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Abstract, Let {X,, n > 1} be a sequence of indebendent random
variables such that EX, =0, EX2=g2<w, n> 1. Foreach n>1
let

n " oon
S.= X X,, Si=Y ok
k=1 . k=1

‘then, under some additional conditions, S,/9X** —+0 as n — v with
probability 1 for any « > 0.

The main purpose of thls paper is to give the order of magni-
tude of

3 PS> 1514

n=1

as t - 0. The rate of convergence in the random strong law of large
numbers is establishied too.

1. Introductlon. Let {X,, n>1} be a sequence of lndependent random
~ variables with EX, =0 and EX2 =62 < o, n>1. Define

?Zst yg:z _0'3, »-n;l_.

It is well known that if %2> o and S 1/FE—>1 as n— o, then

S/ P12 50 (as n— oo) with probablhty 1 for any a > 0 provided that for
every ¢ >0

Z P(IX | >s.9’”2“) <

n=1
as is necessary (cf [61, [16].

Many authors (cf. [13]-[15], [17], [3]) have studled the rate of conver-
gence in the strong law of large numbers (SLLN) under the assumption that
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EX 2 =1, n>1. The most general result in this direction belongs to Chen
[3] who proved the following

THEOREM 1. Suppose that {X,, n> 1} is a sequence of independent random
variables such that EX, =0, EX2 =1, n > 1. If there exists a function g such
that

(1) g(x) is nondecreasing on the interval (0, o), is even on (— o0, ), and
g(x)—> 0 as x— o0;
(2) the function x/g(x) does not decrease on (0 cao),

3 limsupn~! ¥ EX2g(X,) < 0
: nsm k=1
(4) for some constant o
Y. (log mfn**g(n") <0 (0 <a<1/2);
n=1

then we have

(5 lim 1o Z P(S, = mi**9) = C,,

-0
where

C, = n~22Y% [(1/2+1/20).

This result extends to the nonidentically distributed case the theorem of
Wu [17] and gives a deeper understanding of the SLLN's.

Recently Ahmad [1] has presented a random version of Theorem 1.
Namely he proved that if {N,, n > 1} is a sequence of positive integer-valued
random variables not necessarily independent of {X,, n> 1}, then, under

~ some additional assumptions on {X,, n> 1}, {N,, n> 1} and the function g,

' @®
(6) lim ¢ Y P(Sy,| > tnt/2te) = jH2eC
=0 - a=1
where A is such a positive constant that N,/n— A with probabxhty 1 as
n— oo.

It should be mentioned here that the proof of Lemma 4 given in [1],
based on “the argument of Landers and Rogge [8]”, has a gap. In order to
prove Lemma 4 [1], using the ideas of Landers and Rogge [8], one needs
extensions of Lemmas 7 and 8, given in [8], for any sequence of independent
random variables {X,, n> 1} with EX, =0 and EX2 =1, n> 1. Lemma 8
[8] can be extended to this case, which in fact is done in the proof of Lemma
4 [1]. But the extension of Lemma 7 [8], to the nonstationary case of {X,, n
> 1}, by the argument of Landers and Rogge, needs the inequality ( =) [8, p.
281], which, in general, in this case is incorrect. Taking into account Lemma
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1 {10] or Lemma 6.1 [11], one can easily notice that the proof of Lemma 4
[1], based on the argument of Landers and Rogge [8], requires the following
assumption: there exist positive constants b, and b, such that for every n, k,
n>kz1,

(%) . by P(S, —Sk 0 < P(S,—8; < 0) < bzP(S -5, =2 0).

Let us observe that if {X,, n> 1} is a sequence of symmetrical random
variables, then (#*) holds. On the other hand, if {X,, n> 1} satlsﬁes the
central limit theorem, then

lim P(S,<0)=1/2 = lim P(S,>0),
which proves that if, in addition, {X,, n > 1} is stationary, then (x) holds
too, and this is just the case considered in [8] and, therefore, in [1].

Unfortunately, in Lemma 1 [10] the assumption ( *+) is omitted too but
in the proof we used it (cf. [10], p. 233, lines 5-and 6).

We would also like to mention that Lemma 3 in [1] does not follow from
Petrov’s Theorem 10 [9], because, under the assumed assumptions, the
variance of Sy /(n4)'/> need not be equal to one (as is required in Theorem
10 (9D even if N,. n> 1, are assumed to be independent of {X,, n=>1}.

Let h be a finite and positive function defined on [0, c0). Assume that h
has a continuous derivative h'(x) for all x > 0. Furthermore, let, for every
t >0, f, be an increasing and positive function which has a continuous
derivative f/(x) for all x > 0. Let us put

Au(h, f) = kZ h(k) P8 > Z1fi (K)),
. =t E !
Ag(h, f}) = lim A,(h, £),

A= ®

F(h,f) =2 Z h(n)¢(—ﬁ(n))

where @ denotes the standard normal distribution function.

The main purpose of this paper is to study the order of magnitude of
A, (h, f) and F(h, f;) as t - 0. The results obtained generalize the theorems
given by Chen [3], Wu [17], Severo and Slivka [13], Szynal [15], Ahmad
[1], Sirazdinov Gafurov and Komekov [14].

2. The rate of convergence in the SLLN’s. Let G be the class of functions
satisfying (1) and (2). For a given function g of the set G let '

k=1 .
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THEOREM 2. Suppose that
Y h(mn" <o for sonze,numbér r'> 2.

If there exists a function g in G such ‘that b (g)—>0 as n— oo and
(7) - T f.9 = Z b, (g) h(m) log n/(1+f£2(n)) < oo,
t;len R ’ . .
|Ae(h, f)—F(h, ) < C(1+T(h, f @)
provided F (h, f ) < 00, where Cis some posmve constant mdependent of the
function f,. : e

Proof. At first let us obscrve that, by our assumptlons and the central

limit theorem, F (h, f;) < oo implies A (h f ) <-c0. Thus, taking into account
that F(h, f) < o, we get .

® Al )-Fh < ;fh(n)lf'(lsnl._> 5”uﬁ(n))—2¢(—ﬁ(n))l- 3

~ Let us put , RS ‘ _
4,0 = |P(S, < xF)= B3
by Theorem 5 [9] we have S o
"4, —supA (x) Cb (g)
Hereafter C denotes a positive constant (independent of the function f),”
and the same symbol may be used for different constants. Choose an integer

ny such that, for every n > ny, 4, <e /2 This can always be done because
of b,(g) >0 as n— . Now we get

©) ZO (1S4 > 2, (n))—2¢(¥ﬁ(n))| <2 Z° hm<C

‘and " "

1. |P(1S. > yn.f(n)) 2flj(—f(" )| < ﬂ("))+4 ( f(n))
On the other hand, by Theorem 11 [9], for every n >

(11) 4,(x) < C4, log 47 1/(1+x2) |

Hence, putting Ag = {n: 4,<n""}, A, ={n=nei 4,>n7"}, where the
number r > 2 is given in the assumptions of Theorem 2, we obtain

(12) Y kA (M) < T hmnT<C

nedg nedg
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and, by (11),
(13) 2 h(m4, (J,(n)) c Z b (y)h(n) log "/(1 +f 2(m):
"EAI 'lEAl . .
Thus Theorem 2 follows frorn (8)-(13).

Suppose f,(n) » o as n— 0. Let G,(x) = h(x)d’(—f,(x)). Then, by the
Euler-Maclaurin sum formula [4], p. 122, we have

2 Z G,(n) = G,(0)+G, (m)+2_fG (o) dx— 2jP(x)dG (),

where P(x) = [x]—x+1/2 and [x] denotes the integral part of x. Thus by
the monotone convergence theorem, ‘

2 Z G, (1) = G,(0)+2 jG,(x)dx—Z }op(x)dc;,(x)

prov1ded G,(m) = h(m)d5(—f(m)) -0 as m— . But -1/2< P(x) < 1/2
Hence S

fG (x)dx— _fldG <2 f G,(ﬂ)—G,(O) ‘

(1]

<2 ]? G, (x)dx+ Tldc, ).
o

Define H(x) = jh(u)du x> O H(w0) = lim H(x). Then

X —*a0

H(w)

f Gi()dx = P(H(f™*(ND) > u)du,

where N is a standard normal random varlable and f, is ‘the inverse of f,.
Furthermore

T14G,(x)| < {IF (I P52 (N > x)dx+
(4] . (1]

+ ofh(x) 1y (x) exp {—£;2(x)/2} dx/(2m)*/>.
o .

Thus, taking into account the relations given above, we obtain

H( a0)

[Fon o~ g P(H(fr‘(wn)>u)du+h(om(—mo»l __

< })Ih’(x)l P(f,” 1(INI)>JC)dx-f' fh(X)f. (x) exp { —fz(x)/2‘dX/(275 Ve
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Let us observe that if, eg., fi(x)=1tx% h(x)=1, x>0, o, t >0, then
H(x) = x and, in this case, we get

EINY— 1 < F(h ) < EINP/e.
Thus, by Theorem 2,

lim ¢ Z P(S,| > tF,n") =

t—0+ n=1

for every 0 <a < 1/2 provided

Z b,(g) log n/nz"“ < . |

n=1

This, in the special case, &2 = n, b,(g) = 1/g(n*/?), n > 1, gives the main
result of Chen [3]. On the other hand, by Theorem 2 and the relations given
above, one can obtain much more general results. For example, putting h(x)
= (log x)f/x?, fix)=t(logx), x=1, h(x)=f(x)=0, 0<x<1, by
Theorem 2 we get

lim ((+A= Z (log Y’ P(S,] > t,(log nf*)/n* =1(y, a, B)
t—0+ n=

for every o >0, B, y > 0 such that 1+8 > 24, and

[+ ]
Y. bu(g)(log m)' P72 077 < o0,
n=1 -

where .
I(y, @, f) =0, +0, or Cyp+p/(f+1) for y>1, y<lor y=1,
respectively. This assertion seems to be unknown even in the case where X,
n > 1, are independent and identically distributed. As another consequence of
Theorem 2 or the statement given above, we get

lim ¢*Pe Z (log log nf P(|S,| > t¥,(log log ny*)/n’(log n)®)
t=0+ n=3
| =13, 7, % f)
for every a > 0, 4, ,B, > 0 such that (1+p8) > 2o, and

Z b (g)(log log n)f~2*(log n)1 *nY < oo,

n=3
where I1(5,y,a,B) =0 or +c0 for y>1 or y<1, respectively, and
16,1,0,8)=0, +0 or Cyys+pf(f+1) for 6 >1, 6 <1 or 6=1, res-

pectively.
Let us observe that the consequences of Theorem 2 given above can also
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be considered as the study of asymptotic behaviour (as t - 0* and n — x) of
the probabilities P(|S,| > t#}*2%). In fact, the assertions obtained have
‘covered the following cases: 2 =n, 2 =logn and &2 =loglogn, n> 3.
On the other hand, in order to consider probabilities of the type
P(S, > t¥,(log log ¥3)), P(S, >t¥,(log ¥2f") or other ones, one
can find an appropriate increasing and positive function f,(x) which is
continuous and has a continuous derivative f,’(x) for all x = 0, and f,(0) =0,
f.(n) =t log log %2 or f,(n) = t log %2, respectively, and then use Theorem 2
with such a function. At the same time we must, as we have seen, find an
appropriate function h(n), which will also depend on 2.

One can also note that Theorem 2 may be useful in the study of “strong
limit laws” (for example, such as the law of the iterated logarithm) for
nonidentically distributed random variables. Namely, let us consider a posi-
tive function f(x) which has a positive and continuous derivative f'(x). Let
us put f,(x) =(a+1)f(x). Then

P(lim sup |S,|/Fof (n) =a) =1
n—aoo
iff, for every 1 >0, P(N,(t) < w0) =1, and, for every t <0, P(N,(f) = o)
= 1, where

Na() = 3 1054> Fi0n).

" It is obvious that if & is a positive and nondecreasing function such that
h(x) > o0 as x —oc and Eh(N(t)) < oo, then lim sup |S,|/&.f (n) < a. By

n—*aoo

the monotone convergence theorem, we get

ER(N,(0) = im EA(N,(9), where N,@)= 3 I(Sd = Zfi(K).
k=1

‘n—0

Furthermore, if by definition h(0) = Ng4(1) = 0, then

lim ER(Nu(0) = lim ¥ E(h(N,(0)=h(N,_ V(S >S4, (1)

m o mo-x op=1

>3 min (h(R)—h(k=1)P(S) > Fuf,(m).

n=11<k<n

On the other hand, by the same way we get

Eh(N (1) < f max {h(k)—h(k—1)} P(S, > S (n).

n=11<k<n

Thus we have proved the following
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THEOREM 3. Assume that there exist functions hy, and h, such that for every
nzl ‘

hy(n) < min [h(K)—h(k—1)] < max [h(k)—h(k—1)]< hy(n),

1<k<n 1<k<n
where h is a given nondecreasing and pqsitive function. Then
fl hy(m) P(S,] = y,,fﬂ(n)) <0 implies Eh(Nm(t))‘< 0,
and |
. i hy(m) P(IS,| = Znfi(n) =0  implies Eh(N4(1)) = co. .
Thus, for example, putting h(n) = (lég log n)*, or hv(n) = ny(log n, for n

>3andsomea, f>0,y>1h(n)=1,n=1, 2 and using Theorem 3 we get

oo

Y (log log n*~* P(IS,| = &, fi(n))/n log n = oo
n=3
implies ,.
E (log log N (t))" = oo,
and |
Y w~t(log nf P(S,l = Fufi(n) < o0
n=3 o o .
implies ‘

E {N%,(1)(log N, (1)} < .

Of course, sufficient conditions for the convergence of these series are
given in Theorem.2 and in Theorem 4 below. . _

Let us assume that E|X,|?*® = f2*% < o0, n = 1, for some fixed s > 0. Let

B3+s — Z ﬂ’%+s’ Ls" — Bi+s/y3+s’_ Ls:: - B'2‘+s*/yz+s*,
k=1 :

where s* = min (1, s), and let
L(n,s,&)= Y E|IX))**I(X,| > e&,)/B}**, log, x = max (0, log x).
k=1

The following theorem is a consequence of the results presented in [12],
combined with Theorem 2.

THEOREM 4. Assume that

S0, fo =Y LyL{n, s, £, (m)h(mfi™2*(n) < co.
n=1 i
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() If £2(m) > 25 (1+5) log,. (1/L) and

Sy(5. S0 = 3 Ef~22%9 () h(n) < oo,

n=1

then .
|4 (h, f)—F(h, f)l < C(Sy(s, £, B)+5S3(s, £, h)).
(i) If f2(n) < 2s™'(1+s)log, (1/B,) and

Sa(s, fi, B) = illf:h(n)exp l|—(2+25—s*)f,2(n)/4(1+s)} < 00,

n=1

14w (h, £)—F (b, f)l < C(Sy (s, i, )+ S3(s, f,, b))

Let us note that from Theorem 4 we immediately obtain the following

then

‘COROLLARY. Suppose that X,, n > 1, are independent random variables with
EX,=0, L, < Cn™ "2 L¥ < Cn™*2 n > 1, for some positive constants s > 0
and C > 0. Then

lim (0% 3w P(S,| > 17,1 = Cyr 0 +1)

t—+0+ n=1

Jor every o, s >0, r > 0, such that (r+1)/2+s)— s/2(2+s) <a<(r+1)A2+s).

3. The rate of convergence in the random SLLN’s. Let us put
N"

’ Ny .
Sv= % X Mi= Yol

where {N,,, n > 1} is a sequence of positive integer-valued random variables
not necessarily 1ndependent of {X,,n>1}.
Define

Zo(t, o)=Y PISy|>tM}*2), t>0,0>0,

n=1

H()= Y P(M2—A%% > 1Y),

n=1

where l is a positive random variable such that, for some 0 <a<b < w0,
Pa<igsb =1 . .

ProrosiTION. Let {X,, n> 1} be a sequence of independent random vari-
ables with EX, =0, EXk =07 <0, k> 1, and for some 0 <a < 1/2

(14) lim limsup e Y (1412 ) e =,

K- w t—0 n>ki— /2
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(15) lim limsup t'# ) @(—tF2) =0

. K—w =0 n>Kr_'1/’

(16) lim lim sup = Y Z P(X, > t¥1+%) =
L =

where B, =max {k: ¥ < (b+1) %}
If S,/%,3 N(0, 1), then
lim inf tY%[Z_, (¢, )+ H(§)] > lim inf F(a, , b)t'%,
t-0

t—0

and
lim sup 1'% [Z (t, o) — H ()] < lim sup t'* F (a, t, a),

t—0 t—0

where 0 <a < b < are given constants such that P(a<2A<b)=1 and

Fla,t,x)=2Y &(—tx*F%).

n=1
From our Proposition we easily get the following
THEOREM 5. Let {X,, n> 1} be a sequence of independent and identically
distributed random variables with EX, =0 and EX2 =1, and let {N,,n> 1}

be a sequence of positive integer-valued random variables such Ihar for every
t>0

H(t)= )Y P(N,—ni| = tn) < w0,
n=1

where A is a random varlable Iffor some 0 <a<b<oo, Pa<isb =1,
and, for some o> 0,
lim Lim sup E(1~2nz),n'a(1+2r:t)EIX'1|4-/(1+2az) I(IXII > Kt‘— 1/2a) = 0,

Koo -0
then
lim sup [ Z P(|Sx,| = tN;>*)—H(1)] < Ca,

t—0 n=

lim inf ¢/ Z P(Sy, > tN””")-l—H(t)] C,/b,

t—=0

lim t'/* Z P(S,| = m!?*%) = C
t—0 n=1
Note that our Proposition, even in the case P(N,=n) =1, n> 1, gives
a generalization of the main result of Chen [3]. Furthermore, Theorem 5




Strong law of large numbers 109

presents an extension of the main results of Szynal [15], Sirazdinov, Gafurov
and Komekov [14].

Proof of Proposition. Let us put a,(t) —(a-—t)y’ b,(t) = (b+1) 72,
I, =[IM2-A%% <t52]. Ther_x we have

oo

A7) X P(Sw, > tM, b2(2), I,(2))

n=1

<Z (o)< Z P(ISNJ>tM,,a";,(r),I )+ H(1).

On the other hand by the random central 11m1t theorem glven in [5], we
have

4, —sup |P (SN, < xM,)— qﬁ(x)|—>0 as n— 0.

Let, for every t > 0, ny(tf) be such a positive integer that ny(f) - co and
t' ™ ny () > 0 as t —» 0. Then, for every positive number K, we get

(18) M Y |P(ISyl > tM, a2 () — 20 (— 1} (1))

n<kt~ la
no(H—1 K~ 1/a
<af[ 3 4+ T 4]

A=ngl)

< 4t ng (6)+ 2617 (Kt~ 1% —no (1)) max A4, -0 ast-»0.
no()Sk<kr~ 1/

Furthermoré, for everf_ O0<e < 1, we obtain
(19 IK,t,q)=t" 3  P(Sy|>tM,ay(t), 1,(2)

n>Kt™ 1/1
<ty PS> tsa,,’“"(t))

+etl Y P( max |S,—S, | >(1—¢)ta)* (1)),

n>ki~ s EnSkSPy

where a, = min {k: ¥? > a,(?)} and B, =max {(k: ¥t <b,(0)}.
By the results of Fuk [7] (Corollary 3 with f = a = 1/2, x = te(a,(t))'/**%,
yi=yi=..=y=ax/2, Bl =C,y = F?) we get

P(IS,,| > te(a, (1)) < Z P(X,) > at&(a"(t))1’2+“/2)+
k=1

+2/[1+ar®e* (a, (1) **/4F2 )"+ 2 exp {—12 &2 (a, (1)) *2*/8e* 2 }.

On the other hand, from the results of Fuk [7] (Corollary 3 with g, a, y,
=...=y in it as in above and x = (1—g)t(a,())'**%) or by the result of
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Borovkov [2], we obtain
P( max [S,—S, | > (1—g)(a,(1)"/**")

o, <k<p,
S < Y P(X = a(l—e)ta)?(r)/2)+

+2/[1+ar*(1— 2)a1 ”"(t)/4(b—a+2t) Sy
+2exp {—rz(l e?)al*?(1)/8e*(b—a+21) &2
Thus by (19) and the deﬁmtron of a,(t) and b .(1), for ¢ = 1/2, we have

(20) I(K, L, a) < Ctlla Z Z P(‘Xkl » (a__ )1/2+a 301 +2a/4)

a>kt—l/a k=1

+Cetr 3 [+ (@—0)'* 2 Foflb—a+20)] 1+

n>Ke~ /2

+Ct'tr N [14+2(a—t) P i)y

n>K~ 1/

+Ct* Y exp{—1*(a—0)'T 2 S 32e%) +

n>Kt~ l/a

+Ct Y exp{—r2 Fi(a—1t)'*?*/32e* (b—a+2t)).
n»,>Kt—1l"l ’
But, by our assumptions, a and b are given positive constants and b—a
= 0. Hence from (14)-(20) it is not difficult to obtain the first part of our
Proposition. The second one follows in a similar way.
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