
STRONG CONVERGENCE 
OF Y EmOR - VALUED PRAMARm AND SUBB"gZAIQIARTS 

Afwtmer. We wove a subpramart convergence tbeorem wfaictl is a 
complete ~ I u t i c m  of a probfern raised by L. Egghe, and a pramart 
convergence theorem which partly sofves a probjem afL.Suebeston. We 
obtain also certain decomposition of subpamarts. 

r 

1. J~arodanctii;on. Xn the present paper we deaf with subpramarts and pramarts 
in Banach spaces. In Section 2 we give necessary definitions and natations, 
formulate problems of Sucheston and Egghe, and recall known results 
concerning the plrohlems. 

In S ~ t i o n  3 we prove the lnain result af this paper, it is the subpramiart 
convergence theorem - Theorem 3.5 - which ~ompletely solves the problem of 
Egghe. Thea-orern 3.6 - the pramart convergenw theorem - gives a partial 
solution of tlrc psolobm of Sucheston. The slue to tbc both theorems is ternnja 
3.4, which can be regarded independently as a very useful tool in other similar 
reasonings. 

In Section 4 we obtain an  extension of a su bpramsrrr decomposition theorem 
clue to Millet and Suchesion and we give an exampile showii~g that this 
decom~wjsition does nor 'Ilold true in the geacral ease. 

a?. Brceiimfnaries. Let (0, F ,  P )  be a probability space, (EM),,, . an increasing 
sequence of sub - CJ -algebras sf the 8 - algebra F ,  T - the set or all bounded 
stopping times with resgeczt to (Fa),,,,. 

Dc f i n i r i o n 2.1. For IL Banach spxe E, the adapted sqrrence {X,!, F,,),r, of 
E -valued random varial-,!es is callcd f i  prrrr~wrf if (X,T - XJ  converges to zero 
in probability, uniformly in s 2 a, i.e., for every s > O there exists a, E Tsuch that 
o,, g n. zg s irnplil~e~ 



Sucbeston slated in 1979 the question whether Cilattesji's result far 
martillgales holds true in the ease of pramasts. Let us report i t  exactfyr 

P rob l em 2.2. Let E be a ~ a n a c h  space with the Radon- Nikadym property 
/RNPIJI), and let ( X , )  be an E -  valued pran2at.t bounded in L,  ( E )  - norm, Is X, 
strongly a.s. convergent? 

Let now E be a Banach lattice, 
Defi n i t i on 2.3, The adapted sequence [ X , .  F,,) of E - valued random 

variables is called a subprurncai-I if ( X ,  - E" "XJ' converga to zero in prob- 
ability, uniformly in r 2 ucr. 

In the real -valued case Millet and Sucheston proved 
THEOREM 2.9 ([IT]* p. (3~5~ TIa. 3.7). Ler (X,J be a subyamarr which sari,~f~es 

shc fbl/owi~?g candirion: 

liminfE(X:~+limidE{X1,) r x. 
I 1  -'% I l - @ E  

Then X, ,  converges ass. to an inre~rtrhle r.0. 

As it is seen from the dcfillitians every submartingate is a subpramart, and for 
submartingales Heilziclr proved the FaIlnwing 

THE ORE^^ 2.5. (331). L ~ I  E be u Banach I~rrice with rlte RNP. Then emry 
posirit~e LI (El-Ponnncied submartingale is o.s, conoepgenr. 

Egghe raised a problem which is connected with the problem of Sueheston. 
Pro  t-, l e m 2.6, (see [fi] ar [5]). Let E: be a Banact1 lattice with the RNP. and let 

(X,,, F,) be an E - v~tlued positive subpramart with an L, ( E )  - bounded srabsc- 
quence, Is X,, strongly as .  convergent? 

Both problems have been affirmabtively solved ~ander additional assumptions. 
THEOREM 1.7 (/7], p. 460, Th, 2.4, and p- 104.3, T1-f+ 3.5), L~,et E be u Bu~nch  

spsrce with ~ C E  K N P 1  and Eel (X, , ,  F,),, he an E - valued ~7r.umurtfor rvhicfi there 
is a sut~srrqtrer~~e (X,,,) wlaich is un~bn~ai j~  inrr.yrahle, Then X, it,fcCf' crune'grges 
srro~ry 11) a.s. 

THEOREM 2,$. ([13], Th. 3.1). Let E be it BS"tstlmi2 space wirh srn mncol~ditiawaS 
busis and tvirle rJie RMP. Sef (A?,,, FJltSN be u pramwr wirh and L,  ( E )  - bouxzlcf~d 
subscyuence. Then X,, conrrergcs snorlgljj a.s, 

Zta this paper we prove a pramart convergence thcorcm for weakly 
sequentially mmylete Banach spaces (Tl7earem 3.6). 

Let us recalf some known results mi~cerniag Ihe strang convergence of 
strbpramarts. 

TN~OREM 2.9" ([63> Cor, 2.8'1. kf E bc a Batlack Iarfice wirh rlre RNP.  Thesf 
m p l y  E - vtmbeil posiriue subpvarnwf (X,,, P,t),,I, i,s stvo~g!y convergefir rrr an 
ijnl'vyrabfce r.o., if ;here is u: sarbseqrdence (n,) e: N such rltsrt (X,,,h,, is a-l~zgor~;rblSy 
inf egruhlr , 



THEOREM 2.10 ([13], Th. 2'2). Let E he a Ba?znclr iarfice with urr uracn~zdirionltf 
basis mclr [Ezat rhe order is irlduced by rhe basis, urfd Eer B hurle? the RNP, T k m  er~ i - y  
E - wlwe(1 pposiriv~ st~hpranmmr (X,, Fl,),,eN is SPOF~QIJI W.S. corzoergeftf fo tlu 

i~ziet.abler r.u., g7 thme is u suhsegr~e~ace (X,,3,,, which is L1 ( E )  - tsuurrcled. 
Here we solve dfirmatively the problem of Egghe without any additional 

assumptions. 
In the paper we use a methud based on a Madec - Mlee lntrice renormin8 

theorem due to Davis, Ghoussoub and Lir~densttauss: 
THEOREM 2.11 (E2j);. A Banach latrice ( E ,  1 1  1 1 )  is order. corlritauows $and anly if 

$%> 

there is tin cql~iaale~tt Iuttice uorm 11 i l l  nn E such rhur l .~ , , : , , ,  , c E, x, -. x rrnd 
Il.~;nIir + I l ~ I l r  i t n ~ ~ l y  Ilx,-xll, + 0. 

Is is obvious rl-iat if E is separable, then the equivalent norm has the Kadec - 
Klee proprty with respect tcl a countable set of functianals, 

3. Sebpamark sad pramart ctonvergencs: Olme(~rea1ns. In order to profit by the 
Kadec -Kim rrenorming theorem we: have to report twa lemmas from [6]. 

LEMMA 3.1. ([6], L. 2.2). Let (X,, F,,),,, be u gositi~e~uhpra~~zarr wi th  values in a 
Barznch lattice E .  Lcrr x'E(E~)+ be ~bi t rsrry ,   the^ (x"&,,) FF,,),;, is a p ~ s j f i ~ e  
sir byrumar t . 

D e f i n i t io rr 3.2 ([6], Def- 2.3). Let (XT, F,,),,, be a sequence of real - valued 
subpramarts. It is called a t tn( f&r~~t  sequence nf subpramwts if Ve O 4r?, E Isucb 
that for every cr, z E 7: 6 CT $ T, 

Then each subpr~nlsrrr (Xr, F,,),,, eor7ce~g.e~ a s .  Io an inrqrabfe r.v. XI::. itnil we 
have i 

The folkwixlg lemma reduces our problems tu a situation similar to illat $12 

Theorem 2.3 and 2.9, The author is very gratef~il ta J, Sulga for a considerable 
~imgiificaticrn of thc original proof of this lemma. 

LEMMA 3.4. Leu E be a Ba~lnck spc3ce am1' Ier (X,!, F,),,, ha atr ndnpdcd scqzrefsce 
r$ E - cultred raj~dorn s~rrrisrhles such r htrt 



Then tkm.rr; exists n subsequence ( r ~ ~ ) , , ,  rr N s a h  rhat, jbr every k, 
X., = Y, + Z.,, where Y., and ZNk are FN, - measurabfe, (G),, is unforxnly 
integt*able and Z,, -+ O U.S, ij k ---, a. 

Pr oaf. Note: that it i s  enough te find such a subsecyuence(n,), where Z,,, tends 
to zero in probability. 

For every positive inlegel- m set 

Since g i ( r )  is ncrninueasing and aonnegativt., then there is a positive real 
number r such that 

Thus there is. an increasing sequence (r,),,, such that fim r ,  = X I ,  and 
k--m 

3 f g$(r,) < X -  1Jk- 

It is obvious that also V m ~ l ( l i  lim g;(r) = a, heme 
t-+r*, 

There is then an inermsing sequence of positive integers (n,),,, such that 

Y., X I * J ( ~ i x l i k ~ ~  LIXJ and G, = X, 4 N n., 11 - 
TlE~en IjF,,  and Zak are F,, - measurable. 
Since 

Z,, tends to zero in probability. 
Jn order ra prove: that ( Y,,i)k,, is u~formly ifltegrable it is cnaiugh to  how that . r 

Since 



i s  a nonr'ncreasing function, then Iim g ( r )  = lim g (ti). But 
I-+UJ ;-+a) 

Th~refare Eim g ( t i )  - 0. 
i - * m  

Waw we are in a position to solve the problem af Egghe, 
THEOREM 3.5, t e r  E be a Banglth lattice wirh tke R N P ,  ant! ler (X,,  F,),, be 

an E - uahed wirive  suhpanzart such r k r  

f t r  some su bseqraenc~ (X,t,h,, . 
Then X ,  is srrorqly a.s. ccrrrzrergent. 
Pr oaf. By Lemma 3.4 we can assunre that X ,  = I$ +Z, , ,  where (E",,),,, is 

uniformly integrable and Z,, tends ta zero a.s. 
Ascording to Lemma 3.l,  x".(X,) is for every x S ~ ( E ' ) ,  a real-valued 

subpramart and, by Theorem 2.4, there is an r.v, f :  such that 

Since xJtZ,,) -s 0 ass., then xt(Ynk) -+ fx. a.s, and, by the uniform in- 
k -*  m k -* m 

tegrability, in the L, -norm. 
Thercfar~, for every A E F ,  = o(uF,) ,  J x ' ( K k ) d P  i s  convergent, and 80 

n A 

(1 XJk dPIk, is weakly converpnt Gauchy seqwnre, 
A 

Since E does not contain any c, - space, then (by Th, l.c.4 in [9]) E is  wcakfy 
sequentially complete; and so [ Vyrk d P  is weakly! convergent: for every A E. F,. 

L 
Let 

Since y is of brrnded variation, by the Gar,lrhe.odory, Hahu and Kluvanek 
extension theorem (see C33) ~ i s  a countable additive measure on F,. Moreover, y 
is P - continuaus. By the RNP aim-e exists an r.v. X - L, (a, P, ,  la; E )  such thrrt 

@(A)  - 1' XdP for every A E  Fa, 
A 



On the other hand, 

sa we get 

and, since x"X) aandlys :,.re F ,  - measurable, xr(Xf =fxfX.) 8.s. far every .X'E(E')+. 
From (a) we have xl(X,)  -, x'(X) a.s, for every x r ~ [ E ' ) ,  . 

ni-N 

Since E has the RNP, E is order covrcinuous and, by Tkorem 2.1 1, there 
is an  equivalent norm I/ 11, on E which has the Kadec - Klee property. Let D be a 
countable suhet  af (El+ such that for every X E E +  

Then (x" X,), F,,),,, is a uniform sequence of positive subprammr&, a d  by 
Lemma 3.3 

Finally, by the Kadec-Klee property af ( E ,  11 / I , )  we gel 

THEOREM 3.6. ,!A?( E lie Q weakly sequer~firtIly complete Bonach space wirh she 
RRP, a~td  ler (X,, F,),,, be un E-tialtretl prummr s z ~ h  thnr 

for sonze subseqcsluettce (X,,,). TFZEII'I X,, is srrongSy a,$. cor-ruergar~c. 
P r  o sr f, Accordi1~ to Lernrna 3.4, we call assume that X, = V,, + Z,, , where 

(Y&lLeN is un~formfy integrable and Z,,, -) 0 a.s., A: -+ x . 
Since we esnslder a sequence of strollply tmessurshle ftirnctiorrs whiclr are 

separable valued, we can assunle titat E is sepdrable. By the classical 
renorming khearem, there is an eqxiivsllent norm i;/ 11, on E with the Kadec-KEec 
property. Moreover. there exists a countable set ID c ~ X ' E  Fl( llx'll G l )  such 
thal for every X E E  



For every x 'EE:  x f ( X n )  is a real-valued pamart. By Theorem 2.4, there 
is an r,v. jie such that xf(%,J --+fzr  3.8. 

Next, as in the proof of Th~orem 3.5, w i  get that for every A E F ,  

i s  a weakly ~oskverg~llt Cauchy sequence. By the we& comglttseness of 

E? ((S 8P)k,, is weakly convergent, 
A 
Afterwards, cantinwing as in the proof of Thmrem 3.5, we get an r.v. X such 

that V x k  E xx'(XJ '4 xl faa .s . ;  hence also Jx'(X,)J -+ Jxi(X)I a.s, where Ix'(X,)J is 
a real-valued positive subpramart. By Lemma 3.3 

Blx,lll = sup Ix"X,J1 -) sup lx"Wl = llxif * , 
r' ED x'eD 

and by the classical Kadee renorrning theclrern X ,  -+ X a.s. 

d Bgeompstdoa of fisabpramillrzts. In this smtion we discatss an-extension to 
Banach Iatittica of the following subpramart daompi t ion  theorem of Millet - 
Suchesroxa : 

TNW~PREM 4.1 ([I 11, p, 93, Prop. 3-31, Let (X,, PJ,, be a real - vaheli' positive 
integrtabk adckpred seqnderzce, Then [X,) is a subprcamrt .$ and only #%ere is 
lwrsiciae s;lrbmsarriwa/e [a,, F,) such thatfor euery positive i~~teger ra, 18, ,< X ,  c~,s., 
and 

We conslider now a Banach lattice E with an otrcsnditi~nal basia [ e l ) ,  such 
that the lattice order is induced by the basis, i,e., 

where 

x $ e ,  and Z y i q ~ ~ +  
i~ l i -  l 

Remark 4.2, OR every Banacb space: E with an unconditional basis { e , )  ,,, 
there is a norm 11 I{, equivalent ts the original an$ and such that for this norm the 
basis is strictly bymrord-bogand ([12], Theorem 20.3), (E ,  11 11,) is a 
Banach lattice wiih tbe order induced by the basis fq  j,,,. 

%he hlbwing bmma is e&?y to vcsify, 
Lbnlnn~, 43, hf E be a Banrtck lattice with the order iptal'uced hy basis 'e- !  r iJrstVr 
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Ler be a biorrhogonal seqaence of fuutcti~rrads and set 

wifile8.e Q+ is rht? st?t of positive rational nurrrfrm~~ and S is .finits. 
Then D is  cou~~tnble tarad 

The next lemma may be interesting in itself as i t  shews a large class of 
submmtingalw which ate pramarts. 

LEMMA 4.4. Let E be a Banack Inrfice with the RPJP, a d  I& (R,, F,),,, be anE - 
vuhed .psirive L, -bounded subm~ringale. Thelr (R,, F,),,, is 0 prarnarf* 

Pro ofw k t  R, = M, -22, be the Riesz decomposition of R,, shere 
(M,, F,,),, is a martingale and (Z, ,  FA,& is a positive ptentiztl (see 641). 

Since, for every increasing sequence of stopping times f.t,) c ?; R,, is a positive 
12, -bounded submartingale, then (b.y Theorem 2-51 4, ' is convergent in 
probability, and so [R,keT also converges in probability, S i ~ l m l y ,  by the zvell 
known Chatterji theorenr, (Mrh,, is convergent in wabability. Thus jz,],,, 
converges in probability, Moreover, Ern& -- 4 as w-UmZ, = 0, 

~ E T  raT 
Since 

then S U ~ ~ ~ E ~ " R , - R , I I  G /IZ,[[, and so R, is a pramart, 
r 3 a  

THEOREM 4.5. k t  E be a Banach Satrice with the order induced by an 
~lncocorditioraal basis fq 1 reNf iaiztl with the RMP. k t  [X,, be cm E - rsa!ued 
psiticre ivltqqrnhle adapted sequence, Then X, Is a subprrrmr tfl  there exi.vtt~ a 
gosiritle suhnmrtingate (R,, FA,, such fhcr~ V n g N  g X ,  ass., a d  
fim(SI; - &) = 0, in prvhability. 
r tT 

Pr la of- N ec es ~i t y. Let I ei j i,, be the biclralnagonatl squence of fumtbnals. 
For n, i E N set X:l = e'(X,), Then ( X i ,  F,J is (for every i E JIJ) a real -valued positive 
subpramart; and as in the proof of Theorem 4.1 Ism [I131 

in; a, s;ubrmartiw_ak such that FJ I ~ E  N ri < Xk as, and Iim(X: -sf) = 4 in 
ter' 

ps~babi,ili ty. 
Set 
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Rn = A E'" kr ei = /\ ( i f "  x:) e, = 1 inf (E'"X:) e. = r: q . 
rbrr r b n  i= i=l r a n  i =  1 

S i m q  fur every i, r.', is a submalplingale, then R, is also a submmtingale, 
Mureovm, 0 ,< R, $ X,, a.s. WPZEPIJ~ and it is easy lo verify that if R:, is a 
submartingale such that R:, 6 X,, then C R,. 

Let D be as in b m m a  4.3. Since 

lirn (X: - pi) = 
f6T 

in probability, and r",= e%L, then 

In order to prove that 

it is enough to show that far every increasing squenm of stopping times a ,  

(XrII-R,) + O as. 
a-m 

Ry  k m m a  4.4, RFlr is a pramart, hence (Xrn - &JnElu is a positive subpramart, 
dad, for X ' E  B, x'(.X~(~ - kt) is a uniform sequence afsubpramarts. Using Lemma 
3.3 we get 

S ur'f i c i enc y. Assume that there exists a submartingale (R:, F,,) ssbleh that 
RI, g X, and 

lim ( X ,  - &) = 0, in probability, 
FCT 

Since RI, $ R, 6 X,, we lfave 

thus X, is a subpramat, 
As the fclUowing cxample shows, the above decompsition, i.e., t h e " n e ~ ~ ~ s i ~ y q '  

part of the previous theorem, fails even for r be Banach lattice L2([0, f ] )  and for 
a coastant squence of trivial cr -algebras. 



Example  4.6. We  ons side^ L,([0, I]) as a. Banach lattice. with the natural 
pointwise order. Let, far R E  N ,  F ,  -- I@, t2 t . 

Set. A, = [ k / F ,  f k  + 1)/2") for n - 2"'+ k, vhere na - 0, 1, 2, . . . , k = 0, 
1, . . . , 2" - 1, and set X, = 1 . Then (X,, F,fBeN is am L, -valued positive order "", 
bounded pramart as it its deterministic norm -wavergent sequence. Note 
that 

F E n =  A E " X , =  AX,,= = I  
R 

= 0. 
m a n  rn8 n m a n  A;4 rva Bn 

Let (Rh, I;,) be a submarfingale such that RC, G X,. Then RE, ,< R,, and 
Xt,--Re 2 Xn-Rn == X,,* 

However X, -+ 1 strongly. Thus (X,- R,) #+ 0.. 
N-*m r-eta 

The above example has been given to me by J. Szulga (oral comnicaticsn). 
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