{\infty} G_{t}(n)=G_{i}(0)+2 \int_{0}^{\infty} G_{t}(x) d x-2 \int_{0}^{\infty} P(x) d G_{t}(x)
$$

provided $G_{i}(m)=h(m) \Phi\left(-f_{i}(m)\right) \rightarrow 0$ as $m \rightarrow \infty$. But $-1 / 2 \leqslant P(x) \leqslant 1 / 2$. Hence

$$
\begin{aligned}
2 \int_{0}^{\infty} G_{t}(x) d x-\int_{0}^{\infty}\left|d G_{t}(x)\right| & \leqslant 2 \sum_{n=0}^{\infty} G_{t}(n)-G_{t}(0) \\
& \leqslant 2 \int_{0}^{\infty} G_{t}(x) d x+\int_{0}^{\infty}\left|d G_{t}(x)\right|
\end{aligned}
$$

Define $H(x)=\int_{0}^{x} h(u) d u, x \geqslant 0, H(\infty)=\lim _{x \rightarrow \infty} H(x)$. Then

$$
2 \int_{0}^{\infty} G_{t}(x) d x=\int_{0}^{H(\infty)} P\left(H\left(f_{t}^{-1}(|N|)\right)>u\right) d u
$$

where N is a standard normal random variable and f_{t}^{-1} is the inverse of f_{t}. Furthermore

$$
\begin{aligned}
\int_{0}^{\infty}\left|d G_{i}(x)\right| \leqslant & \int_{0}^{\infty}\left|h^{\prime}(x)\right| P\left(f_{t}^{-1}(|N|)>x\right) d x+ \\
& +\int_{0}^{\infty} h(x) f_{t}^{\prime}(x) \exp \left\{-f_{t}^{2}(x) / 2\right\} d x /(2 \pi)^{1 / 2}
\end{aligned}
$$

Thus, taking into account the relations given above; we obtain

$$
\begin{aligned}
& \left|F\left(h, f_{t}\right)-\int_{0}^{H(\infty)} P\left(H\left(f_{t}^{-1}(|N|)\right)>u\right) d u+h(0) \Phi\left(-f_{t}(0)\right)\right| \\
& \leqslant \int_{0}^{\infty}\left|h^{\prime}(x)\right| P\left(f_{t}^{-1}(|N|)>x\right) d x+\int_{0}^{\infty} h(x) f_{t}^{\prime}(x) \exp \left\{-f_{t}^{2}(x) / 2\right\} d x /(2 \pi)^{1 / 2}
\end{aligned}
$$

Let us observe that if, e.g., $f_{t}(x)=t x^{\alpha}, h(x) \equiv 1, x \geqslant 0, \alpha, t>0$, then $H(x)=x$ and, in this case, we get

$$
\mathrm{E}|N|^{1 / \alpha} / t^{1 / \alpha}-1 \leqslant F\left(h, f_{t}\right) \leqslant \mathrm{E}|N|^{1 / \alpha} / t^{1 / \alpha}
$$

Thus, by Theorem 2,

$$
\lim _{t \rightarrow 0+} t^{1 / \alpha} \sum_{n=1}^{\infty} P\left(\left|S_{n}\right|>t \mathscr{S}_{n} n^{\alpha}\right)=C_{\alpha}
$$

for every $0<\alpha \leqslant 1 / 2$ provided

$$
\sum_{n=1}^{\infty} b_{n}(g) \log n / n^{2 \alpha}<\infty
$$

This, in the special case, $\mathscr{S}_{n}^{2}=n, b_{n}(g)=1 / g\left(n^{1 / 2}\right), n \geqslant 1$, gives the main result of Chen [3]. On the other hand, by Theorem 2 and the relations given above, one can obtain much more general results. For example, putting $h(x)$ $=(\log x)^{\beta} / x^{\gamma}, \quad f_{t}(x)=t(\log x)^{\alpha}, \quad x \geqslant 1, \quad h(x)=f_{t}(x)=0, \quad 0 \leqslant x<1, \quad$ by Theorem 2 we get

$$
\lim _{t \rightarrow 0+} t^{(1+\beta) / \alpha} \sum_{n=1}^{\infty}(\log n)^{\beta} P\left(\left|S_{n}\right|>t \cdot \mathscr{S}_{n}(\log n)^{\alpha}\right) / n^{y}=I(\gamma, \alpha, \beta)
$$

for every $\alpha>0, \beta, \gamma \geqslant 0$ such that $1+\beta \geqslant 2 \alpha$, and

$$
\sum_{n=1}^{\infty} b_{n}(g)(\log n)^{1+\beta-2 \alpha} n^{-\gamma}<\infty
$$

where

$$
I(\gamma, \alpha, \beta)=0,+\infty, \text { or } C_{\alpha /(\beta+1)} /(\beta+1) \text { for } \gamma>1, \gamma<1 \text { or } \gamma=1
$$

respectively. This assertion seems to be unknown even in the case where X_{n}, $n \geqslant 1$, are independent and identically distributed. As another consequence of Theorem 2 or the statement given above, we get

$$
\begin{aligned}
\lim _{t \rightarrow 0+} t^{(1+\beta) / \alpha} \sum_{n=3}^{\infty}(\log \log n)^{\beta} P\left(\left|S_{n}\right| \geqslant\right. & \left.\left.t \mathscr{S}_{n}(\log \log n)^{\alpha}\right) / n^{\gamma}(\log n)^{\delta}\right) \\
& =I(\delta, \gamma, \alpha, \beta)
\end{aligned}
$$

for every $\alpha>0, \delta, \beta, \gamma \geqslant 0$ such that $(1+\beta) \geqslant 2 \alpha$, and

$$
\sum_{n=3}^{\infty} b_{n}(g)(\log \log n)^{\beta-2 \alpha}(\log n)^{1-\delta} n^{-\gamma}<\infty
$$

where $I(\delta, \gamma, \alpha, \beta)=0$ or $+\infty$ for $\gamma>1$ or $\gamma<1$, respectively, and $I(\delta, 1, \alpha, \beta)=0,+\infty$ or $C_{\alpha /(1+\beta)} /(\beta+1)$ for $\delta>1, \delta<1$ or $\delta=1$, respectively.

Let us observe that the consequences of Theorem 2 given above can also
be considered as the study of asymptotic behaviour (as $t \rightarrow 0^{+}$and $n \rightarrow x$) of the probabilities $P\left(\left|S_{n}\right|>t \mathscr{S}_{n}^{1+2 \alpha}\right)$. In fact, the assertions obtained have covered the following cases: $\mathscr{S}_{n}^{2}=n, \mathscr{S}_{n}^{2}=\log n$ and $\mathscr{S}_{n}^{2}=\log \log n, n \geqslant 3$. On the other hand, in order to consider probabilities of the type $P\left(\left|S_{n}\right|>t \cdot \mathscr{Y}_{n}^{\prime}\left(\log \log \mathscr{Y}_{n}^{2}\right)^{2}\right), \quad P\left(\left|S_{n}\right|>t \mathscr{Y}_{n}^{\prime}\left(\log \mathscr{S}_{n}^{2}\right)^{\alpha}\right) \quad$ or other ones, one can find an appropriate increasing and positive function $f_{t}(x)$ which is continuous and has a continuous derivative $f_{t}^{\prime}(x)$ for all $x \geqslant 0$, and $f_{t}(0)=0$, $f_{t}(n)=t \log \log \mathscr{S}_{n}^{2}$ or $f_{t}(n)=t \log \mathscr{S}_{n}^{2}$, respectively, and then use Theorem 2 with such a function. At the same time we must, as we have seen, find an appropriate function $h(n)$, which will also depend on \mathscr{S}_{n}^{2}.

One can also note that Theorem 2 may be useful in the study of "strong limit laws" (for example, such as the law of the iterated logarithm) for nonidentically distributed random variables. Namely, let us consider a positive function $f(x)$ which has a positive and continuous derivative $f^{\prime}(x)$. Let us put $f_{t}(x)=(a+t) f(x)$. Then

$$
P\left(\limsup _{n \rightarrow \infty}\left|S_{n}\right| / \mathscr{S}_{n} f(n)=a\right)=1
$$

iff, for every $t>0, P\left(N_{\infty}(t)<\infty\right)=1$, and, for every $t<0, P\left(N_{\infty}(t)=\infty\right)$ $=1$, where

$$
N_{\infty}(t)=\sum_{n=1}^{\infty} I\left(\left|S_{n}\right| \geqslant \mathscr{S}_{n} f_{t}(n)\right) .
$$

It is obvious that if h is a positive and nondecreasing function such that $h(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $\operatorname{Eh}\left(N_{\infty}(t)\right)<\infty$, then $\lim \sup \left|S_{n}\right| / \mathscr{S}_{n} f(n) \leqslant a$. By the monotone convergence theorem, we get

$$
\mathrm{E} h\left(N_{\infty}(t)\right)=\lim _{n \rightarrow \infty} \mathrm{E} h\left(N_{n}(t)\right), \quad \text { where } \quad N_{n}(t)=\sum_{k=1}^{n} I\left(\left|S_{k}\right| \geqslant \mathscr{S}_{k} f_{t}(k)\right)
$$

Furthermore, if by definition $h(0)=N_{0}(t)=0$, then

$$
\begin{aligned}
& \lim _{m \cdot x} \mathrm{E} h\left(N_{m}(t)\right)=\lim _{m \cdot x} \sum_{n=1}^{m} \mathrm{E}\left(h\left(N_{n}(t)\right)-h\left(N_{n-1}(t)\right) I\left(\left|S_{n}\right| \geqslant \mathscr{S}_{n} f_{t}(n)\right)\right) \\
& \geqslant \sum_{n=1}^{\infty} \min _{1 \leqslant k \leqslant n}(h(k)-h(k-1)) P\left(\left|S_{n}\right| \geqslant \mathscr{S}_{n} f_{t}(n)\right) .
\end{aligned}
$$

On the other hand, by the same way we get

$$
\mathrm{E} h\left(N_{\infty}(t)\right) \leqslant \sum_{n=1}^{\infty} \max _{1 \leqslant k \leqslant n}\{h(k)-h(k-1)\} P\left(\left|S_{n}\right| \geqslant \mathscr{S}_{n} f_{t}(n)\right) .
$$

Thus we have proved the following

Theorem 3. Assume that there exist functions h_{1} and h_{2} such that for every $n \geqslant 1$

$$
h_{1}(n) \leqslant \min _{1 \leqslant k \leqslant n}[h(k)-h(k-1)] \leqslant \max _{1 \leqslant k \leqslant n}[h(k)-h(k-1)] \leqslant h_{2}(n)
$$

where h is a given nondecreasing and positive function. Then

$$
\sum_{n=1}^{\infty} h_{2}(n) P\left(\left|S_{n}\right| \geqslant \mathscr{S}_{n} f_{t}(n)\right)<\infty \quad \text { implies } \quad \mathrm{E} h\left(N_{\infty}(t)\right)<\infty
$$

and

$$
\sum_{n=1}^{\infty} h_{1}(n) P\left(\left|S_{n}\right| \geqslant \mathscr{S}_{n} f_{t}(n)\right)=\infty \quad \text { implies } \quad \mathrm{E} h\left(N_{\infty}(t)\right)=\infty
$$

Thus, for example, putting $h(n)=(\log \log n)^{\alpha}$, or $h(n)=n \gamma(\log n)^{\beta}$, for n $\geqslant 3$ and some $\alpha, \beta>0, \gamma \geqslant 1 h(n)=1, n=1,2$, and using Theorem 3 we get

$$
\sum_{n=3}^{\infty}(\log \log n)^{\alpha-1} P\left(\left|S_{n}\right| \geqslant \mathscr{S}_{n} f_{t}(n)\right) / n \log n=\infty
$$

implies

$$
\mathrm{E}\left(\log \log N_{\infty}(t)\right)^{\alpha}=\infty,
$$

and

$$
\sum_{n=3}^{\infty} n^{y-1}(\log n)^{\beta} P\left(\left|S_{n}\right| \geqslant \mathscr{S}_{n} f_{t}(n)\right)<\infty
$$

implies

$$
\mathrm{E}\left\{N_{\infty}^{\gamma}(t)\left(\log N_{\infty}(t)\right)^{\beta}\right\}<\infty .
$$

Of course, sufficient conditions for the convergence of these series are given in Theorem 2 and in Theorem 4 below.

Let us assume that $\mathrm{E}\left|X_{n}\right|^{2+s}=\beta_{n}^{2+s}<\infty, n \geqslant 1$, for some fixed $s>0$. Let

$$
B_{n}^{2+s}=\sum_{k=1}^{n} \beta_{k}^{2+s}, \quad L_{n}^{s}=B_{n}^{2+s} / \mathscr{S}_{n}^{2+s}, \quad L_{n}^{s *}=B_{n}^{2+s *} / \mathscr{S}_{n}^{2+s *},
$$

where $s^{*}=\min (1, s)$, and let

$$
L(n, s, \varepsilon)=\sum_{k=1}^{n} \mathrm{E}\left|X_{k}\right|^{2+s} I\left(\left|X_{k}\right|>\varepsilon \mathscr{S}_{n}\right) / B_{n}^{2+s}, \quad \log _{+} x=\max (0, \log x)
$$

The following theorem is a consequence of the results presented in [12], combined with Theorem 2.

Theorem 4. Assume that

$$
S_{1}\left(s, f_{t}, h\right)=\sum_{n=1}^{\infty} L_{n}^{s} L\left(n, s, f_{t}(n)\right) h(n) f_{t}^{-2-s}(n)<\infty
$$

(i) If $f_{t}^{2}(n) \geqslant 2 s^{-1}(1+s) \log _{+}\left(1 / L_{n}^{s}\right)$ and

$$
S_{2}\left(s, f_{t}, h\right)=\sum_{n=1}^{\infty} L_{n}^{s} f_{t}^{-2(2+s)}(n) h(n)<\infty
$$

then

$$
\left|A_{\infty}\left(h, f_{t}\right)-F\left(h, f_{t}\right)\right| \leqslant C\left(S_{1}\left(s, f_{t}, h\right)+S_{2}\left(s, f_{t}, h\right)\right)
$$

(ii) If $f_{t}^{2}(n) \leqslant 2 s^{-1}(1+s) \log _{+}\left(1 / L_{n}^{s}\right)$ and

$$
S_{3}\left(s, f_{t}, h\right)=\sum_{n=1}^{\infty} L_{n}^{*} h(n) \exp \left\{-\left(2+2 s-s^{*}\right) f_{t}^{2}(n) / 4(1+s)\right\}<\infty
$$

then

$$
\left|A_{\infty}\left(h, f_{t}\right)-F\left(h, f_{t}\right)\right| \leqslant C\left(S_{1}\left(s, f_{t}, h\right)+S_{3}\left(s, f_{t}, h\right)\right)
$$

Let us note that from Theorem 4 we immediately obtain the following
Corollary. Suppose that $X_{n}, n \geqslant 1$, are independent random variables with $\mathrm{E} X_{n}=0, L_{n}^{s} \leqslant C n^{-s / 2}, L_{n}^{s *} \leqslant C n^{-s * / 2}, n \geqslant 1$, for some positive constants $s>0$ and $C>0$. Then

$$
\lim _{t \rightarrow 0^{+}} t^{(r+1) / \alpha} \sum_{n=1}^{\infty} n^{r} P\left(\left|S_{n}\right|>t \mathscr{S}_{n} n^{\alpha}\right)=C_{\alpha /(r+1)} /(r+1)
$$

for every $\alpha, s>0, r \geqslant 0$, such that $(r+1) /(2+s)-s / 2(2+s)<\alpha<(r+1) /(2+s)$.
3. The rate of convergence in the random SLLN's. Let us put

$$
S_{N_{n}}=\sum_{k=1}^{N_{n}} X_{k}, \quad M_{n}^{2}=\sum_{k=1}^{N_{n}} \sigma_{k}^{2}
$$

where $\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer-valued random variables not necessarily independent of $\left\{X_{n}, n \geqslant 1\right\}$.

Define

$$
\begin{gathered}
\left.Z_{\infty}(t, \alpha)=\sum_{n=1}^{\infty} P\left|S_{N_{n}}\right|>t M_{n}^{1+2 \alpha}\right), \quad t>0, \alpha>0 \\
H(t)=\sum_{n=1}^{\infty} P\left(\left|M_{n}^{2}-\lambda \mathscr{S}_{n}^{2}\right| \geqslant t \mathscr{S}_{n}^{2}\right)
\end{gathered}
$$

where λ is a positive random variable such that, for some $0<a \leqslant b<\infty$, $P(a \leqslant \lambda \leqslant b)=1$.

Proposition. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent random variables with $\mathrm{E} X_{k}=0, \mathrm{E} X_{k}^{2}=\sigma_{k}^{2}<\infty, k \geqslant 1$, and for some $0<\alpha \leqslant 1 / 2$

$$
\begin{equation*}
\lim _{K \rightarrow \infty} \lim _{t \rightarrow 0} \sup ^{1 / \alpha} \sum_{n>K t^{-1 / \alpha}}\left(1+t^{2} \mathscr{S}_{n}^{4 \alpha}\right)^{-1 / \alpha}=0 \tag{14}
\end{equation*}
$$

$$
\begin{gather*}
\lim _{K \rightarrow \infty} \lim \sup _{t \rightarrow 0} t^{1 / \alpha} \sum_{n>K^{\prime}-1 / \alpha} \Phi\left(-t \mathscr{S}_{n}^{2 \alpha}\right)=0, \tag{15}\\
\lim _{K \rightarrow \infty} \limsup _{t \rightarrow 0} t^{1 / \alpha} \sum_{n>K t^{-}-1 / \alpha} \sum_{k=1}^{\beta_{n}} P\left(\left|X_{k}\right| \geqslant t \mathscr{S}_{n}^{1+2 \alpha}\right)=0,
\end{gather*}
$$

where $\beta_{n}=\max \left\{k: \mathscr{S}_{k}^{2} \leqslant(b+t) \mathscr{S}_{n}^{2}\right\}$.
If $S_{n} / \mathscr{S}_{n} \xrightarrow{Д} N(0,1)$, then

$$
\liminf _{t \rightarrow 0} t^{1 / \alpha}\left[Z_{\infty}(t, \alpha)+H(t)\right] \geqslant \liminf _{t \rightarrow 0} F(\alpha, t, b) t^{1 / \alpha},
$$

and

$$
\limsup _{t \rightarrow 0} t^{1 / \alpha}\left[Z_{\infty}(t, \alpha)-H(t)\right] \leqslant \underset{t \rightarrow 0}{\lim \sup } t^{1 / \alpha} F(\alpha, t, a),
$$

where $0<a \leqslant b<\infty$ are given constants such that $P(a \leqslant \lambda \leqslant b)=1$ and

$$
F(\alpha, t, x)=2 \sum_{n=1}^{\infty} \Phi\left(-t x^{\alpha} \mathscr{S}_{n}^{2 \alpha}\right)
$$

From our Proposition we easily get the following
Theorem 5. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent and identically distributed random variables with $\mathrm{E} X_{n}=0$ and $\mathrm{E} X_{n}^{2}=1$, and let $\left\{N_{n}, n \geqslant 1\right\}$ be a sequence of positive integer-valued random variables such that for every $t>0$

$$
H(t)=\sum_{n=1}^{\infty} P\left(\left|N_{n}-n \lambda\right| \geqslant t n\right)<\infty
$$

where λ is a random variable. If for some $0<a \leqslant b<\infty, P(a \leqslant \lambda \leqslant b)=1$, and, for some $\alpha>0$,

$$
\lim _{K \rightarrow \infty} \limsup _{t \rightarrow 0} t^{(1-2 \alpha) / \alpha(1+2 \alpha)} \mathrm{E}\left|X_{1}\right|^{4 /(1+2 \alpha)} I\left(\left|X_{1}\right| \geqslant K t^{-1 / 2 \alpha}\right)=0,
$$

then

$$
\begin{gathered}
\limsup _{t \rightarrow 0} t^{1 / \alpha}\left[\sum_{n=1}^{\infty} P\left(\left|S_{N_{n}}\right| \geqslant t N_{n}^{1 / 2+\alpha}\right)-H(t)\right] \leqslant C_{\alpha} / a, \\
\underset{t \rightarrow 0}{\liminf } t^{1 / \alpha}\left[\sum_{n=1}^{\infty} P\left(\left|S_{N_{n}}\right| \geqslant t N_{n}^{1 / 2+\alpha}\right)+H(t)\right] \geqslant C_{\alpha} / b, \\
\lim _{t \rightarrow 0} t^{1 / \alpha} \sum_{n=1}^{\infty} P\left(\left|S_{n}\right| \geqslant t n^{1 / 2+\alpha}\right)=C_{\alpha} .
\end{gathered}
$$

Note that our Proposition, even in the case $P\left(N_{n}=n\right)=1, n \geqslant 1$, gives a generalization of the main result of Chen [3]. Furthermore, Theorem 5
presents an extension of the main results of Szynal [15], Sirazdinov, Gafurov and Komekov [14].

Proof of Proposition. Let us put $a_{n}(t)=(a-t) \mathscr{S}_{n}^{2}, b_{n}(t)=(b+t) \mathscr{S}_{n}^{2}$, $I_{n}(t)=\left[\left|M_{n}^{2}-\lambda \mathscr{S}_{n}^{2}\right| \leqslant \dot{t} \mathscr{S}_{n}^{2}\right]$. Then we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} P\left(\left|S_{N_{n}}\right|>t M_{n} b_{n}^{\alpha}(t), I_{n}(t)\right) \tag{17}\\
& \quad \leqslant Z_{\infty}(t, \alpha) \leqslant \sum_{n=1}^{\infty} P\left(\left|S_{N_{n}}\right|>t M_{n} a_{n}^{\alpha}(t), I_{n}(t)\right)+H(t)
\end{align*}
$$

On the other hand, by the random central limit theorem given in [5], we have

$$
\Delta_{n}=\sup _{x}\left|P\left(S_{N_{n}}<x M_{n}\right)-\Phi(x)\right| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Let, for every $t>0, n_{0}(t)$ be such a positive integer that $n_{0}(t) \rightarrow \infty$ and $t^{1 / \alpha} n_{0}(t) \rightarrow 0$ as $t \rightarrow 0$. Then, for every positive number K, we get

$$
\begin{align*}
& t^{1 / \alpha} \sum_{n \leqslant K t^{-1 / \alpha}}\left|P\left(\left|S_{N^{n}}\right|>t M_{n} a_{n}^{\alpha}(t)\right)-2 \Phi\left(-t a_{n}^{\alpha}(t)\right)\right| \tag{18}\\
& \leqslant 2 t^{1 / \alpha}\left[\sum_{n=1}^{n_{0}(t)-1} \Delta_{n}+\sum_{n=n_{0}(t)}^{K t^{-1 / \alpha}} \Delta_{n}\right] \\
& \leqslant 4 t^{1 / \alpha} n_{0}(t)+2 t^{1 / \alpha}\left(K t^{-1 / \alpha}-n_{0}(t)\right) \max _{n_{0}(t) \leqslant k \leqslant K_{t}-1 / \alpha} \Delta_{k} \rightarrow 0 \quad \text { as } t \rightarrow 0 .
\end{align*}
$$

Furthermore, for every $0<\varepsilon<1$, we obtain

$$
\begin{align*}
& I(K, t, \alpha)=t^{1 / \alpha} \sum_{n>K t^{-}} P\left(\left|S_{N_{n}}\right|>t M_{n} a_{n}^{\alpha}(t), I_{n}(t)\right) \tag{19}\\
& \leqslant t^{1 / \alpha} \sum_{n>K t^{-}-1 / \alpha} P\left(\left|S_{\alpha_{n}}\right|>t \varepsilon a_{n}^{1 / 2+\alpha}(t)\right)+ \\
& \quad+t^{1 / \alpha} \sum_{n>K t^{-}-1 / \alpha} P\left(\max _{\alpha_{n} \leqslant k \leqslant \beta_{n}}\left|S_{k}-S_{\alpha_{n}}\right|>(1-\varepsilon) t a_{n}^{1 / 2+\alpha}(t)\right),
\end{align*}
$$

where $\alpha_{n}=\min \left\{k: \mathscr{S}_{k}^{2} \geqslant a_{n}(t)\right\}$ and $\beta_{n}=\max \left\{k: \mathscr{S}_{k}^{2} \leqslant b_{n}(t)\right\}$.
By the results of Fuk [7] (Corollary 3 with $\beta=\alpha=1 / 2, x=t \varepsilon\left(a_{n}(t)\right)^{1 / 2+\alpha}$, $\left.y_{1}=y_{2}=\ldots=y=\alpha x / 2, B_{n}^{2}=C_{2, Y}=\mathscr{S}_{n}^{2}\right)$ we get

$$
\begin{aligned}
& P\left(\left|S_{\alpha_{n}}\right|>t \varepsilon\left(a_{n}(t)\right)^{1 / 2+\alpha}\right) \leqslant \sum_{k=1}^{\alpha_{n}} P\left(\left|X_{k}\right| \geqslant \alpha t \varepsilon\left(a_{n}(t)\right)^{1 / 2+\alpha} / 2\right)+ \\
& \quad+2 /\left[1+\alpha t^{2} \varepsilon^{2}\left(a_{n}(t)\right)^{1+2 \alpha} / 4 \mathscr{S}_{\alpha_{n}}^{2}\right]^{1 / \alpha}+2 \exp \left\{-t^{2} \varepsilon^{2}\left(a_{n}(t)\right)^{1+2 \alpha} / 8 e^{2} \mathscr{S}_{\alpha_{n}}^{2}\right\} .
\end{aligned}
$$

On the other hand, from the results of Fuk [7] (Corollary 3 with $\beta, \alpha, \dot{y}_{1}$ $=\ldots=y$ in it as in above and $\left.x=(1-\varepsilon) t\left(a_{n}(t)\right)^{1 / 2+\alpha}\right)$ or by the result of

Borovkov [2], we obtain

$$
\begin{aligned}
P\left(\max _{\alpha_{n} \leqslant k \leqslant \beta_{n}}\left|S_{k}-S_{a_{n}}\right| \geqslant\right. & \left.(1-\varepsilon)\left(a_{n}(t)\right)^{1 / 2+\alpha}\right) \\
\leqslant & \sum_{k=\alpha_{n}}^{\beta_{n}} P\left(\left|X_{k}\right| \geqslant\right.
\end{aligned} \begin{aligned}
& \left.\alpha(1-\varepsilon) t a_{n}^{1 / 2+\alpha}(t) / 2\right)+ \\
& +2 /\left[1+\alpha t^{2}\left(1-\varepsilon^{2}\right) a_{n}^{1+2 \alpha}(t) / 4(b-a+2 t) \mathscr{S}_{n}^{2}\right]^{1 / \alpha}+ \\
& +2 \exp \left\{-t^{2}\left(1-\varepsilon^{2}\right) a_{n}^{1+2 \alpha}(t) / 8 e^{2}(b-a+2 t) \cdot \mathscr{S}_{n}^{2}\right\} .
\end{aligned}
$$

Thus, by (19) and the definition of $a_{n}(t)$ and $b_{n}(t)$, for $\varepsilon=1 / 2$, we hav ϵ

$$
\begin{align*}
I(K, t, \alpha) \leqslant & C t^{1 / \alpha} \sum_{n>K t^{-}} \sum_{1 / \alpha}^{\beta_{n}} P\left(\left|X_{k}\right| \geqslant \alpha t(a-t)^{1 / 2+\alpha} \mathscr{S}_{n}^{1+2 \alpha} / 4\right)+ \tag{20}\\
& +C t^{1 / \alpha} \sum_{n>K t^{-1 / \alpha}}\left[1+t^{2}(a-t)^{1+2 \alpha} \mathscr{S}_{n}^{4} /(b-a+2 t)\right]^{-1 / \alpha}+ \\
& +C t^{1 / \alpha} \sum_{n>K^{-1 / \alpha}}\left[1+t^{2}(a-t)^{1+2 \alpha} \mathscr{S}_{n}^{4 \alpha}\right]^{-1 / \alpha}+ \\
& +C t^{1 / \alpha} \sum_{n>K t^{-1 / \alpha}} \exp \left\{-t^{2}(a-t)^{1+2 \alpha} \mathscr{S}_{n}^{4 \alpha} / 32 e^{2}\right\}+ \\
& +C t^{1 / \alpha} \sum_{n>K t^{-1 / \alpha}} \exp \left\{-t^{2} \mathscr{S}_{n}^{4 \alpha}(a-t)^{1+2 \alpha} / 32 e^{2}(b-a+2 t)\right\}
\end{align*}
$$

But, by our assumptıons, a and b are given positive constants and $b-a$ $\geqslant 0$. Hence from (14)-(20) it is not difficult to obtain the first part of our Proposition. The second one follows in a similar way.

Acknowledgment. The authors are very grateful to the referees for their valuable remarks and comments improving the previous version of this paper.

REFERENCES

[1] I. A. Ahmad, A remark on the SLLN for random partial sums, Z. Wahrsch. Verw. Gebiete 54 (1980), p. 119-124.
[2] A. A. Borovkov, Notes on inequalities for sums of independent variables, Teor. Verojatnost. i Primenen. 17 (1972), p. 588-590.
[3] R. Chen, A remark on the strong law of large numbers, Proc. Amer. Math. Soc. 61 (1976), p. 112-116.

「47 H. Cramér, Mathematical methods of statistics, Princeton 1946.
[5] M. Csörgó and Z. Rychlik, Weak convergence of sequences of random elements with random indices, Math. Proc. Camb. Phil. Soc. 88 (1980), p. 171-174.
[6] V.A. Egorov, On the strong law of large numbers and the law of the iterated logarithm for sequences of independent random variables. Teor. Verojatnost. i Primenen. 15 (1970), p. 520527.
[7] D. H. Fuk, Some probability inequalities for martingales, Sibirskij Mat. Ž., 14 (1973), p. 185-193
[8] D. La nders and L. Rogge, The exact approximation order in the central limit theorem for random summation, Z. Wahrsch. Verw. Gebiete 36 (1976), p. 269-283.
[9] V. V. Petrov, Sums of independent random variables, New York, Springer 1972.
[10] Z. Rychlik, The order of approximation in the random central limit theorem, Lect. Notes in Math. 656 (1978), p. 225-236.
[11] Z. Rychlik, Rozklady graniczne losowo indeksowanych ciagów zmiennych losowych, Rozprawa habilitacyjna, Lublin 1980.
[12] Z. Rychlik, Nonuniform central limit bounds with applications to probabilities of deviations, Teor. Verojatnost. i Primenen 28 (1983), p. 646-652.
[13] N. C. Severo and J. Slivka, On the strong law of large numbers, Proc. Amer. Math. Soc. 24 (1970), p. 729-734.
[14] S. H. Siraždinov, M. U. Gafurov and B. Komekov, Some remarks on the strong law of large numbers for sums of a random number of random variables, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 22 (1978), p. 28-34.
[15] D. Szynal, On almost complete convergence for the sum of a random number of independent random variables, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys. 20 (1972), p. 571-574.
[16] H. Teicher, Generalized exponential bounds, iterated logarithm and strong laws, \mathbf{Z}. Wahrsch. Verw. Gebiete 48 (1979), p. 293-307.
[17] C. F. Wu, A note on the convergence rate of the strong law large numbers, Bull. Inst. Math. Acad. Sinica' 1 (1973), p. 121-124.

Bolyai Institute
Szeged University
Aradi vértanúk tere 1
H-6720 Szeged, Hungary

Institute of Mathematics
Curie-Skłodowska University
Nowotki 10, 20-031 Lublin, Poland

