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.RATE OF CONVERGENCE 
IN THE STRONG LAW OF LARGE NUMBERS 

Abstrrt. Let {X,,, n 2 1)  be a sequence of independent random 
variables such that EX, = 0, EX: = 0; < GO, n 3 1. For each n 3 1 
let 

4 n 

sR= xk, p:= 0:; 

k r  1 k = 1  

then, under some additional conditions, S j9:" 4 0 as n + m with 
probability 1 for any a > 0. 

I The main purpose of this paper is to give the order of rnagni- 
tude of 

as t -r 0'. The rate of convergence in the random strong law of large 
numbers is established too. 

I. lntradmtiom. Let {X,, n b 1) be a sequence of independent random 
variables with EX, = 0 and E Z  = crf < co, n 3 1. Define 

It is well known that if 9;- m and 9~+l/9~-r 1 as n - r  m, then 
S J 9 ~ t 2 a  + 0 (as n + ao) with probability 1 for any a > 0 provided that for 
every E > 0 

f P ( I X . I >  e ~ : + ~ ~ )  < m 
n= 1 

as is necessary (cf. [6J, [16]). 
Many authors (cf. [13]-[15], [17], [3]) have studied the rate of conver- 

gence in the strong law of large numbers (SLLN) under the assumption that 
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EX: = 1, n 3 1. The most general result in this direction belongs to Chen 
[3] who proved the following 

THEOREM 1, Suppose that {X,, n 2 I )  is a sequence of independent random 
variabIes such that EX,, = 0, EX: = 1, n 3 1. Jf t h r e  exists a function g such 
thar 

(1) g(x) is nondecreasing on the interval (0, co), is even on (- KJ, a), and 
g(x)+ cO as x--, m; 

(2)  the function x/g ( x )  does not decrease on (O, GO);'' 

n 

13) lim sup n- l .EX: g (x,) < CIC ; 
n+m k= 1 

(4)  for some constant a 
m 

1 (log n)/n2" g (nilZ) < oo (0 < a < 1/21 ; 
n= 1 

then we have 

where 

This result extends to the nonidentically distributed case the theorem of 
Wu [17] and gives a deeper understanding of the SLLNs. 

Recently Ahmad [I] has presented a random version of Theorem 1. 
Namely he proved that if IN,,, n 1) is a sequence of positive integer-valued 
random variables not necessarily independent of (X,, n 2 I}, then, under 
some additional assumptions on (X,, n 2 I}, (N,, n 2 1) and the function g, 

w 

(6) lim t l fa  P(ISNmI > tn1/'+3 = .1112" C,, 
t o  # # = I  

where A is such a positive constant that NJn+ il with probability 1 as 
n + m .  

It should be mentioned here that the proof of Lemma 4 given in [I], 
based on "the argument of Landers and Rogge [S]", has a gap. In order to 
prove Lemma 4 [IJ, using the ideas of Landers and Rogge [8], one needs 
extensions of Lemmas 7 and 8, given in [8], for any sequence of independent 
random variables fX,, n 2 1) with EX, = 0 and EX: = 1, n 2 1. Lemma 8 
[8] can be extended to this case, which in fact is done in the proof of Lemma 
4 [I]. But the extension of Lemma 7 [a], to the nonstationary case of (X,, n 
2 I}, by the argument of Landers and Rogge, needs the inequality ( * )  18, p. 
2811, which, in general, in this case is incorrect. Taking into account Lemma 
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1 or Lemma 61 [ i l l ,  one can easily notice that the proof of Lemma 4 
[I), based on the argument of Landers and Rogge [B], requires the following 
assumption: there exist positive constants b ,  and b, such that for every n, k, 
n > k > l ,  

Let us observe that if {X,, n 3 1) is a sequence of symmetrical random 
variables, then (**)  holds. On the other hand, if {X,, n 2 1) satisfies the 
central limit theorem, then 

lim P(S,  < 0) = 1/2 = lim P(Sn 2 O), 
n + m  n-tm 

which proves that if, in addition, {X,, n 2 1) is staionary, then ( k * )  holds 
too, and this is just the case considered in [a] and, therefore, in [I]. 

Unfortunately, in Lemma 1 El01 the assumption ( ** ) is omitted too but 
in the proof we used it (cf. [lO], p. 233, lines 5.and 6). 

We would also like to mention that Lemma 3 in El] does not follow from 
Petrov's Theorem 10 191, because, under the assumed assumptions, the 
variance of ~ , n / { r r i l ) ' / ~  need not be equal to one (as is required In Theorem 
10 [ 9 ] )  even if N,, ,  rt 3 1, are assumed to be independent of [X,,, n 2 1;. 

Let h be a finite and positive function defined on [O, a). Assume that h 
has a continuous derivative h'(x) for all x 2 0. Furthermore, let, for every 
t > 0, J; be an increasing and positive function which has a continuous 
derivative f,'(x) for all x 2 0. Let us put 

n 

where d denotes the standard normal distribution function. 
The main purpose of this paper is to study the order of magnitude of 

A, (h , f , )  and F(h,S,)  as r O+. The results obtained generalize the theorems 
given by Chen [3], Wu [17], Severo and Slivka 1131, Szynal 1151, Ahmad 
111, Sirazdinov Cafurov and Komekov [14]. 

2. The rate of convergence in the SLLN's. Let G be the class of functions 
satisfying (1) and (2). For a given function g of the set G let 
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THEOREM 2. Suppose that 
m 

h(n)  n-' < a, f i r  s o m  number r 2 2. 
n= 1 

If rheve exisrs a funcrion g in G such that b,(g) + 0 as n -, co and 

then 

IA*~hYf , ) - -~(hYi)I  G C ( l +  T(hYf, ,  g))  

provided F ( h , L )  < ao, where C is same positive constant independenr of the 
function f;. 

Proof .  At first let us observe that, by our assumptions and the central 
limit theorem, F ( h ,  f,) < co implies A ,  (h,f,) < a,. Thus, taking into account 
that F ( h , f , )  < oo, we get 

Let us put 

by Theorem 5 [9] we have 

An = sup A&) < Cb,(g). 
X 

Hereafter C denotes a positive constant (independent of the function A), 
and the same symbol may be used for different constants. Choose an integer 
no such that, for every n 2 no, A, < e-'12. This can always be aone because 
of b, (g) -+ 0 as n  -t oo . Now we get 

"0 

(9) C h(n)  l ( l s n f  > Yd (n))-  2 9  (-f,(n))I g 2 '('1 C 
n= 1 n= 1 

and 

(10)  Ip(lsnl > ~ n f r ( n ) ) - 2 @ ( - f ; ( n ) ) I  G ~ , ( f t ( n ) ) + ~ ~ ( - . & ( n ) ) .  

On the other hand, by Theorem 11 191, for every n 2 no 

(1 1) A,(x) < C A ,  log A; ' / ( I  + x2). 

Hence, putting A.  = (n: A ,  G n-') ,  AI = {n 2 no: A, > n-'1, where the 
number r 2 2 is given in the assumptions of Theorem 5 we obtain 
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and, by (Il), 

Thus Theorem 2 follows from (8)-(13). 
Suppose l; (n) + m as n + m . Let G, (XI = h (x) @ (-A (x)). Then, by the 

Euler-Maclaurin sum formula [4], p. 122, we have 

where P(x) = [x] - x + 112 and [x] denotes the integral part of x. Thus, by 
the monotone convergence theorem, 

provided Gt (4 = h(m) @(-A (m)) + 0 as m + a. But - 1/2 < ~ ( x )  6 112. 
Hence 

X 

Define H (x) = .f h (u) du, x 2 0, H (m) = lim H (x). Then 
0 x-w 

where N is a standard normal random variable and f,-l is the inverse of j;. 
Furthermore 

m 

j ~d~ , ( x ) i  G ~ I ~ ) I P ( J ; - ~ ( I N I )  > x p x +  
0 0 

Thuq taking into account the relations given above, we obtain 
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Let us observe that if, e.g., f , (x )  = tP, k ( x )  = 1, x 3 0, a, t > 0, then 
H ( x )  = x and, in this case, we get 

E ~ ~ l " " / t ' l ~ -  1 Q F(A,f;) < E INil'"/t'/". 

Thus, by Theorem 2, 
Q 

Iim t'l" P(IS,I > tY, na) = C, 
t + O +  , ,=I  

for every 0 < a < 1/2 provided 
9) 

1 b,(g) log n/n2' < x. 

This, in the special case, Sp,2 = n, b, (g) = ( n l t 2 ) ,  n 2 1, gives the main 
result of Chen [3]. On the other hand, by Theorem 2 and the relations given 
above, one can obtain much more general results. For example, putting h ( x )  
= (logx)~/xy, f; (x) = t (log x)", x 2 1, h (XI = f, (x) = 0, 0 < x < 1, by 
Theorem 2 we get 

m 

lim t(l+"" C (log ny ~(1S.l > t.Yn(iog nr)/ny = I(y, u, #I) 
t -rO+ n= 1 

for every u > 0, 8, y 2 0 such that 1 + b  2 2a, and 
03 

C b,(g)(log n)'+k2an-Y < co, 
n= 1 

where 

I(y, or, P)  = 0, +m, or ClrlcB+l,/(B+l) for y > 1, Y < 1 or Y = 1, 

respectively. This assertion seems to be unknown even in the case where X,, 
n 2 1, are independent and identically distributed. As another consequence of 
Theorem 2 or the statement given above, we get 

Q 

lirn 6' '"1' (log log n)" (ISn[ 3 t.Y,, (log log n)")/ny(log n)? 
t-+O+ n =  3 

= I@,  Y ,  a, B) 
for every or > 0, S, 8, y > 0 such that (1 +/3) 2 20; and 

m 

bn(g)(log log n)@-" (log n)'-' n- < ao, 
n= 3 

where I(S, y, a, B) = 0 or + co for y > 1 or y < 1, respectively, and 
i(6,  1, a, b) = 0, + co or Cal(l,p,/(P+ 1) for 6 > 1, 6 < 1 or 6 = 1, res- 
pectively. 

Let us observe that the consequences of Theorem 2 given above can also 
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be considered as the study of asymptotic behaviour (as r 4 0+ and n x) of 
the probabilities P(lS,l > t Y'i +2a) .  In fact, the assertions obtained have 
covered the following cases: 9'; = n, 9," = log n and 9; = log log n, n 2. 3. 
On the other hand, in order to consider probabilities of the type 
P ((S,J > r.Y',,(log log .Y i)'), P (IS,[ > t.Y,, (log' .Y';)") or other ones, one 
can find an appropriate increasing and positive function f , ( x )  which is 
continuous and has a continuous derivative f , ' ( .~ )  for all x 2 0, and f, (0) = 0, 

f ; ( r a )  = t log log 9: orf,(n) = t log Yi ,  respectively, and then use Theorem 2 
with such a function. At the same time we must, as we have seen, find an 
appropriate function h ( n ) ,  which will also depend on 9:. 

One can also note that Theorem 2 may be useful in the study of "strong 
limit laws" (for example, such as the law of the iterated logarithm) for 
nonidentically distributed random variables, Namely, let us consider a posi- 
tive function f (x) which has a positive and continuous derivative f ' ( x ) .  Let 
us put J;(x)  = ( a + r ) f ( x ) .  Then 

P(1im sup IS,I/Y',J(n) = a) = 1 
A + r n  

iff, for every r > 0, P ( N ,  ( t )  < m) = 1, and, for every r < 0, p ( N ,  ( I )  = m) 
= 1, where 

It is obvious that if h is a positive and nondecreasing function such that 
h(x)  i cc as x -+ x and Eh(N,(t)) < oo, then lim sup JS,I/Ynf (n) 6 a. By 

n+m 

I 
the monotone convergence theorem, we get 

~ h ( ~ , ( t ) ) = l i m  Eh(~,( t ) ) ,  where N.( t )=  f: I(IS,I>Y~L(~)) .  
n-m k =  1 

Furthermore, if by definition h(0) = N , ( t )  = 0, then 

m 

2 C min (h(k)- h ( k -  1)) P(IS,I 3 Y ,J (n ) ) .  
n =  1 I < k C n  

On the other hand, by the same way we get 

Thus we have proved the following 
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THEOREM 3. Assume that there exist functions hl and h, such that for every 
n & l  

h, (n) < min [h(k) - h ( k -  l)] 4 max C W ) -  hIk - 111 G h2 (n),  
l $ k d n  1 Skdn 

where h is a given nondecreasing and positive function. Then 
m 

kz In) P(ISnl 2 Yd (n)) < m implies E ~ ( N ,  ( t ) )  < m ,  
nP 1 

and 
m 

CRl(n)P(ISn13YJ(n))=m implies E ~ ( N , ( ~ ) ) = c c .  
n= 1 

Thus, fox example, putting h (n) = (log log n)", or k (n) = ny (Iog ny, for n 
2 3 and some a, #? > 0, y 2 1 h(n) = 1, n = 1, 2, and using Theorem 3 we get 

03 

(log log ny-' P(IS,I 2 Y,,f,(n))/u log n = co 
it= 3 

implies 

I E (log log N ,  (t))" = a,, 

I and 
m 

nY- ' (log n)@ P(IS,I 3 Y A  (n)) < co 
I n= 3 
! 
I implies 

E {NY,Ct)(log Nm(t))B} < m. 

Of course, sufficient conditions for the convergence of these series are 
given in Theorem 2 and in Theorem 4 below. 

8 8 

Let us assume that EIx,~~+" =?+" < CO, n 2 1, for some fixed s > 0. Let 

I where s* = min (1, s), and let 
n 

L(n, s, E) = E IXk12+s1(I~kt > E Y ~ ) / B , ~ + ~ ,  log+ x = max (0, log x). 
k =  1 

The following theorem is a consequence of the results presented in 1121, 
combined with Theorem 2. 

THEOREM 4. Assume that 
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(i) If J2 (n) 3 2s- (1 + s )  log+ (l/En) and 

then 

6;) r f  A2 (n) < 2s- (1 -t s) log, ( I / & )  and 

Let us note that from Theorem 4 we immediately obtain the following 

COROLLARY. Suppxe that X,, n 2 1, are independent random uariables with 
EXn = 0, En < cn-'12, Lz < ~n-"*I2, n 3 1 ,  for some posirioe constants s > 0 
and C > 0. Then 

for every a, s > 0, r 3 0, such that (r + 1)/(2 + s )  - s/2 ( 2  f s)  < cx < ( r  + 1)/(2 + 3). 

3. The rate of convergenee in the random SLLN's. Let us put 
Nn Nn 

where {N,, n 2 1 )  is a sequence of positive integer -valued random variables 
not necessarily independent of (X,, n 2 1). 

Define 

where 1 is a positive random variable such that, for some 0 < a < b < m, 
P(a  Q l d b) = 1 .  

ho~osrrro~. Let {X, ,  n 2 1 )  be a sequence of independent random vari- 
ables with EX, = 0, EX: = a: < co, k 2 1, and for some 0 <'a d 1/2 

(14) lim lim sup tl/" 1 ( 1  + t 2  * ) - I t u  = 
K + m  1-0 

0, 
n >KI- l l a  
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(15) lim lim sup r ' la C @( - tYi") 0, 
K + m  r+O ,,>Kt- l t x  

Pn 

(16) lim lim sup r l / "  1 P(IX,I 3 t9': "") = 0,  
K - w  t - 0  , , , ~ ~ - l / a  k = l  

where 8, = max {k: 9: < (6 + t )  9;). 

If S,/yn 9 N (0, I ) ,  then 

lirn inf t1Ia [ Z ,  (t, or)+H(t)] 3 lim inf F ( a ,  t, b) tlla, 
t+D 1-0 

and 

lirn sup t''"[Z,(t, u)-H(t )]  < lirn sup tll 'F(a, t ,  a), 
t -0 t 4 0  

where 0 < a < b < x are given constants such that P ( a  < L < 6) = 1 and 
41 

F ( a ,  t, x) = 2 @(- txa  9."). 
n= 1 

From our Proposition we easily get the following 

THEOREM 5 .  Let {X,, n 2 1 )  be a sequence of independent and identically 
distributed random variables with E X ,  = 0 and EX: = 1, and let ( N , ,  n 2 I )  
be a sequence of positive ittteger-valued randarn variables such [hat fur every 
r > O  

m 

H ( t )  = P((N,-nL1 2 tn) < co, 
n= 1 

where I is a random variable. i f  for some 0 < a < b < oo, P(a < L < b) = 1,  
and, for some oc: > 0, 

' 

rhen - 
lim sup t"" [ P(tSNn.,l 2 t ~ ; ~ ~ " )  - H (t)] $ Ca/a, 

t  -0 n= 1 

m 

lim inf t'la [ P(ISNnI 2 t N ; l 2 + " ) + ~ ( t ) ]  2 CJb,  
t  -0 n= 1 

m 

lim tl/" P(IS,I 2 tn112+a) = C,. 
t - 0  ,f= 1 

Note that our Proposition, even in the case P ( N ,  = n) = I ,  n 2 1, gives 
a generalization of the main result of Chen [3]. Furthermore, Theorem 5 
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presents an extension of the main results of Szynal [15], Sirazdinov, Gafurov 
and Komekov [14]. 

Proof of Proposi t ion.  Let us put a,(tj = ( a - t ) ~ : ,  b,(t) = (b+t)Y%, 
I ,, (t)  = [ ( M i  - R98,2( < tz] . Then we have 

On the other hand, by the random central limit theorem given in 151, we 
I have 

d,=supIP(S,,<xMd-@(x)l-,O a s n + c g .  
X 

Let, for every t > 0, no ( t )  be such a positive integer that no ( t )  + co and 
tlla n, ( t )  -, 0 as t -, 0. Then, for every positive number K, we get 

no(')- 1 ~ t -  lla 

6 2t11a [ C A,+ C A,] 
n =  1 R= no( f )  

< 4t11" n,(t)+2t1ia(Kt-'ta- n,(t)) max d k + O  a s t - + 0 .  
n o ( t ) d k 4 K r -  lla 

Furthermore, for every 0 < E < 1, we obtain 

+ t1Ia C P( max ISk - Sunl > (1 - E )  ta:l2+" (t)), 
=,gr- lla a,4kdBn 

I 

where a, = min (k: 9'; 2 a,(t)> and 8, = max { k :  9: < b,,(t)] .  
By the results of Fuk [7] (Corollary 3 with P = a = 1/2, x = t~ (an(t))lI2+', 

y1 = y2 = . . . = y = ax/& B;f = C2,Y = 9';) we get 
an 

P (ls.~ > te (an(t))u2+a) b P (141 2 a t ~ ( a ~ ( t ) ) ~ ~ ' + ~ / 2 ) +  
k =  1 

+ 241 + at2 E' (a, (t))1+2a/49:n] ' la + 2 exp (- t2 (a,, (t))' ""/8e2 Yz,). 

On the other hand, from the results of Fuk [7] (Corollary 3 with B, a, y, 
= . . . = y in it as in above and x = (1  -E) t (an(t))lt2+") or by the result of 
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Borovkov [2], we obtain 

P (  max 1% -S,,,] 3 (1 - ~ ) ( a , , ( t ) ) ' ~ ~ +  ') 
a,dk<g,  

fin 

. < P(lXkl 3 u(1 - E )  ta.ll2+"(t)/2)+ 
k=u,  

$ 2  exp {-t2(l-~2)a~t2Q(r~8e2(b-a+2r).~~). 

Thus, by (19) and the definition of a,(t) and b,(t), for E = 1/2, we have 
fin 

(20) I ( K ,  t ,  u)  < ctl/" C C P((X,I 3 at (a- t)'/'+" Y1 
, , ,K,- I / u  k =  1 

n /4)+ 

+ Ctllm exp (- t2 (a  - t)' c / 3 2 e 2 )  + 
n>Kt - l ka  

+ Ctlla exp ( - t2 LFP (a - t)' + 2a/32e2 (b  - a + 2t)). 
, > K t -  l la 

But, by our assumptions, a and b are given positive constants and b-a 
2 0. Hence from (14)-(20) it is not difficult to obtain the first part of our 
Proposition. The second one follows in a similar way. 

Acknowledgment. The authors are very grateful to the referees for their 
valuable remarks and comments improving the previous version of this 
paper. 
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