LIMIT DISTRIBUTIONS IN GENERALIZED CONVOLUTION ALGEBRAS

BY

ZBIGNIEW J. JUREK (Wroceaw)

Abstract

In this paper we prove theorems on the accompanying laws and convergence of infinitely decomposable measures in a generalized convolution algebra, introduced by K. Urbanik [4]. These results are used to investigate the classes of s-stable and s -semi-stable measures introduced in paper [2], Chapter III.

1. Introduction. Let \mathscr{P} be the class of all probability measures defined on Borel subsets of non-negative half-line. By $E_{a}(a \geqslant 0)$ we shall denote the probability measure concentrated at the point a. For any positive number a we define a transformation T_{a} from \mathscr{P} onto itself by means of the formula $\left(T_{a} P\right)(B)=P\left(a^{-1} B\right)$, where $P \in \mathscr{P}, B$ is a Borel set and $a^{-1} B=\left\{a^{-1} x: x \in B\right\}$. Further, the transformation T_{0} is defined by assuming $T_{0} P=E_{0}$ for all $P \in \mathscr{P}$.

We say that a sequence P_{1}, P_{2}, \ldots of probability measures is weakly. convergent to a probability measure P, in symbols $P_{n} \rightarrow P$, if for every bounded continuous function f the equation

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} f(x) P_{n}(d x)=\int_{0}^{\infty} f(x) P(d x)
$$

holds.
A commutative and associative \mathscr{P}-valued binary operation \circ defined on \mathscr{P} is called a generalized convolution if it satisfies the following conditions:
(i) $E_{0} \circ P=P$ for all $P \in \mathscr{P}$;
(ii) $(a P+b Q) \circ R=a(P \circ R)+b(Q \circ R)$, whenever $P, Q, R \in \mathscr{P}$ and $a \geqslant 0$, $b \geqslant 0, a+b=1$;
(iii) $\left(T_{a} P\right) \circ\left(T_{a} Q\right)=T_{a}(P \circ Q)$;
(iv) if $P_{n} \rightarrow P$, then $P_{n} \circ Q \rightarrow P \circ Q$ for all $Q \in \mathscr{P}$;
(v) there exists a sequence c_{1}, c_{2}, \ldots of positive numbers such that the sequence $T_{c_{n}} E_{1}^{o n}$ weakly converges to a measure Q different from E_{0}.

The power $E_{a}^{\circ n}$ is taken in the sense of the operation \circ, i.e. $E_{a}^{\circ 1}=E_{a}$, $E_{a}^{\circ(n+1)}=E_{a}^{\circ n} \circ E_{a}(n=1,2, \ldots)$.

The concept of generalized convolution has been introduced and examined by Professor K. Urbanik. For the terminology and notation used here, see [4].

One of the most important example of generalized convolution is given in Kingman's work [3] (see also [4], p. 218). His example is closely connected with spherically symmetric random walks in Euclidean space.

The class \mathscr{P} with a generalized convolution \circ will be called a generalized convolution algebra and denoted by (\mathscr{P}, o). Algebras admitting a non-trivial homomorphism into the real field are called regular. We say that an algebra (\mathscr{P}, \circ) admits a characteristic function if there exists one-to-one correspondence $P \leftrightarrow \Phi_{P}$ between probability measures P from \mathscr{P} and real-valued functions Φ_{P} defined on the non-negative half-line such that $\Phi_{a P+b Q}$ $=a \Phi_{P}+b \Phi_{Q} \quad(a \geqslant 0, b \geqslant 0, a+b=1), \quad \Phi_{P_{\circ Q}}=\Phi_{P} \cdot \Phi_{Q}, \quad \Phi_{T_{a} P}(t)=\Phi_{P}(a t)$ $(a \geqslant 0, \mathrm{t} \geqslant 0)$, and the uniform convergence in every finite interval of $\Phi_{P_{n}}$ is equivalent to the weak convergence of P_{n}. The function Φ_{P} is called the characteristic function of the probability measure P in algebra ($\mathscr{P}, 0$). It is proved in [4], Theorem 6, that an algebra admits a characteristic function if and only if it is regular. Moreover, each characteristic function is an integral transform

$$
\begin{equation*}
\Phi_{P}(t)=\int_{0}^{\infty} \Omega(t x) P(d x) \tag{1}
\end{equation*}
$$

where the kernel Ω satisfies the inequality $\Omega(x)<1$ in a neighbourhood of the origin and

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{1-\Omega(t x)}{1-\Omega(x)}=t^{x} \tag{2}
\end{equation*}
$$

uniformly in every finite interval. The positive constant χ does not depend upon a choice of characteristic function and is called a characteristic exponent of the algebra in question. Moreover, there exists a probability measure M called a characteristic measure of the algebra for which

$$
\begin{equation*}
\Phi_{M}(t)=\exp \left(-t^{\chi}\right) \tag{3}
\end{equation*}
$$

(see [4], Theorem 7).
Troughout this paper we assume that the algebra (\mathscr{P}, \circ) is regular, and Φ_{P} is a fixed characteristic function in (\mathscr{P}, \circ).
2. Infinitely decomposable measures. This section is devoted to the study of the accompanying laws and convergence of infinitely decomposable measures. Let us recall that a measure $P \in \mathscr{P}$ is said to be infinitely decomposable if for every positive integer n there exists a measure $P_{n} \in \mathscr{P}$ such that P
$=P_{n}^{\circ n}$. The class of infinitely decomposable measures coincides with the class of limit distributions for sequences of the form

$$
P_{n 1} \circ P_{n 2} \circ \ldots \circ P_{n k_{n}}
$$

where $P_{n k}\left(k=1,2, \ldots, k_{n} ; n=1,2, \ldots\right)$ are uniformly infinitesimal, i.e., for any positive number ε,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \max _{1 \leqslant k \leqslant k_{n}} P_{n k}(x: x \geqslant \varepsilon)=0 \tag{4}
\end{equation*}
$$

(see [4], Theorem 12). Moreover, one can prove an analogue of the LévyKhintchine representation for the characteristic functions of infinitely decomposable measures. Namely, the following theorem holds: a function Φ is a characteristic function of an infinitely decomposable measure if and only if it is of the form

$$
\begin{equation*}
\Phi(t)=\exp \int_{0}^{\infty} \frac{\Omega(t x)-1}{\omega(x)} m(d x) \tag{5}
\end{equation*}
$$

where m is finite Borel measure on the non-negative half-line,

$$
\omega(x)= \begin{cases}1-\Omega(x) & \text { if } 0 \leqslant x \leqslant x_{0} \tag{6}\\ 1-\Omega\left(x_{0}\right) & \text { if } x>x_{0}\end{cases}
$$

and x_{0} is a positive fixed number such that $\Omega(x)<1$ whenever $0<x \leqslant x_{0}$. Always there exists such a number x_{0} (see [4], Theorem 5). Further, representation (5) is unique, i.e. the function Φ determines the measure m (see [5], Theorem 1).

For any finite measure m on the non-negative half-line R^{+}we define the compound Poisson measure $e(m)$ in the algebra (\mathscr{P}, \circ) by the formula

$$
e(m)=e^{-m\left(R^{+}\right)} \sum_{k=0}^{\infty} \frac{m^{\circ k}}{k!},
$$

where the power $m^{\circ k}$ is taken in the sense of the operation \circ, and the measure m in the zero-power is equal E_{0}. It is easy to verify that

$$
\Phi_{e(m)}(t)=\exp \left[m\left(R^{+}\right)\left(\Phi_{m / m\left(R^{+}\right.},(t)-1\right)\right]
$$

Of course, the compound Poisson measures are infinitely decomposable.
Theorem 1 (Accompanying laws). Let $P_{n k}\left(k=1,2, \ldots, k_{n} ; n=1,2, \ldots\right.$) be uniformly infinitesimal probability measures and

$$
P_{n}=P_{n 1} \circ P_{n 2} \circ \ldots \circ P_{n k_{n}}, \quad Q_{n}=e\left(\sum_{k=1}^{k_{n}} P_{n k}\right)
$$

Then $P_{n} \rightarrow P$ if and only if $Q_{n} \rightarrow P$.

Proof. Let

$$
T_{n}=\frac{1}{k_{n}} \sum_{k=1}^{k_{n}} P_{n k}
$$

Then $T_{n} \in \mathscr{P}$ and

$$
\Phi_{Q_{n}}(t)=\exp k_{n}\left(\Phi_{T_{n}}(t)-1\right)=\exp \left[\sum_{k=1}^{k_{n}}\left(\Phi_{P_{n k}}(t)-1\right)\right], \quad \Phi_{P_{n}}(t)=\prod_{k=1}^{k_{n}} \Phi_{P_{n k}}(t)
$$

From the elementary inequality $|\log (1+x)-x| \leqslant \frac{1}{2}|x|^{2}$ for $x \rightarrow 0$, we have

$$
\begin{equation*}
\left|\sum_{k=1}^{k_{n}} \log \Phi_{P_{n k}}(t) / \sum_{k=1}^{k_{n}}\left(\Phi_{P_{n k}}(t)-1\right)^{-1}\right| \leqslant \frac{1}{2} \max _{1 \leqslant k \leqslant k_{n}}\left(1-\Phi_{P_{n k}}(t)\right) . \tag{7}
\end{equation*}
$$

Further, given a positive number $\varepsilon>0$ and a positive number t_{0}, there exists a positive number δ such that $1-\Omega(t x)<\varepsilon$ whenever $0 \leqslant x \leqslant \delta$ and $0 \leqslant t \leqslant t_{0}$. Hence, for any number t satisfying the inequality $0 \leqslant t \leqslant t_{0}$ and for any integer k satisfying the inequality $1 \leqslant k \leqslant k_{n}$, we get

$$
\begin{aligned}
0 \leqslant 1-\Phi_{P_{m k}}(t) & =\int_{0}^{\delta}(1-\Omega(t x)) P_{n k}(d x)+\int_{\delta}^{\infty}(1-\Omega(t x)) P_{n k}(d x) \\
& \leqslant \varepsilon+2 \max _{1 \leqslant k \leqslant k_{n}} P_{n k}(x: x \geqslant \delta)
\end{aligned}
$$

which, by (4), implies

$$
\max _{1 \leqslant k \leqslant k_{n}}\left(1-\Phi_{P_{n k}}(t)\right) \rightarrow 0
$$

uniformly in every finite interval. Hence and from (7) it follows that in order that $\log \Phi_{P_{n}}(t) \rightarrow \log \Phi_{P}(t)$ uniformly in every finite interval it is necessary and sufficient that $\log \Phi_{Q_{n}}(t) \rightarrow \log \Phi_{P}(t)$ uniformly in every finite interval. Thus the Theorem is proved.

Theorem 2. For the convergence of a sequence $\left\{P_{n}\right\}$ of infinitely decomposable measures to a limit P it is necessary and sufficient that, as $n \rightarrow \infty, m_{n}$ $\rightarrow m$, where the measures m_{n} and m are defined by formula (5) for P_{n} and P, respectively.

Proof. Necessity. At first, let us remark that the class of infinitely decomposable measures in (\mathscr{P}, \circ) is closed under weak limit (see [4], Theorem 11). Thus P is also infinitely decomposable. Further, let us introduce an auxiliary finite measure μ_{n} defined on R^{+}by

$$
\begin{equation*}
\mu_{n}(E)=\int_{E} g(x) m_{n}(d x) \tag{8}
\end{equation*}
$$

where E es a Borel subset of R^{+}and

$$
g(x)=\frac{1}{\omega(x)}\left(1-\exp \left(-x^{x}\right)\right) \int_{0}^{1}(1-\Omega(u x)) d u
$$

and x is the characteristic exponent of the algebra in question. The function g is positive for $x>0$ and bounded, which implies the finiteness of the measures μ_{n} (see [5], the proof of Theorem 1).

Further, in the same way as in the proof of Theorem 1 in [5], we get

$$
\int_{0}^{\infty} \exp \left(-t^{x} x^{x}\right) \mu_{n}(d x)=\int_{0}^{\infty} I_{n}\left(\left(t^{x}+1\right)^{1 / x} y\right) M(d y)-\int_{0}^{\infty} I_{n}(t y) M(d y)
$$

where

$$
I_{n}(t)=-\log \Phi_{P_{n}}(t)-\int_{0}^{1} \log \Phi_{P_{n}}(u) d u+\int_{0}^{1} \int_{0}^{\infty} \log \Phi_{P_{n}}(x)\left(E_{t} \circ E_{u}\right)(d x) d u .
$$

Hence it follows that the modified Laplace transforms of the measures μ_{n} tend to the modified Laplace transform of the measure μ such that

$$
\mu(E)=\int_{E} g(x) m(d x) .
$$

Hence we have $\mu_{n} \rightarrow \mu$.
Since the function g is positive for $x>0$, continuous, bounded and $\lim g(x)=0$ as $x \rightarrow 0$ from (8), we get

$$
\begin{equation*}
m_{n} \rightarrow m \tag{9}
\end{equation*}
$$

on every Borel subset of R^{+}separated from the origin. Further, let $0<a$ $<x_{0}$ be fixed. Of course

$$
\int_{0}^{\infty} \frac{1-\Omega(x)}{\omega(x)} m_{n}(d x) \rightarrow \int_{0}^{\infty} \frac{1-\Omega(x)}{\omega(x)} m(d x) \quad \text { as } n \rightarrow \infty
$$

Hence and from (6) there exists constant $c>0$ such that

$$
m_{n}([0, a])=\int_{0}^{a} \frac{1-\Omega(x)}{\omega(x)} m_{n}(d x) \leqslant c
$$

but this implies that the sequence $\left\{m_{n}\right\}$ is compact on $[0, a]$. Together with (9) we see that the sequence $\left\{m_{n}\right\}$ is compact on $[0, \infty)$. Since, for every $t \in R^{+}, \Phi_{P_{n}}(t) \rightarrow \Phi_{P}(t)$ and the spectral measure m in Levy-Khintchine representation (5) is unique, the sequence $\left\{m_{n}\right\}$ is weakly convergent to the measure m, and the necessity is proved.

Sufficiency. Since for any t the function $(\Omega(t x)-1) / \omega(x)$ is bounded and continuous on the half line $0 \leqslant x<\infty$, we get

$$
\lim _{n \rightarrow \infty} \int_{0}^{\infty} \frac{\Omega(t x)-1}{\omega(x)} m_{n}(d x)=\int_{0}^{\infty} \frac{\Omega(t x)-1}{\omega(x)} m(d x) .
$$

The proof will be complete if it be shown that the above convergence is uniformly in every finite interval. Let us remark that for every $\delta>0$ the measures v_{n} defined by

$$
v_{n}(B)=\int_{B \cap(\delta, \infty)} \frac{m_{n}(d x)}{\omega(x)},
$$

are weakly convergent to the measure v, where

$$
v(B)=\int_{B \cap(\delta, \infty)} \frac{m(d x)}{\omega(x)}
$$

and B is a Borel subset of R^{+}. Thus their characteristic functions are uniformly convergent in every finite interval. Hence

$$
\int_{\delta}^{\infty} \frac{\Omega(t x)-1}{\omega(x)} m_{n}(d x) \rightarrow \int_{\delta}^{\infty} \frac{\Omega(t x)-1}{\omega(x)} m(d x) .
$$

uniformly in every finite interval.
Further, let $\varepsilon>0$ be fixed. By (2) and (6) there exist $\eta=\eta(\varepsilon)>0$ such that

$$
\left|\frac{1-\Omega(t x)}{\omega(x)}-t^{x}\right| \leqslant \varepsilon
$$

for all $0 \leqslant x \leqslant \eta$ and all $a \leqslant t \leqslant b$, where $0 \leqslant a<b<\infty$. We may assume that the interval $[0, \eta]$ is a continuity set of the measure m. Then $m_{n}[0, \eta]$ $\rightarrow m[0, \eta]$ as $n \rightarrow \infty$ and there exists an $N=N(\varepsilon)$ such that $\mid m_{n}[0, \eta]-$ $-m[0, \eta] \mid \leqslant \varepsilon$ for $n \geqslant N$. Thus the two preceding inequalities show that

$$
\begin{aligned}
\left|\int_{0}^{\eta} \frac{1-\Omega(t x)}{\omega(x)} m_{n}(d x)-\int_{0}^{\eta} \frac{1-\Omega(t x)}{\omega(x)} m(d x)\right| & \leqslant\left(t^{x}+\varepsilon\right)\left|m_{n}[0, \eta]-m[0, \eta]\right| \\
& \leqslant\left(t^{x}+\varepsilon\right) \varepsilon
\end{aligned}
$$

for $n \geqslant N$ and all $t \in[a, b]$. Hence, as $n \rightarrow \infty$,

$$
\int_{0}^{\infty} \frac{\Omega(t x)-1}{\omega(x)} m_{n}(d x) \rightarrow \int_{0}^{\infty} \frac{\Omega(t x)-1}{\omega(x)} m(d x)
$$

uniformly in every finite interval, and the sufficiency is proved.
In the sequel we assume that the convolution algebra (\mathscr{P}, o) satisfies the following additional condition:

$$
\begin{equation*}
D=\lim _{x \rightarrow 0} \frac{\omega(x)}{x^{x}}>0 . \tag{*}
\end{equation*}
$$

This limit always exists and is finite. Moreover,

$$
D \neq 0 \quad \text { if and only if } \quad \int_{0}^{\infty} x^{\chi} M(d x)<\infty
$$

where x and M is the characteristic exponent of the characteristic measure of the convolution algebra in question (see [7] and [5], Lemma). In this case

$$
D^{-1}=\int_{0}^{\infty} x^{x} M(d x)
$$

Further, it is interesting that all known examples of generalized algebras satisfy condition (*).
3. S-stable measures. Let r be a non-negative real number and U_{r} be a shrinking operation (shortly, s-operation) from non-negative half-line R^{+} onto itself by means of the formula

$$
U_{r}(x)=\max (0, x-r)
$$

Of course, U_{r} are continuous non-linear maps, the family $\left\{U_{r}: r \geqslant 0\right\}$ forms a semi-group under composition and $U_{r} U_{s}=U_{r+s}(r, s \geqslant 0)$. Further, if $P \in \mathscr{P}$, then by $U_{r} P$ we mean the measure from \mathscr{P} such that

$$
\left(U_{r} P\right)(B)=P\left(U_{r}^{-1} B\right)
$$

for all Borel subsets B of R^{+}.
A measure $Q \in \mathscr{P}$ will be called an s-stable measure in generalized convolution algebra (\mathscr{P}, \circ) if there exists an increasing sequence $\left\{r_{n}\right\}$ of positive numbers tending to infinity and a measure $P \in \mathscr{P}$ such that

$$
\begin{equation*}
\left(U_{r_{n}} P\right)^{\circ n} \rightarrow Q \tag{10}
\end{equation*}
$$

In [2], Chapter III, was introduced a notion of s-stability of Borel probability measures on real separable Hilbert space with ordinary convolution. In this section we give a description of the class of s-stable measures in algebras (\mathscr{P}, o) satisfying the condition ($*$).

Of course, for each positive ε

$$
\lim _{n \rightarrow \infty} U_{r_{n}} P(x: x \geqslant \varepsilon)=0
$$

thus every s-stable measure is infinitely decomposable (see [4], Theorem 12).
The following lemma will be used repeatedly and is stated here for further reference.

Lemma 1. Let $\left\{P_{n}\right\}$ and P be probability measures on positive half-line, and $\left\{a_{n}\right\}, a$, be positive real numbers. Then $P_{n} \rightarrow P$ and $a_{n} \rightarrow a$ implies $U_{a_{n}} P_{n}$ $\rightarrow U_{a} P$.

Proof. From the inequality

$$
\left|U_{r} x-U_{s} x\right| \leqslant|r-s| \quad \text { for all } x \in R^{+},
$$

we get that if $x_{n} \rightarrow x$ and $a_{n} \rightarrow a$, then $U_{a_{n}} x_{n} \rightarrow U_{a} x$. Thus, taking into account Theorem 5.5 in [1], p. 34, we get that $U_{a_{n}} P_{n} \rightarrow U_{a} P$, which completes the proof of the Lemma.

The sequence $\left\{r_{n}\right\}$ in formula (10) we will call norming sequence corresponding to the s-stable measure Q. We shall give some property of norming sequence if the measure Q is not concentrated at zero.

Lemma 2. Let $Q \neq E_{0}$ be an s-stable measure. Then

$$
r_{n+1}-r_{n} \rightarrow 0
$$

Proof. Let $\left(U_{r_{n}} P\right)^{\circ n} \rightarrow Q$ and

$$
\Phi_{Q}(t)=\exp \int_{0}^{\infty} \frac{\Omega(t x)-1}{\omega(x)} m(d x)
$$

Then, by Theorems 1 and 2, we have

$$
\begin{equation*}
m_{n} \rightarrow m, \tag{11}
\end{equation*}
$$

where

$$
m_{n}(B)=n \int_{B} \omega(x) U_{r_{n}} P(d x)
$$

for all Borel subsets B of R^{+}. Further, let us introduce the measures μ_{n}, μ by the formulae

$$
\mu_{n}(B)=\int_{B} \frac{1}{\omega(x)} m_{n}(d x) ; \quad \mu(B)=\int_{B} \frac{1}{\omega(x)} m(d x)
$$

Since the function $1 / \omega(x)$ is continuous and bounded on subsets separated from the origin, thus by (11) we get

$$
\mu_{n} \rightarrow \mu,
$$

on Borel subsets of R^{+}separated from the origin.
Hence we obtain

$$
\begin{equation*}
n U_{r_{n}} P \rightarrow \mu \tag{12}
\end{equation*}
$$

Suppose that s is a limit point of the sequence $\left\{r_{n+1}-r_{n}\right\}$ with 0 $<s \leqslant \infty$, and an interval I in $R^{+} \backslash\{0\}$ is a continuity set of the measure μ. From equality

$$
(n+1) U_{r_{n+1}} \dot{P}(I)=(n+1) P\left(I+r_{n+1}\right)=\frac{n+1}{n} U_{r_{n+1}-r_{n}}\left[n U_{r_{n}} P(I)\right]
$$

and from Lemma 1 we obtain

$$
\mu(I)=U_{s} \mu(I)=\mu(I+s)
$$

Consequently, by induction,

$$
\mu(I)=\mu(I+k s) \quad(k=1,2, \ldots)
$$

which yields $\mu(I)=0$. Thus the measure m vanishes identically on positive half-line, i.e. on ($0, \infty$).

In view of condition (*) in section 2, we can introduce the finite Borel measures v_{n} and v by the formulae

$$
v_{n}(B)=\int_{B} \frac{x^{x}}{\omega(x)} m_{n}(d x), \quad v(B)=\int_{B} \frac{x^{x}}{\omega(x)} m(d x)
$$

where B is Borel neighbourhood of the origin in R^{+}, and the integrand is assumed $\int_{0}^{\infty} t^{x} M(d t)$ if $x=0$. Of course, by (11) we get $v_{n} \rightarrow v$ in every finite neighbourhood of the origin. Further, if we take the definition of the measures m_{n}, we get

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0 n \rightarrow \infty} \lim _{n \rightarrow \infty} n \int_{0}^{\varepsilon} x^{\chi} U_{r_{n}} P(d x)=v(\{0\}) \tag{13}
\end{equation*}
$$

if the intervals $[0, \varepsilon]$ are continuity sets of the measure ν.
In the sequel we assume that s is a limit point of the sequence $\left\{r_{n+1}-r_{n}\right\}$ and $0<s \leqslant \infty$. Let us denote

$$
\begin{equation*}
F_{n}(t)=n U_{r_{n}} P\{x: x>t\} \quad \text { for } t>0 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{k_{n}+1}-r_{k_{n}} \rightarrow s \tag{15}
\end{equation*}
$$

Since the measure m (and μ) vanishes on ($0, \infty$), thus, by (12), we get

$$
F_{n}(t) \rightarrow 0
$$

for all positive t. Taking into account the formula (13) for subsequence $\left\{k_{n}+1\right\}$ and monotonicity of the functions F_{n}, by simple computation we obtain

$$
\begin{aligned}
v(\{0\}) & =\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left[-\varepsilon^{\chi} F_{k_{n}+1}(\varepsilon)+x \int_{0}^{\varepsilon} x^{x-1} F_{k_{n}+1}(x) d x\right] \\
& =x \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \frac{k_{n}+1}{k_{n}} \int_{0}^{\varepsilon} x^{x-1} F_{k_{n}}\left(x+r_{k_{n}+1}-r_{k_{n}}\right) d x \\
& \leqslant x \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left\{\frac{k_{n}+1}{k_{n}} F_{k_{n}}\left(\frac{1}{2} s\right) \int_{0}^{\varepsilon} x^{x-1} d x\right\}=0 .
\end{aligned}
$$

Moreover, $m\{0\}=0$, too.
Thus the assumption that the sequence $\left\{r_{n+1}-r_{n}\right\}$ has a positive limit point implies that the measure m vanishes identically on $[0, \infty)$. Hence Q $=E_{0}$, which contradicts the assumption in Lemma.

Lemma 3. If $Q \neq E_{0}$ is an s-stable probability measure and its representing measure m in formula (5) does not vanishes identically on $(0, \infty)$, then $m\{0\}$. $=0$.

Proof. In the proof we keep on the notations used in the proof of Lemma 2. Thus

$$
F_{n}(t) \rightarrow F(t) \stackrel{\mathrm{df}}{=} \mu(x: x>t)
$$

for all positive continuity points of F, and

$$
\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} n \int_{0}^{\varepsilon} x^{x} U_{r_{n}} P(d x)=v(\{0\}),
$$

if the intervals $[0, \varepsilon]$ are continuity sets of the measure v (of course they are continuity sets also of the measure m).

Since the measure m does not vanish identically on $(0, \infty)$, thus the function $F(t)$ is positive in some neighbourhood of a positive real number s. By Lemma 2 for s there exists a subsequence $\left\{k_{n}\right\}$ such that

$$
r_{k_{n}}-r_{n} \rightarrow s
$$

as $n \rightarrow \infty$. Further, if the closed interval I contained in $(0, x)$ is a continuity set of the measure μ, then from equality

$$
\begin{equation*}
k_{n} U_{r_{k_{n}}} P(I)=k_{n} P\left(I+r_{k_{n}}\right)=\frac{k_{n}}{n} U_{r_{k_{n}}-r_{n}}\left(n U_{r_{n}} P(I)\right) \tag{16}
\end{equation*}
$$

and from formula (12) we get that there exists a limit of the sequence k_{n} / n, say c, because m (and μ) does not vanish identically on $(0, \infty)$. On the other hand, taking into account (13), (14) and Lemma 1 we obtain

$$
\begin{aligned}
v([0, \varepsilon]) & =\lim _{n \rightarrow \infty}\left[-\varepsilon^{x} F_{k_{n}}(\varepsilon)+x \int_{0}^{\varepsilon} x^{x-1} F_{k_{n}}(x) d x\right] \\
& =-\varepsilon^{x} F(\varepsilon)+x \lim _{n \rightarrow \infty} \frac{k_{n}}{n} \int_{0}^{\varepsilon} x^{x-1} F_{n}\left(x+r_{k_{n}}-r_{n}\right) d x \\
& =-\varepsilon^{x} F(\varepsilon)+x c \int_{0}^{\varepsilon} x^{x-1} F(x+s) d x .
\end{aligned}
$$

But $\lim _{\varepsilon \rightarrow 0} \int_{0}^{\varepsilon} x^{x-1} F(x+s) d x=0$ and hence

$$
v(\{0\}) \leqslant \varliminf_{\varepsilon \rightarrow 0}\left(-\varepsilon^{\chi} F(\varepsilon)\right) \leqslant 0,
$$

which implies that $m(\{0\})=0$. Thus the Lemma is proved.
Lemma 4. If $Q \neq E_{0}$ is s-stable probability measure and its representing measure m in formula (5) vanishes at zero, then there exist positive constants c and p such that

$$
\begin{equation*}
m(B)=c \int_{B} \omega(x) e^{-p x} d x \tag{17}
\end{equation*}
$$

for all Borel subsets B of R^{+}.
Proof. We have

$$
m_{n} \rightarrow m \quad \text { and } \quad m_{n}(B)=n \int_{B} \dot{\omega}(x) U_{r_{n}} P(d x)
$$

Moreover, on Borel subsets B of R^{+}separated from the origin we get

$$
\begin{equation*}
n U_{r_{n}} P(B) \rightarrow \int_{B} \frac{1}{\omega(x)} m(d x) \stackrel{\mathrm{df}}{=} \mu(B) \tag{18}
\end{equation*}
$$

whenever the boundary of B is m-measure zero, i.e. B is a continuity set of the measure m.

By Lemma 2, for every positive t we can find a subsequence $\left\{k_{n}\right\}$ such that

$$
\begin{equation*}
r_{k_{n}}-r_{n} \rightarrow t \tag{19}
\end{equation*}
$$

as $n \rightarrow \infty$. Further, by Lemma 1 and formulae (16), (18), (19), we get the existence of the limit $\lim _{n \rightarrow \infty}\left(k_{n} / n\right)=g(t)$ and the equation

$$
\begin{equation*}
\mu(B)=g(t) U_{1} \mu(B)=g(t) \mu(B+t), \tag{20}
\end{equation*}
$$

because the measure m does not vanish identically. Moreover, the last equation holds for all Borel subsets B of $(0, \infty)$ and all positive t. The righthand side of (20) is finite, thus the measure μ is finite on $(0, \infty)$. Therefore if we introduce the notation

$$
f(u)=\mu\left(\left\{x \in R^{+}: x \geqslant u\right\}\right)
$$

then equation (20), for $B=[u, v)$, can be rewritten in the form

$$
\begin{equation*}
f(u)-f(v)=g(t)[f(u+t)-f(v+t)] \tag{21}
\end{equation*}
$$

where u, v and t are positive real numbers, $u<v$, and f is bounded nonincreasing right-continuous function.

Let us remark that $g(t)>1$ for every positive number t. In fact; in the oppositive case $g\left(t_{0}\right) \leqslant 1$ we would have, by induction according to (21), the inequality

$$
f(u)-f(v) \leqslant f\left(u+t_{0} k\right)-f\left(v+t_{0} k\right) \quad(k=1,2, \ldots)
$$

But the right-hand side of this inequality tends to zero when $k \rightarrow \infty$. Thus f would be a constant function which would contradict the assumption that m (and also the measure μ) does not vanish identically.

Given $0<u_{0}<v_{0}$ with $f\left(u_{0}\right)-f\left(v_{0}\right)>0$, we have, by (21), for every pair t_{1}, t_{2} of positive numbers

$$
\begin{aligned}
f\left(u_{0}\right)-f\left(v_{0}\right) & =g\left(t_{1}\right)\left[f\left(u_{0}+t_{1}\right)-f\left(v_{0}+t_{1}\right)\right] \\
& =g\left(t_{1}\right) g\left(t_{2}\right)\left[f\left(u_{0}+t_{1}+t_{2}\right)-f\left(v_{0}+t_{1}+t_{2}\right)\right] .
\end{aligned}
$$

On the other hand,

$$
f\left(u_{0}\right)-f\left(v_{0}\right)=g\left(t_{1}+t_{2}\right)\left[f\left(u_{0}+t_{1}+t_{2}\right)-f\left(v_{0}+t_{1}+t_{2}\right)\right] .
$$

Consequently,

$$
g\left(t_{1}+t_{2}\right)=g\left(t_{1}\right) g\left(t_{2}\right),
$$

and, by (20) and Lemma 1 , the function g is continuous. It is well-known that the only solution of the last equation satisfying the condition $g(t)>1$ is
of the form $g(t)=e^{p t}$, where p is a positive constant. Furthermore, the function f being continuous outside a countable set is, by (21), continuous everywhere. Setting $v=u+t$ into (21), we get the inequality

$$
f(u+2 t)-2 f(u+t)+f(u) \geqslant 0 .
$$

Thus the function f is convex. Consequently, it is absolutely continuous. Setting

$$
f(u)=\int_{u}^{\infty} h(s) d s
$$

into formula (21), we have

$$
\int_{u}^{v} h(s) d s=e^{p t} \int_{u+t}^{v+t} h(s) d s
$$

Hence we get the equation $h(t)=c e^{-p t}$ almost everywhere, c being a positive constant. Thus

$$
\mu([u, v))=f(u)-f(v)=c \int_{u}^{v} e^{-p x} d x
$$

and, by (18),

$$
m(B)=c \int_{B} \omega(x) e^{-p x} d x
$$

for all Borel subsets B of R^{+}, which completes the proof.
Lemma 5. Each infinitely decomposable probability measure Q in (\mathscr{P}, o) with representing measure m (in formula (5)) of the form

$$
m(B)=c \int_{B} \omega(x) e^{-p x} d x
$$

where c and p are positive constant, is s-stable probability measure.
Proof. Of course, by Theorems 1 and 2 it suffices to define an increasing sequence of positive numbers $\left\{r_{n}\right\}$ and a probability measure P on R^{+}such that the measures m_{n} defined by

$$
m_{n}(B)=n \int_{B} \omega_{\mathrm{B}}(x) U_{r_{n}} P(d x), \quad(n=1,2, \ldots),
$$

converge to m.
$:$ Put $a=m\left(R^{+}\right), P=a^{-1} m$ and the sequence $\left\{r_{n}\right\}$ be such that $\exp \left(p r_{n}\right)$ $=a^{-1}\left(1-\Omega\left(x_{0}\right)\right) n$ for sufficiently large n (see (6)). Then it is easy to verify that

$$
n U_{r_{n}} P(B)=\frac{c}{1-\Omega\left(x_{0}\right)} \int_{B} \omega\left(x+r_{n}\right) e^{-p x} d x
$$

Thus, by (6), we get

$$
\lim _{n \rightarrow \infty} m_{n}(B)=\lim _{n \rightarrow \infty} \frac{c}{1-\Omega\left(x_{0}\right)} \int_{B} \omega(x) \omega\left(x+r_{n}\right) e^{-p x} d x=m(B),
$$

which completes the proof.
Lemma 6. The characteristic measure M of the algebra (\mathscr{P}, \circ) satisfying (*) is an s-stable measure.

Proof. Let us define

$$
\chi^{-1}=\int_{0}^{\infty} x^{x} M(d x), \quad P(B)=(\pi / 2)^{1 / 2} \int_{B} e^{-x^{2} / 2} d x
$$

for Borel subsets B of R^{+}; let r_{n}, for sufficiently large n, be solutions of the equations

$$
\begin{equation*}
x^{x+1} \exp \left(x^{2} / 2\right)=(\pi / 2)^{1 / 2} \alpha \Gamma(x+1) n . \tag{22}
\end{equation*}
$$

Then (for every positive ε) taking into account (22) and the inequality

$$
\int_{a}^{\infty} \exp \left(-x^{2} / 2\right) d x \leqslant \frac{1}{a} \exp \left(-a^{2} / 2\right) \quad \text { for } a>0
$$

we get

$$
\begin{aligned}
n U_{r_{n}} P(x: x \geqslant \varepsilon) & =(\pi / 2)^{1 / 2} n \int_{\varepsilon+r_{n}}^{\infty} \exp \left(-x^{2} / 2\right) \mathrm{dx} \\
& \leqslant[x \Gamma(\kappa+1)]^{-1} r_{n}^{x+1} \exp \left(-\varepsilon r_{n}\right)\left(\varepsilon+r_{n}\right)^{-1},
\end{aligned}
$$

and hence

$$
\begin{equation*}
n U_{r_{n}} P \rightarrow 0 \tag{23}
\end{equation*}
$$

outside every neighbourhood of the zero. Further, since for every $\varepsilon>0$

$$
n U_{r_{n}} P(x: 0 \leqslant x \leqslant \varepsilon)=(\pi / 2)^{1 / 2} n \int_{0}^{\varepsilon+r_{n}} e^{-x^{2} / 2} d x
$$

thus, by (22),

$$
\begin{aligned}
\int_{0}^{\varepsilon} \omega(x) n U_{r_{n}} P(x) & =(\pi / 2)^{1 / 2} n \int_{0}^{\varepsilon} \omega(x) \exp \left(-\left(\varepsilon+r_{n}\right)^{2} / 2\right) d x \\
& =[\alpha \Gamma(x+1)]^{-1} \int_{0}^{\varepsilon r_{n}} t^{x} \exp (-t) \frac{\omega\left(t / r_{n}\right)}{\left(t / r_{n}\right)^{x}} \exp \left(-t^{2} / 2 r_{n}\right) d t
\end{aligned}
$$

Consequently, by condition (*) and Lebesgue Theorem, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n \int_{0}^{\varepsilon} \omega(x) U_{r_{n}} P(d x)=1 \tag{24}
\end{equation*}
$$

for every positive ε. In view of (23) and (24) we infer that the measures

$$
m_{n}(B)=n \int_{B} \omega(x) U_{r_{n}} P(d x)
$$

are weakly convergent to the measure E_{0} and, by Theorems 1 and 2 , we get that

$$
\left(U_{r_{n}} P\right)^{\circ n} \rightarrow M
$$

which completes the proof.
Taking into account the equality

$$
T_{a}\left(U_{r}(x)\right)=U_{a r}\left(T_{a} x\right) \quad\left(x \in R^{+}\right)
$$

and the axiom (iii) in the definition of generalized convolution, we infer that if

$$
\left(U_{r_{n}} P\right)^{\circ n} \rightarrow M,
$$

then

$$
\left(U_{a r_{n}}\left(T_{a} P\right)\right)^{\circ n} \rightarrow T_{a} M .
$$

Hence we get
Corollary 1. The measures $T_{a} M$, where M is the characteristic measure and a is a positive constant, are s-stable measures.

As a simple consequence of Lemmas 3-5 and Corollary 1 we obtain the following characterization of the class of all s-stable probability measures in algebra (\mathscr{P}, O).

Theorem 3. A probability measure Q in the algebra (\mathscr{P}, \circ) with condition $\left(^{*}\right)$ is s-stable measure if and only if either $Q=T_{a} M$, where a is a positive constant and M is the characteristic measure of the algebra (\mathscr{P}, \circ), or Q is the compound Poisson measure, i.e.

$$
Q=e(m) \quad \text { and } \quad m(B)=c \int_{B} e^{-p x} d x
$$

where c is a non-negative and p is a positive constant.
4. S-semi-stable measures. In this section we shall investigate limit distributions of $\left(U_{r_{n}} P\right)^{\circ n}$ for some subsequence of natural numbers. Let us assume that $\left\{l_{n}\right\}$ is an increasing subsequence of natural numbers such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{l_{n+1}}{l_{n}}=q \quad \text { for a certain finite } q \tag{25}
\end{equation*}
$$

A measure $Q \in \mathscr{P}$ will be called an s-semi-stable measure in algebra (\mathscr{P}, \circ) if there exist an increasing sequence $\left\{r_{n}\right\}$ of positive numbers tending to infinity, a subsequence $\left\{l_{n}\right\}$ of natural numbers satisfying (25) and a measure $P \in \mathscr{P}$ such that

$$
\begin{equation*}
\left(U_{r_{n}} P\right)^{o I_{n}} \rightarrow Q \tag{26}
\end{equation*}
$$

Of course s-semi-stable measures are infinitely decomposable and s stable measures are s-semi-stable. As before the sequences $\left\{r_{n}\right\}$ in (26) we call the norming sequences and at first we prove some properties of them.

In this section is also assumed that the convolution algebra ($\mathscr{P}, 0$) satisfies condition (*) (see section 2).

Lemma 7. Let $Q \neq E_{0}$ be an s-semi-stable measure. Then
(a) $r_{n+1}-r_{n} \rightarrow 0$ if either $q=1$ or $q>1$ and the representing measure m of Φ_{Q}, in formula (5), is concentrated at zero;
(b) $r_{n+1}-r_{n} \rightarrow d$ and $0<d<\infty$ if $q>1$ and the representing measure m of Φ_{Q} is not concentrated at zero.

Proof. Let us introduce the notations

$$
\begin{gather*}
m_{n}(B)=l_{n} \int_{B} \omega(x) U_{r_{n}} P(d x) \tag{27}\\
\mu_{n}(B)=\int_{B} \frac{1}{\omega(x)} m_{n}(d x), \quad \mu(B)=\int_{B} \frac{1}{\omega(x)} m(d x) \tag{28}\\
v_{n}(B)=\int_{B} \frac{x^{x}}{\omega(x)} m_{n}(d x), \quad v(B)=\int_{B} \frac{x^{x}}{\omega(x)} m(d x) \tag{29}
\end{gather*}
$$

where B is an arbitrary Borel subset of R^{+}.
From (6) we get that m_{n}, m are finite Borel measures outside every neighbourhood of the zero and by condition ($*$) we have that v_{n} and v are finite Borel measures on every finite neighbourhood (i.e. finite open interval) of the zero. In view of Theorems 1 and 2 we have $m_{n} \rightarrow m$ and hence

$$
\begin{equation*}
\mu_{n} \rightarrow \mu \tag{30}
\end{equation*}
$$

outside every neighbourhood of the zero and

$$
\begin{equation*}
v_{n} \rightarrow v \tag{31}
\end{equation*}
$$

on every finite interval which contain zero.
Moreover, if $F_{n}(t)=\mu_{n}(x: x>t), t>0$, and $F(t)=\mu(x: x>t)$, then

$$
\begin{equation*}
F_{n}(t)=l_{n} U_{r_{n}} P(x: x>t) \rightarrow F(t) \tag{32}
\end{equation*}
$$

for all positive continuity point t of $F(t)$.
(a) If $q=1$ then the proof is similar to the proof of Lemma 2 and we
omit it. If $q>1$ and the measure m is concentrated at zero, then by (27), (29), (31) and (32) we get

$$
\begin{align*}
v(\{0\}) & \leqslant \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} l_{n} \int_{0}^{\varepsilon} x^{x} U_{r_{n}} P(d x) \tag{33}\\
& =x \lim _{\varepsilon \rightarrow 0} \varliminf_{n \rightarrow \infty} \int_{0}^{\varepsilon} x^{x-1} F_{n}(x) d x
\end{align*}
$$

because $F_{n}(t) \rightarrow 0$. In contrary, let us assume that $0<s<\infty$ is a limit point of the sequence $\left\{r_{n+1}-r_{n}\right\}$, i.e. $r_{k_{n}+1}-r_{k_{n}} \rightarrow s$. Then, by (33),

$$
\begin{aligned}
v(\{0\}) & \leqslant x \lim _{\varepsilon \rightarrow 0} \varliminf_{n \rightarrow \infty} \frac{k_{n}+1}{k_{n}} \int_{0}^{\varepsilon} x^{x-1} F_{k_{n}}\left(x+r_{k_{n}+1}-r_{k_{n}}\right) d x \\
& \leqslant x \lim _{\varepsilon \rightarrow 0} \varliminf_{n \rightarrow \infty} \frac{k_{n}+1}{k_{n}} F_{k_{n}}\left(\frac{1}{2} s\right) \int_{0}^{\varepsilon} x^{\kappa-1} d x=0
\end{aligned}
$$

and $m(\{0\})=0$, which contradicts the assumption.
It is easy to see that $s=\infty$ is not limit point of the sequence $\left\{r_{n+1}-r_{n}\right\}$, too.
(b) Taking into account the equality

$$
\begin{equation*}
\mu_{n+1}(I)=\frac{l_{n}+1}{l_{n}} U_{r_{n+1}-r_{n}} \mu_{n}(I) \tag{34}
\end{equation*}
$$

Lemma 1, formula (30) and the fact that $q>1$ and the measure m does not vanish identically on $(0, \infty)$, we obtain that the point $s=0$ and $s=\infty$ are not limit points of the sequence $\left\{r_{n+1}-r_{n}\right\}$.

Let us suppose that there exist two limit points of $\left\{r_{n+1}-r_{n}\right\}$, say s_{1} and s_{2}. Let $s_{1}<s_{2}$ and the intervals $I, I+s_{1}$ and $I+s_{2}$ be continuity sets of the measure μ. By (34) we get the formula

$$
\begin{equation*}
\mu(I)=q \mu\left(I+s_{1}\right)=q \mu\left(I+s_{2}\right) . \tag{35}
\end{equation*}
$$

Further, by a simple reasoning we infer that the last equation holds for all intervals I in $(0, \infty)$ and the measure μ is finite. In view of (35), we see that for all intervals I contained in the half-line $\left(s_{1}, \infty\right)$ the equality $\mu(I)$ $=\mu\left(I+\left(s_{2}-s_{1}\right)\right)$ holds. Consequently, by induction

$$
\mu(I)=\mu\left(I+k\left(s_{2}-s_{1}\right)\right), \quad k=1,2, \ldots,
$$

which yields $\mu(I)=0$ for intervals I contained in $\left(s_{1}, \infty\right)$. Hence and from (35) we infer that the measure μ vanishes in ($0, \infty$). But (28) implies that also m vanishes on $(0, \infty)$, and this contradicts the assumption. Thus the Lemma is proved.

Lemma 8. If $Q \neq E_{0}$ is an s-semi-stable measure and its representing measure m, in formula (5), does not vanish on $(0, \infty)$, then $m(\{0\})=0$.

Proof. In the proof we keep on the notations used in the proof of Lemma 7.

If $q=1$, then by Lemma 7, part (a), we have $r_{n+1}-r_{n} \rightarrow 0$. In the same way as in the proof of Lemma 3 we get $m(\{0\})=0$.

Suppose that $q>1$. By part (b) of Lemma 7 we have $r_{n+1}-r_{n} \rightarrow d$ and 0 $<d<\infty$. Further, by (32) and Lemma 1 we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} l_{n+1} \int_{0}^{\varepsilon} x^{x} U_{r_{n}} P(d x) & =-\varepsilon^{x} F(\varepsilon)+x \lim _{n \rightarrow \infty} \frac{l_{n+1}}{l_{n}} \int_{0}^{\varepsilon} x^{x-1} F_{n}\left(x+r_{n+1}-r_{n}\right) d x \\
& =-\varepsilon^{x} F(\varepsilon)+x q \int_{0}^{\varepsilon} x^{x-1} F(x+d) d x
\end{aligned}
$$

But

$$
\lim _{\varepsilon \rightarrow 0} \int_{0}^{\varepsilon} t^{x-1} F(x+d) d x=0
$$

and it implies together with (33) that $v(\{0\})=0$. Thus the measure m is concentrated on $(0, \infty)$ which completes the proof of the Lemma.

Lemma 9. If $Q \neq E_{0}$ is an s-semi-stable probability measure and its representing measure m in formula (5) vanishes at zero, then the measure μ defined by the formula

$$
\mu(B)=\int_{B} \frac{1}{\omega(x)} m(d x)
$$

is finite on $(0, \infty)$ and there exist real numbers $0<d<\infty$ and $0<\tau<1$ such that

$$
\begin{equation*}
U_{d} \mu=\tau \mu \tag{36}
\end{equation*}
$$

Proof. Let Q be an s-semi-stable measure and $q=1$ (see (25)). In virtue of Lemma 7, part (a), in similar way as in the proof of Lemma 4, one can obtain that for all positive t

$$
U_{t} \mu=e^{-p t} \mu
$$

where $0<p<\infty$ is a constant. Thus μ is finite on ($0, \infty$) and formula (36) holds.

If $Q \neq E_{0}$ is an s-semi-stable measure and $q>1$, then we have $\mu_{n} \rightarrow \mu$
outside every neighbourhood of zero (see (30)). Moreover, by part (b) of Lemma 7 and by (34), we get equation

$$
\mu(B)=q U_{d} \mu(B)
$$

for all Borel subsets B of $(0, \infty)$. Hence formula (36) is fulfiled with $\tau=1 / q$, which completes the proof of Lemma.

Lemma 10. Each infinitely decomposable probability measure Q in (\mathscr{P}, \circ) with representing measure m (in formula (5)) of the form

$$
\dot{m}(B)=\int_{B} \omega(x) \mu(d x),
$$

where μ is finite Borel measure on $(0, \infty)$, and there exist constants $0<\tau<1$ and $0<d<\infty$ such that

$$
U_{d} \mu(B)=\tau \mu(B)
$$

for all Borel subsets B of $(0, \infty)$, is an s-semi-stable probability measure.
Proof. Of course, we may assume that the measure m does not vanish identically, because in this case the assertion is obvious.

Let us put $a^{-1}=\mu\left(R^{+}\right), P=\dot{a} \mu, r_{n}=n d$ and a sequence $\left\{l_{n}\right\}$ of natural numbers be such that

$$
a \tau^{n} l_{n} \rightarrow 1
$$

as $n \rightarrow \infty$ (for instance put $l_{n}=\left[\tau^{-n} a^{-1}\right]$ for sufficiently large n, where [] denotes the integral part of number). Then it is easy to verify that

$$
\begin{equation*}
l_{n} U_{r_{n}} P(I) \rightarrow \mu(I) \tag{37}
\end{equation*}
$$

for all closed intervals in $(0, \infty)$. Thus

$$
m_{n}(B)=l_{n} \int_{B} \omega(x) U_{r_{n}} P(d x) \rightarrow \int_{B} \omega(x) \mu(d x)=m(B)
$$

for all m-continuity Borel sets B, and by Theorems 1 and 2 we get

$$
\left(U_{r_{n}} P\right)^{\circ L_{n}} \rightarrow Q
$$

which completes the proof.
Lemma 11. The characteristic measure M of the algebra (\mathscr{P}, \circ) satisfying the condition (*) is an s-semi-stable measure.

Proof. Let $\left\{l_{n}\right\}$ be an increasing subsequence of natural numbers such that $\lim _{n \rightarrow \infty} l_{n+1} / l_{n}=1$. Let a sequence $\left\{r_{n}\right\}$ of positive real numbers be such that

$$
r_{n}^{x+1} \exp \left(r_{n}^{2} / 2\right)=(\pi / 2)^{1 / 2} \alpha \Gamma(\chi+1) l_{n}
$$

where $\alpha^{-1}=\int_{0}^{\infty} x^{x} M(d x)$, and let the measure P be defined as follows:

$$
P(B)=(\pi / 2)^{1 / 2} \int_{B} \exp \left(-x^{2} / 2\right) d x
$$

By the same computation as in the proof of Lemma 6 we get

$$
\left(U_{r_{n}} P\right)^{o l_{n}} \rightarrow M
$$

and the Lemma is proved.
Using the same arguments as in the proof of Corollary 1, we obtain
Corollary 2. The measures of the form $T_{a} M$, where a is a positive constant and M is the characteristic measure, are s-semi-stable measures.

Now we are in position to give a full characterization of the class of all s -semi-stable measures. Namely, in view of Lemmas 8-10 and Corollary 2 we have the following

Theorem 4. Let the algebra (\mathscr{P}, o) satisfies the condition (*). A probability measure Q in the algebra $(\mathscr{P}, \circ$) is an s-semi-stable measure if and only if either $Q=T_{a} M$, where a is a positive constant and M is the characteristic measure of the algebra (\mathscr{P}, \circ), or Q is the compound Poisson measure, i.e. Q $=e(m)$, and there exist constants. $0<d<\infty, 0<\tau<1$ such that

$$
U_{d} m(B)=\tau m(B)
$$

for all Borel subsets B of $(0, \infty)$.
5. Examples. In this section we give characterizations of the class of s stable measures in some special cases.

At first let us assume that in the set \mathscr{P} of all probability measures on non-negative half-line we have the ordinary convolution, and the characteristic function $\Phi_{P}(t)$ is the Laplace transform of a measure P. Then, by Theorem 3, we have

Corollary 3. A function Φ is Laplace transform of an s-stable measure on $[0, \infty]$ if and only if either

$$
\Phi(t)=\exp (-a t)
$$

a being a non-negative constant, or

$$
\Phi(t)=\exp \left(-\frac{c}{p} \frac{t}{t+p}\right)
$$

where c is a non-negative and p is a positive constant.
As a second example of a generalized convolution we quote the $(1, r)$ convolutions ($1 \leqslant r<\infty$) considered by Kingman in [3].

Let us recall that the $(1,1)$-convolution is defined by means of the formula

$$
\int_{0}^{\infty} f(x)(P \circ Q)(d x)=\frac{1}{2} \int_{0}^{\infty} \int_{0}^{\infty}[f(x+y)+f(|x-y|)] P(d x) Q(d x),
$$

where f runs over all bounded continuous functions on $[0, \infty)$.
The ($1, r$)-convolution for $r>1$ is defined as

$$
\begin{aligned}
& \int_{0}^{\infty} f(x)(P \circ Q)(d x) \\
& \quad=\frac{\Gamma\left(\frac{r}{2}\right)}{\Gamma\left(\frac{r-1}{2}\right)} \int_{0}^{\infty} \int_{0}^{\infty} \int_{-1}^{1} f\left(x^{2}+y^{2}+2 x y z\right)\left(1-z^{2}\right)^{(r-3) / 2} d z P(d x) Q(d x)
\end{aligned}
$$

and f is arbitrary continuous bounded function on $[0, \infty)$.
All $(1, r)$-convolution algebras are regular. As a characteristic function in these algebras one can take the integral transformation

$$
\begin{equation*}
\Phi_{P}(t)=\Gamma\left(\frac{r}{2}\right) \int_{0}^{\infty}\left(\frac{2}{t x}\right)^{r / 2-1} J_{r / 2-1}(t x) P(d x) \tag{38}
\end{equation*}
$$

where J_{k} is the Bessel function (see [6], p. 40).
The ($1, r$)-convolution is closely connected with a random walk problem in Euclidean r-space. Namely, consider a random walk in r-space given by

$$
S_{n}=X_{1}+X_{2}+\ldots+X_{n} \quad(n=1,2, \ldots)
$$

where X_{1}, X_{2}, \ldots are independent random vectors with spherical symmetry, that is, if A is a measurable subset of r-space and A^{\prime} is obtained from A by rotation about the origin, then

$$
\operatorname{Prob}\left(X_{k} \in A\right)=\operatorname{Prob}\left(X_{k} \in A^{\prime}\right) \quad(k=1,2, \ldots)
$$

The probability distribution of the length $\left|S_{n}\right|$ is determined by that of the length $\left|X_{1}\right|,\left|X_{2}\right|, \ldots,\left|X_{n}\right|$ (see [3]). More precisely, the probability distribution of $\left|S_{n}\right|$ is the $(1, r)$-convolution of the probability distributions of $\left|X_{1}\right|$, $\left|X_{2}\right|, \ldots,\left|X_{n}\right|$. Further, the characteristic exponent of the $(1, r)$-convolution is equal to 2 , and the measure on $[0, \infty)$ with probability density

$$
g_{r}(x)=2^{-2(r-1)}\left(\Gamma\left(\frac{r}{2}\right)\right)^{-1} x^{r-1} \exp \left(-x^{2} / 4\right)
$$

corresponding to the Rayleigh distribution, plays the role of the characteristic measure, because by the Weber Theorem (see [6], p. 394, formula (4)) we get

$$
2^{-2(r-1)} \int_{0}^{\infty}\left(\frac{2}{t x}\right)^{r / 2-1} J_{r / 2-1}(t x) x^{r-1} \exp \left(-x^{2} / 4\right) d x=\exp \left(-t^{2}\right)
$$

Now we can get the characterisation of s-stable measures in the $(1, r)$ convolution algebra.

Corollary 4. A function Φ is a characteristic function of an s-stable measure in the $(1, r)$-convolution algebra if and only if either

$$
\begin{equation*}
\Phi(t)=\exp \left(-a^{2} t^{2}\right) \tag{39}
\end{equation*}
$$

a being a non-negative constant, or

$$
\begin{equation*}
\Phi(t)=\exp \left\{\frac{c}{p}\left[\frac{p}{\left(p^{2}+t^{2}\right)^{1 / 2}}\left(1+(r-2) \sum_{n=1}^{\infty} \frac{(2 n-1)!!}{n!2^{n}(2 n+r-2)}\left(\frac{t^{2}}{p^{2}+t^{2}}\right)^{n}\right)-1\right]\right\} \tag{40}
\end{equation*}
$$

where c is a non-negative and p is a positive constant.
Proof. In view of Theorem 3 and the arguments preceding Corollary 4 it suffices to show that the non-characteristic s-stable measure has a characteristic function of the form (40). But if the measure $Q=e(m)$ is s-stable, then, by Theorem 3, we have

$$
m(B)=c \int_{B} e^{-p x} d x
$$

Further, by (38) and the Hankel's formula (see [6], p. 385), we get

$$
\begin{aligned}
\Phi_{Q}(t) & =\exp \left\{\frac{c}{p}\left[p \Gamma\left(\frac{r}{2}\right) \int_{0}^{\infty}\left(\frac{2}{t x}\right)^{r / 2-1} J_{r / 2-1}(t x) e^{-p x} d x-1\right]\right\} \\
& =\exp \left\{\frac{c}{p}\left[\frac{p}{\left(p^{2}+t^{2}\right)^{1 / 2}} \sum_{n=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{n}\left(\frac{r}{2}-1\right)_{n}}{n!\left(\frac{r}{2}\right)_{n}}\left(\frac{t^{2}}{p^{2}+t^{2}}\right)^{n}-1\right]\right\}
\end{aligned}
$$

where for any α we assume $(\alpha)_{0}=1$ and $(\alpha)_{n}=\alpha(\alpha+1)(\alpha+2) \ldots(\alpha+n-1)$. By a simple computation, from the last formula we obtain formula (40). Thus the Corollary is proved.

Acknowledgements. I would like to thank Professor Kazimierz Urbanik for many valuable discussions and, in particular, for the idea of a part of the proof of Theorem 2.

REFERENCES

[1] P. Billingsley, Convergence of probability measures, New York 1968.
[2] Z. Jurek, Limit distributions for sums of shrunken random variables, Dissertationes Mathematicae, in print.
[3] J. F. C. Kingman, Random walks with spherical symmetry, Colloquium on Combinatorical Methods in Probability Theory, Aarhus (1962), p. 40-46.
[4] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), p. 217-245.
[5] - Generalized convolutions II, Studia Math. 45 (1973), p. 57-70.
[6] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge 1966.
[7] R. Jajte, Quasi-stable measures in generalized convolution algebras, Bull. Acad. Pol. Sci. 24 (1976), p. 505-511.

Institute of Mathematics, Wrocław University pl. Grunwaldzki 2/4, 50-384 Wroctaw, Poland

Received on 3. 10. 1981
\square

