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STRONG CONVERGENCE
OF VECTOR-VALUED PRAMARTS AND SUBPRAMARTS

BY

MAREK SLABY (Wrociaw)

Abstract. We prove a subpramart convergence theorem which is a
complete solution of a problem raised by L. Egghe, and a pramart
convergence theorem which partly solves a problem of L. Sucheston. We

obtain also certain decomposition of subpramarts.
i

1. Introduction. Inthe present paper we deal with subpramarts and pramarts
in Banach spaces. In Section 2 we give necessary definitions and notations,
formulate problems of Sucheston and Egghe, and recall known results
concerning the problems.

In Section 3 we prove the main result of this paper, it is the subpramart
convergence theorem — Theorem 3.5 — which completely solves the problem of
Egghe. Theorem 3.6 — the pramart convergence theorem — gives a partial
solution of the problem of Sucheston. The clue to the both theorems is Lemma
3.4, which can be regarded independently as a very useful tool in other similar
reasonings.

In Section 4 we obtain an extension of a subpramart decomposition theorem
due to Millet and Sucheston and we give an example qt‘mwmg that this
decomposition does not hold true in the general case.

2. Preliminaries. Let (Q, F, P) be a probability space, (F )}, y an increasing
sequence of sub-o-algebras of the o -algebra F, T — the set of all bounded
stopping times with respect t0 (F,)u.n-

Definition 2.1. For a Banach space E, the adapted 3equence{X,,, F),.xof
E - valued random variables is called a pramart if (X ,- —E'X [ converges to zero
in probability, uniformly in ¢ = g, i.e., for every ¢ > 0 there exists oy & Tsuch that
o, < 0 < 1 implies

PRIX,~E" X > e} <&
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Sucheston stated in 1979 the question whether Chatterji’s result for
martingales holds true in the case of pramarts. Let us report it exactly:

Problem 2.2. Let E be a Banach space with the Radon - Nikodym property
(RNP), and let (X,) be an E-valued pramart bounded in L, (E)-norm. Is X,
strongly a.s. convergent?

Let now E be a Banach lattice.

Definition 2.3. The adapted scquence (X,, F,) of E-valued random
variables is called a subpramart if (X,— ~Ex )7 converges to zero in prob-
ability, uniformly in 7 > o.

In the real-valued case Millet and Sucheston proved

Tueorem 2.4 ([11], p. 96, Th. 3.7). Let (X,) be a subpramart which satisfres
the following condition:

liminfE(X,)+liminfE(X,) < *.

Then X, converges as. to an integrable r.u.

As it is seen from the definitions every submartingale is a subpramart, and for
submartingales Heinich proved the following

Tueorem 2.5. ([8]). Ler E be a Banach lattice with the RNP. Then every
positive L, (E)-bounded submartingale is a.s. convergent.

Egghe raised a problem which is connected with the problem of Sucheston.

Problem 2.6.(see[6]or [5]). Let E be a Banach lattice with the RNP, and let
(X,, F,) be an E -valued positive subpramart with an L, (E)-bounded subse-
quence. Is X, strongly as. convergent?

Both problems have been affirmatively solved under additional assumptions.

Tueorem 2.7([7], p. 360, Th. 2.4, and [10], p. 1043, Th. 3.5). Let E be a Banach
space with the RNP, and let (X, F ), be an E-valued pramart for which there
is a subsequence (X,,) which is uniformly integrable. Then X, itself converges
sirongly a.s.

Tueorem 2.8. ([13], Th. 3.1). Let E be a Banach space with an unconditional
basis and with the RNP. Let (X, F,)un be a pramart with and L, (E)- bounded
subsequence. Then X, converges strongly a.s.

In this paper we prove a pramart convergence theorem for weakly
sequentially complete Banach spaces (Theorem 3.6).

Let us recall some known results concerning the strong convergence of
subpramarts.

Tueorem 2.9, ([6], Cor. 2.8). Ler E be a Banach lattice with the RNP. Then
every E-valued positive subpramart (X, F,),.n is strongly convergent to an
integrable r.v., if there is a subsequence (n,) = N such that (X, ). is uniformly
integrable.

)
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Tueorem 2.10([13], Th. 2.2). Let E be a Banach lartice with an unconditional
basis such that the order is induced by the basis, and let E have the RN P. Then every
E -valued positive subpramart (X,, F ).~ is strongly as. convergent to an
integrable r.v., if there is a subsequence (X, )y.v which is Ly (E)-bounded.

Here we solve affirmatively the problem of Egghe without any additional
assumptions.

In the paper we use a method based on a Kadec- Klee lattice renorming
theorem dué to Davis, Ghoussoub and Lindenstrauss:

TreoreM 2.11 ([2]). A Banach latrice (E, || ||} is order contimious if and only if
there is an equivalent lattice norm || ||, on E such that |x,!,.n < E, x, = x and
XAl = llxlls imply [lx,—x]jy — 0.

It is obvious that if E is separable, then the equivalent norm has the Kadec-
Klee property with respect to a countable set of functionals.

3. Subpramart and pramart convergence theorems. In order to profit by the
Kadec -Klee renorming theorem we have to report two lemmas from [6].

Lemwma 3.1.([6], L. 2.2). Let (X, F,),..n be a positive subpramart with values in a
Banach lattice E. Let x'e(E"), be arbitrary. Then (x'(X,), F, ) is a positive
subpramart.

Definition 3.2([6], Def. 2.3). Let (X7, F ),y be a sequence of real - valued
subpramarts. It is called a uniform sequence of subpramarts if Ve > 030, € Tsuch
that for every o, 1€ T g, <0 < 1,

P({sup(X2~E"X™ <¢e)) > 1—¢.
meN

Lemma 3.3.([6], L. 2.4). Let (X7, F,),.n be a uniform sequence of real-valued
positive subpramarts. Suppose that there is a subsequence (), Such that:

sup | sup X dP < 0.
keN g meN

Then each subpramart (X)), F ). cOnverges a.s. to an integrable rv. X7 , and we

have:
sup X, —sup X% as. for n—.c.
mei mel
The following lemma reduces our problems to a situation similar to that in
Theorem 2.7 and 2.9. The author is very grateful to J. Szulga for a considerable
simplification of the original proof of this lemma.
LemMa 3.4. Let E be a Banach space and let (X, F,),.x be an adapted sequence
of E-valued random variables such that

SugﬁllX,.lil < 0.
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Then there exists a subsequence (n),y =N such that, for every k,
X, =Yy +Z,, where Y, and Z, are F,, -measurable, (Y, )y is uniformly
integrable and Z, —0 as. if k— o0,

Proof. Note that it is enough to find such a subsequence(n,), where Z, tends
to zero in probability.

For every positive integer m set

gi(@=sup [ |IX,[4P.
azm | Xl >
Since gx (1) is nonincreasing and nonnegative, then there is a positive real
number x such that
lim gk (1) = a.

Fa )

Thus there is an increasing sequence (I )iy Such that lim 1, = oo, and

k-~w
a < gh(r) < 2—1/k.

It is obvious that also VmeN lim g% () =, hence
t=+o0

YmVk g%(t) =oa.

There is then an increasing sequence of positive integers (n,),.y such that
[ IX,)ldP > a—1/k.
X 1> )
Set
Voo = XuJuxy g and  Zy =X Ty, 20
Then Y, and Z, are F, -measurable.

Since

PIZ, |l Z &) < P(IX,, ]l > 1) < 1/t sup E[|X, ]l

LEn
Z, tends to zero in probability. V
In order to prove that (¥, ),y is uniformly integrable it is enough to show that

1%, )| dP = 0.

[ =t

lim sup
oo keN ()Y

ﬂ‘é
Since

gy=sup [ |I%,JldP

LR gl

&
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is a nonincreasing function, then lim g(r) = lim g(r;). But
I-rom i-von

g{t;) = sup f 1 X, || aP

20 gy < Xy Il Sty

=sup( [ X ldP— [ [IX,]ldP)

EZE 4 X 1 > 151 i Xa >0yl
(1 1y 2
S sup(amm«;-—oww =
ki i k i

Therefore limg(r;) = 0.

Now we are in a position to solve the problem of Egghe.
THEOREM 3.5. Let E be a Banach lattice with the RN P, and let (X, F ).y be
an E -valued positive subpramart such that

supE||X, [l <
kN

Jor some subsequence (X, )i.n.

Then X, is strongly a.s. convergent.

Proof. By Lemma 3.4 we can assume that X, =Y, +Z,, where (¥, o is
uniformly integrable and Z, tends to zero as.

According to Lemma 3.1, x'(X,) is for every x'e(E’). a real-valued
subpramart and, by Theorem 24, there is an r.v. f. such that

(*) x’ (Xn) u:’mf; a.s.
Since x’(Z,,k)k—J’ 0 as., then x"{Y;,k)&ma- S as. and, by the uniform in-
e . ;

tegrability, in the L, -norm.
Therefore, for every AeF, =0a(JF,), [x'(Y,
&

Hy
A

( Y, dP),x is weakly convergent Cauchy sequence.
A
Since E does not contain any ¢, - space, then (by Th. 1.c.4 in [9]) E is weakly

sequentially complete; and so | Y, dP is weakly convergent for every deF .
A

Let

)dP is convergent, and so

p(d)y=w-lim |Y, dP.
k-+on 4 )
Since u is of bounded variation, by the Caratheodory, Hahn and Kluvanek
extension theorem (see [3]) uis a countable additive measure on F . Moreover, it
is P-continuous. By the RNP thereexistsanr.v. X = L, (Q,F , P; E) such that

p(d) = [ XdP  for every AeF,
A
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hence

Vx'e(E). VAeF j'x'(l/],ik} de—a» [x'(X)dP.
A Y
On the other hand,

(X (Y,)dP ~ [fodP,
) k-vao by

so we get

(X' (X)dP = | f.dP for every AeF,
A A )

and, since x'(X) and f.. are F, - measurable, x'(X) = f,. a.s. for every x'e(E'),.
From («) we have x'(X,) - x'(X) as. for every x'e(E),.

Since E has the RNP, E is order continuous and, by Theorem 2.11, there
is an equivalent norm || ||, on E which has the Kadec - Klee property. Let D be a
countable subset of (E'), such that for every xeE,
lixlly = supx’(x).
x'eD
Then (x'(X,), F,)uen is @ uniform sequence of positive subpramarts, and by
Lemma 3.3

Itxniﬁﬂ njﬁﬂxm a.5.

Finally, by the Kadec-Klee property of (E, || ||;) we get

X, —» X strongly as.
i R~ o]

THEOREM 3.6. Let E be a weakly sequentially complete Banach space with the
RNP, and let (X,, F),.n be an E-valued pramart such thar
supE|IX, ]| < =

kel
for some subsequence (X, ). Then X, is strongly a.s. convergent.
Proof. According to Lemma 3.4, we can assumethat X, =Y, +Z,,, where
Jeen 18 uniformly integrable and Z, — 0 as, k— .
Since we consider a sequence of strongly measurable functions which are
separable valued, we can assume that E is separable. By the classical Kadec
renorming theorem, there is an equivalent norm || ||, on E with the Kadec-Klee
property. Moreover, there exists a countable set [D < (x'e E'|[|[x]| < 1] such
that for every xe E

(¥,

3

llxll, = sup|x'(x)|.
x'eD
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For every x'e E', x'(X,) is a real-valued pramart. By Theorem 2.4, there
is an r.v. fi- such that x'(X,) - f as.
Next, as in the proof of Theorem 3.5, we get that for every AeF
(J % dPlen

Hy
A

is a weakly convergent Cauchy sequence. By the weak completeness of

E, ([ Y, AP}y is weakly convergent.
A
Afterwards, continuing as in the proof of Theorem 3.5, we get an r.v. X such

that Vx' e E' x'(X,) = x'(X) as.; hence also |x' (X ,)] — |x'(X)] a5, where [x'(X )| is
- a real-valued positive subpramart. By Lemma 3.3

1%y = e ()~ erpbe GOl =1,

and by the classical Kadec renorming theorem X, — X as.

4. Decomposition of subpramarts. In this section we discuss an extension to
Banach lattices of the following subpramart decomposition theorem of Millet -
Sucheston:

Tueorem 4.1 ([11], p. 93, Prop. 3.3). Let (X,,, F)nen be a real -valued positive
integrable adapted sequence. Then (X,) is a subpramart if and only if there is a
positive submartingale (R,,, F,) such that for every positive integer n, R, < X, ass.,
and ‘

lim(X,—~R,) = 0 in probability.
el

We consider now a Banach lattice E with an unconditional basis {¢;}, such
that the lattice order is induced by the basis, ie.,

ol o
Y xXe< Y ye iff VieN X<yl
i=1 i=1

where

P ®
Y x'eg and Y yeek.
i=1 i=1

Remark 4.2. On every Banach space E with an unconditional basis {e;};.y
thereis a norm | J|; equivalent to the original one, and such that for this norm the
basis [e};. is strictly hyperorthogonal ([12], Theorem 20.3). (E, || ||} is a
Bapach lattice with the order induced by the basis {¢};.n. ‘

The following lemma is easy to verify.

LemMa 4.3. Let E be a Banach lattice with the ovder induced by a basis {¢;};.x .

2 - Prob. Math. Stwist, 5 (2}
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Let |€'l;.n be a biorthogonal sequence of functionals and set

D "-‘-"{X’E—E’ ! “JC'” = 19 x' = ineia S Na xiEQ%-}a
- ic¥
where Q. is the set of positive rational numbers, and S is finite.
Then D is countable and
VxeE, |x||=supx'(x).

x'gD

The next lemma may be interesting in itself as it shows a large class of
submartingales which are pramarts.

LemmMa 4.4. Let E be a Banach lattice with the RN P, and let (R,,, F,),.nybean E -
valued positive L, -bounded submartingale. Then (R, F ), iS a pramart.

Proofl. Let R,=M,—Z, be the Riesz decomposition of R,, where
(M,, F)un is a martingale and (Z,, F,),.n is a positive potential (see [4]).

Since, for every increasing sequence of stopping times(r,) = T, R, is a positive
L, -bounded submartingale, then (by Theorem 2.5) Rrk'is convergent in
probability, and so (R,),.s also converges in probability. Similarly, by the well
known Chatterji theorem, (M,),.r is convergent in probability. Thus (z.)..r

converges in probability. Moreover, limZ, =0, as w-limZ, = 0.
T el
Since

Vo,1eT, t1206=>0<E°R~R,=Z,~E°Z,<Z,,

then sup EiEF"Rf——R,H <|IZ,)l, and so R, is a pramart.

Tueorem 4.5. Let E be a Banach lattice with the order induced by an
unconditional basis |e;};., and with the RNP. Let (X,, F,).~ be an E -valued
positive integrable adapted sequence. Then X, is a subpramart iff there exists a
positive submartingale (R,, F ).y such that ¥YneN R, <X, as, and
lim(X,—R,) =0, in probability.
el .

Proof. Necessity. Let |e'};y be the biorthogonal sequence of functionals.
Forn,ie Nset X§ = ¢'(X,). Then (X%, F,)is(for every i e N) areal - valued positive
subpramart; and as in the proof of Theorem 4.1 (see [11])

ry = inf E™" X!

TEn

is a submartingale such that VneN r, < X! as, and lim(X!~r) =0, in
el
probability.
Set

R,= \E™X,.

T8
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Fp o i < Fu yri <3 Fn yri o i
R,=NE"Y Xiee=/\ Y (E"X)e =73 inf(E"X)e, =Y rie.
: i=1

TN i=1 TEN fes ] i=] t=m

Since, for every i, #} is a submartingale, then R, is also a submartingale.
Moreover, 0 < R, < X, as. VneN, and it is easy to verify that if R, is a
submartingale such that R, £ X,, then R, <R,.

Let D be as in Lemma 4.3. Since

lim(Xi—r) =0
el
in probability, and i = ¢'R{, then
¥x'eD limx'(X,—R)=0 in probability.
el .
In order to prove that

lim(X,—R)=0 in probability,
zel

it is enough to show that for every increasing sequence of stopping times 7,
(X,~R) = 0as.

By Lemma 4.4, R, is a pramart, hence (X, — R, ),y is @ positive subpramart,

and, for x'e D, x'(X, - & ) is a uniform sequcnce of subpramarts. Using Lemma
3.3 we get :

1Xe,— R, |l = supx'(X

~R.}—=0, n-— 0.
i
x'gD

n

Sufficiency. Assume that {here exists a submartingale (R, F,) such that
R, < X, and :

lim(X,—R]))=10, in probability.
el

Since R, < R, < X,, we have
m(X.—R) =0, in probability.

el

But
XBW‘EFJ Xt < Xﬂ _"Rmz

thus X, is a subpramart.

As the following example shows, the above decomposition, i.e., the “necessity™
part of the previous theorem, fails even for the Banach lattice L, (] 0, 1]) and for
a constant sequence of trivial o -algebras.
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Example 4.6. We consider L, ([0, 1]) as a Banach lattice with the natural
pointwise order. Let, for neN, F, = {®, Q}.

Set A, = [k/2",(k+1)/2™ for n=2"+k where m=0,1,2,..., k=0,
1,...,2"—1,andset X, = 1. Then(X,, F,), is an L, -valued positive order
bounded pramart as it is deterministic norm -convergent sequence. Note
that

Ry= NE™Xp= N\ Xp= N\ lg =1 = 0.

mzn mEn mzn " m;._,,

Let (R,, F,) be a submartingale such that R, < X,. Then R, <R,, and
X,—R,z2 X,—R,=X,.
However X, — 1 strongly. Thus (X, R,,) ./; 0.

!l"‘*m

The above example has been given to me by IF . Szuiga (oral comunication).
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