UNIQUENESS AND EXTREMALITY FOR A CLASS OF MULTIPLY-STOCHASTIC MEASURES

BY
RAE MICHAEL SHORTT, (Houghton, Michigan)
0. Introduction. Since the fundamental papers of Douglas [3] and Lindenstrauss [8], much has been written concerning the convex set of doubly stochastic measures (probability measures on the unit square with uniform marginals), most of it an attempt to obtain a clearer understanding of this set's extreme points; the problem is hard, and success has been limited. We present a three-dimensional analogue for the class of doubly - stochastic measures related to some earlier work on property (V) in Shortt [12]. There the concern was with the existence of probabilities on a product $X \times Y \times Z$ with prescribed marginals on $X \times Y$ and $Y \times Z$, and a rather detailed measure - theoretic description of those separable spaces X, Y, Z for which such a construction is possible was obtained. The question of uniqueness was not adressed, nor that of determining the extreme points of the solution set; this is the substance of theorems 1 and 2 infra.

Note that if Yreduces to a single point, then the problem becomes doubly stochastic; the point of theorem 2 is to analyse three-dimensional extreme points in terms of two-dimensional extreme "slices".

Before treating these results, we offer a preliminary section touching on some basic facts about separable spaces and reviewing the notion of a Markov transition kernel. This is a natural and important tool, but its use requires care; in Shiflett [11], for example, the measurability of $P(x, B(x))$ in the proof of Theorem 3 is by no means assured. The argument may be completed by an appeal to the Blackwell and Ryll-Nardzewski [1] selection theorem, much as in the proof of theorem 2, claim 3 below. In what follows, we have been to some degree fastidious concerning measurability questions.

1. Preliminaries. We deal exclusively with separable spaces, i.e. measurable spaces (X, \mathscr{B}) for which:
(a) there is a metric d on X under which (X, d) becomes a separable metric space, and
(b) \mathscr{B} is the σ-algebra of Borel sets generated by the topology of (X, d). Then d is said to be a metric for $(X, \mathscr{B}(X))$.

By a result of Marczewski [9], a measurable space (X, \mathscr{O}) is separable if and only if \mathscr{B} is countably generated and contains all singletons drawn from X. We shall often suppress the notation of a σ-algebra, calling the space X and, where necessary, indicating its measurable structure with $\mathscr{B}=\mathscr{B}(X)$. If A is a subset of a separable space X, then A itself becomes a separable space with the relativised σ algebra $\mathscr{B}(A)=\{A \cap B: B \in \mathscr{B}(X)\}$.

A separable space X is standard if there is a metric d for X under which (X, d) becomes a Polish space (i.e. a topologically complete and separable metric space). It is well-known that if X is an uncountable standard space, then X is Borel -isomorphic with the unit interval $I=[0,1]$ under its usual Borel structure. (This equivalence allows one, in questions of pure measure theory, to replace any uncountable standard space with the interval I.) A subset A of a standard space X is itself standard if and only if A is a member of $\mathscr{B}(X)$.

For proofs of these facts, as well as additional information on standard spaces, we refer the reader to Cohn [2], Chapter 8; for the classical treatment of these topics, see Kuratowski [6], Volume I, Chapter 3.

If X is a separable space, let $\mathscr{A}(X)$ denote the linear space of all finite signed measures on $(X, \mathscr{B}(X))$. If d is a metric for X, then $\mathscr{M}(X)$ may be given the topology of weak convergence of measures; this topology is separable and metrisable, so that under the corresponding Borel structure, $\mathscr{M}(X)$ becomes a separable space. As is shown in Varadarajan [13], p. 193, this separable Borel structure on $\mathscr{M}(X)$ is generated by all mappings of the form $\mu \rightarrow \mu(B)$ as B ranges over $\mathscr{B}(X)$; thus the Borel structure on $\mathscr{M}(X)$ does not depend on the choice of d. The probability measures in $\mathscr{A}(X)$ will be called laws, and $\mathscr{P}(X)$ will denote the collection of all laws on X.

Let X and Y be separable spaces; following Neveu [10], Chapter II.2, we call a real function $P(x, B)$ on $X \times \mathscr{B}(Y)$ a Markov (transition) kernel over the space X if
(1) $P(x, \cdot)$ is a law on Y for each $x \in X$, and
(2) $P(x, B)$ is measurable in x for each $B \in \mathscr{B}(Y)$.

Condition 2 is equivalent to:
(2') the mapping $x \rightarrow P(x, \cdot)$ is measurable from X to $\mathscr{P}(Y)$ under the separable structure it inherits from $\mathscr{M}(Y)$.

The following two lemmas are essentially a restatement of Neveu [10] Proposition III.2.1:

Lemma 1. Suppose that $P(x, B)$ is a Markov kernel over X. If P_{1} is any law on X, then the set function

$$
P(A \times B)=\int_{A} P(x, B) d P_{1}(x)
$$

defined for all rectangles $A \times B$ with $A \in \mathscr{B}(X), B \in \mathscr{B}(Y)$, extends uniquely to a law P on $X \times Y$ with marginal P_{1} on X.

Remark. In this situation, we call $P(x, \cdot)$ a Markov kernel for P over (X, P_{1}), or simply over X.

Lemma 2. If $P(x, \cdot)$ is a Markov kernel for a law P over X, then
(a) the mapping $x \rightarrow P\left(x, B_{x}\right)$ is measurable on X for each $B \in \mathscr{B}(X \times Y)$; here B_{x} denotes the section of B over $x \in X$, and
(b) $P((A \times Y) \cap B)=\int_{A} P\left(x, B_{x}\right) d P_{1}(x)$ for all $A \in \mathscr{B}(X), B \in \mathscr{B}(X \times Y)$, where P_{1} is the marginal of P on X.

If $P(x, B)$ is a Markov kernel for P over $\left(X, P_{1}\right)$, then the function $Q((x, y), B)=P\left(x, B_{x}\right)$ is a proper conditional distribution for P given projection onto X, as defined in Blackwell and Ryll-Nardzewski [1]. Conversely, if $Q((x, y), B)$ is such a proper conditional distribution, its values do not depend on Y and $P(x, B)=Q((x, y), X \times B)$ defines a Markov kernel for P. Essentially, the two notions coincide here, and theorems regarding the existence of one may be used to prove the existence of the other.

Lemma 3. Let P be a law on $X \times Y$ such that there is a standard subset $S \subset Y$ with $P(X \times S)=1$. Then there is a Markov kernel for P over X.

Proof. Easily adapted from Blackwell and Ryll-Nardzewski [1] Theorem 1 or Shortt [12] Theorem 4.

Lemma 4. Let P be a law on $X \times Y$ with marginal P_{1} on X and suppose that $P(x, B)$ and $Q(x, B)$ are Markov kernels for P over $X ;$ then $P(x, \cdot)=Q(x, \cdot)$ as laws on Y a.s. $\left(P_{1}\right)$.

Remark. From condition 2^{\prime} in the definition of Markov kernel, it follows that $\{x: P(x, \cdot)=Q(x, \cdot)\}$ belongs to $\mathscr{B}(X)$.

Proof. Let $\mathscr{A}(Y)$ be a countable algebra generating $\mathscr{B}(Y)$. For each $B \in \mathscr{A}(Y), P(x, B)=Q(x, B)$ for P_{1}-almost all x : if, say, $P(x, B)>Q(x, B)$ for all $x \in A$ with $P_{1}(A)>0$, then

$$
P(A \times B)=\int_{A} P(x, B) d P_{1}(x)>\int_{A} Q(x, B) d P_{1}(x)=P(A \times B),
$$

a contradiction. From the countablility of $\mathscr{A}(Y)$ it follows that $P(x, B)$ $=Q(x, B)$ for all $B \in \mathscr{A}(Y)$ a.s. $\left(P_{1}\right)$. Since $\mathscr{A}(Y)$ generates $\mathscr{B}(Y)$, the lemma is obtained, q.e.d.

Lemma 5. Let $P(x, B)$ be a real function on $X \times \mathscr{B}(Y)$ such that
(a) $P(x, \cdot)$ is a law on Y for each $x \in X$, and
(b) $P(x, A)$ is measurable in x for all $A \in \mathscr{A}(Y)$, where $\mathscr{A}(Y)$ is some algebra generating $\mathscr{B}(Y)$.

Then $P(x, B)$ is a Markov kernel over X.
Proof. Inspecting the collection of those $B \in \mathscr{B}(Y)$ for which $P(\cdot, B)$ is measurable, we find it to be closed under increasing unions and decreasing intersections. The usual monotone class argument finishes the proof, q.e.d.
2. The Principal Results. Let X, Y, Z be separable spaces with X and Z uncountable and standard. As noted in Section 1, metrics may be chosen for X and Z under which both become homeomorphic with the unit interval I $=[0,1]$; without hesitation, X and Z are written interchangeably with I.

Suppose now that P and Q are laws on $X \times Y$ and $Y \times Z$, respectively, sharing a common marginal P_{1} on Y. Our primary object of study will be $V(P, Q)$, the set of all laws on $X \times Y \times Z$ having marginals P on $X \times Y$ and Q on $Y \times Z . V(P, Q)$ is clearly a convex set, and Shortt [12], Theorem 5 implies that it is non-empty. The two questions before us are:

1. What are the extreme points of $V(P, Q)$?
2. When is $V(P, Q)$ a singleton set?

The answers to these are the content of theorems 1 and 2 below.
Before proceeding, however, it might be worthwhile to consider the case where X, Y, Z are finite sets; the marginal problem then becomes one of finding a 3-dimensional array $a(i, j, k)$ of non - negative numbers subject to the constraint that

$$
\sum_{i} a(i, j, k) \quad \text { and } \quad \sum_{k} a(i, j, k)
$$

are given matrices. It is not too hard to prove that a solution is extreme if and only if for each fixed $j, a(i, j, k)$ is an extreme matrix with specified row and column sums

$$
\sum_{i} a(i, j, k) \quad \text { and } \quad \sum_{k} a(i, j, k)
$$

Also, the solution is unique precisely when for each fixed j, either $\sum_{i} a(i, j, k)>0$ for at most one k, or $\sum_{i} a(i, j, k)>0$ for at most one i.

The conditions we obtain will in fact be "continuous" versions of these.
If M_{1} and M_{2} are laws on X and Z, respectively, then by $S\left(M_{1}, M_{2}\right)$ is denoted the set of all laws on $X \times Z$ with marginals M_{1} on X and M_{2} on Z. $S\left(M_{1}, M_{2}\right)$ is convex and, for the topologies we have chosen for X and Z, compact under weak convergence (it is a closed subset of $\mathscr{P}(X \times Z)=\mathscr{P}(I \times I)$, which is compact).

By lemma 3, there are Markov kernels $P(y, \cdot)$ and $Q(y, \cdot)$ for P and Q over $\left(Y, P_{1}\right)$. We assume that these kernels are fixed for the extent of this section. Again by lemma 3, any law R in $V(P, Q)$ also has a Markov kernel $R(y, \cdot) \operatorname{over}\left(Y, P_{1}\right)$. If $R(y, \cdot) \in S(P(y, \cdot), Q(y, \cdot))$ for each $y \in Y$, then call $R(y, \cdot)$ a canonical kernel for R. It follows easily from lemma 4 that any Markov kernel for R may be altered on a set of $y \in N$ with $P_{1}(N)=0$ to obtain a canonical kernel.

Let $R(y, \cdot)$ be a canonical kernel for a law R in $V(P, Q)$; define $E \subset Y$ by

$$
E=\{y \in Y: R(y, \cdot) \text { is an extreme point of } S(P(y, \cdot), Q(y, \cdot))\}
$$

Lemma 6. E is a Borel subset of Y.

Proof. For each μ in $K=\mathscr{P}(X \times Z)$, denote by μ_{x} and μ_{z} the marginals of μ on X and on Z. Define
$K_{0}=\left\{\mu \in K: \mu\right.$ is not an extreme point of $\left.S\left(\mu_{x}, \mu_{z}\right)\right\}$,
$M=\left\{\left(\mu_{1}, \mu_{2}\right) \in K \times K: \mu_{1}\right.$ and μ_{2} have the same marginals on X and $\left.Z\right\}$, $M_{0}=\left\{\left(\mu_{1}, \mu_{2}\right) \in M: \mu_{1} \neq \mu_{2}\right\}$.

Then M is compact, and M_{0} is open in M, and therefore σ-compact. Define $G: M \rightarrow K$ by $G\left(\mu_{1}, \mu_{2}\right)=\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)$. Then K_{0} is the image of M_{0} under G; since G is continuous, K_{0} is σ-compact.

Finally, E is the inverse image of $K \backslash K_{0}$ under the mapping $y \rightarrow R(y, \cdot)$ and so is measurable in Y, q.e.d.

Lemma 7. Let K_{0} be as in the preceding proof; then there is a measurable function $f: K_{0} \rightarrow \mathscr{M}(X \times Z)$ such that for all $\mu \in K_{0}$
(1) $\mu+f(\mu) \in K$,
(2) $\mu-f(\mu) \in K$,
(3) $f(\mu) \neq 0$,
(4) $f(\mu)_{x}=f(\mu)_{z}=0$.

Remark. Compare Karlin and Studden, [5] p. 270-274.
Proof. Define the sets

$$
L=\left\{\frac{1}{2}(\mu-\tilde{\mu}): \mu, \tilde{\mu} \in K\right\} \quad \text { and } \quad L_{0}=L \backslash\{0\}
$$

Then L is a continuous image of K and is therefore compact, whilst L_{0} is open in L and so is σ-compact. Also define

$$
A=\left\{(\mu, \tilde{\mu}) \in \dot{K_{0}^{\prime}} \times L_{0}:(\mu+\tilde{\mu}, \mu-\tilde{\mu}) \in K \times K \text { and } \tilde{\mu}_{x}=\tilde{\mu}_{z}=0\right\}
$$

Then A is relatively closed in $K_{0} \times L_{0}$ and hence is σ-compact. If $\mu \in K_{0}$, then $\mu=\frac{1}{2}\left(\mu_{1}+\mu_{2}\right)$ with $\widetilde{\mu}=\frac{1}{2}\left(\mu_{1}-\mu_{2}\right) \in L_{0}$ and $(\mu, \tilde{\mu}) \in A$; thus each section of A over points $\mu \in K_{0}$ is non-empty.

Hoffmann-Jørgensen [4], p. 137 Theorem 3, implies the existence of a measurable function $f: K_{0} \rightarrow L_{0}$ whose graph is contained in A, q.e.d.

Lemma 8. Let K and K_{0} be as above; then there are measurable functions $F_{1}: K_{0} \rightarrow K$ and $F_{2}: K_{0} \rightarrow K$ such that for each $\mu \in K_{0}$
(1) $F_{1}(\mu)_{x}=F_{2}(\mu)_{x}=\mu_{x} \quad$ and $\quad F_{1}(\mu)_{z}=F_{2}(\mu)_{z}=\mu_{z}$,
(2) $\left(F_{1}(\mu)+F_{2}(\mu)\right) / 2=\mu$,
(3) $F_{1}(\mu) \neq F_{2}(\mu)$.

Proof. Let $f: K_{0} \rightarrow \mathscr{M}(X \times Z)$ be as in lemma 7 and set $F_{1}(\mu)=\mu+$ $+f(\mu)$ and $F_{2}(\mu)=\mu-f(\mu)$.

Theorem 1. A law R in $V(P, Q)$ is an extreme point of $V(P, Q)$ if and only if for each canonical kernel $R(y, \cdot)$ for R over $\left(Y, P_{1}\right), R(y, \cdot)$ is an extreme point of $S(P(y, \cdot), Q(y, \cdot))$ a.s. $\left(P_{1}\right)$, i.e. $P_{1}(E)=1$, where E is the subset of Yin lemma 6.

Proof. Suppose that R is not extreme; then $R=\alpha R_{1}+(1-\alpha) R_{2}$ for distinct R_{1}, R_{2} in $V(P, Q), 0<\alpha<1$. Let $R_{1}(y, \cdot)$ and $R_{2}(y, \cdot)$ be canonical kernels for R_{1} and R_{2}; then $R(y, \cdot)=\alpha R_{1}(y, \cdot)+(1-\alpha) R_{2}(y, \cdot)$ defines a canonical kernel for R. Since $R_{1} \neq R_{2}$, the laws $R_{1}(y, \cdot)$ and $R_{2}(y, \cdot)$ differ for all y in some set of positive P_{1}-measure; $R(y, \cdot)$ is not extreme in $S(P(y, \cdot), Q(y, \cdot))$ for all such y.

Suppose, conversely, that there is a canonical kernel $R(y, \cdot)$ for R for which $P_{1}(E)<1$. Define K_{0} and K as before, and let $F_{1}: K_{0} \rightarrow K$ and $F_{2}: K_{0} \rightarrow K$ be as in lemma 8. Define R_{1} and R_{2} on $Y \times \mathscr{B}(X \times Z)$ by

$$
\begin{aligned}
& R_{1}(y, B)= \begin{cases}F_{1}(R(y, \cdot))(B) & y \in Y \backslash E, \\
R(y, B) & y \in E\end{cases} \\
& R_{2}(y, B)= \begin{cases}F_{2}(R(y, \cdot))(B) & y \in Y \backslash E \\
R(y, B) & y \in E .\end{cases}
\end{aligned}
$$

Then $R_{1}(y, \cdot)$ and $R_{2}(y, \cdot)$ are canonical kernels for laws R_{1} and R_{2} over $\left(Y, P_{1}\right) ; R_{1}$ and R_{2} are in $V(P, Q)$, and $\frac{1}{2}\left(R_{1}+R_{2}\right)=R$. Now for each $y \notin E$, $R(y, \cdot)$ is in K_{0}, so that $R_{1}(y, \cdot) \neq R_{2}(y, \cdot)$ for such y. If $R_{1}=R_{2}$, then by lemma $4, R_{1}(y, \cdot)=R_{2}(y, \cdot)$ a.s. $\left(P_{1}\right)$, a contradiction. Thus $R_{1} \neq R_{2}$, and R is not extreme in $V(P, Q)$, q.e.d.

We maintain the notations used in theorem 1, recalling that the Markov kernels $P(y, \cdot)$ and $Q(y, \cdot)$ were fixed. Define the sets

$$
D(P)=\{y: P(y, \cdot) \text { is not a point mass }\}
$$

and

$$
D(Q)=\{y: Q(y, \cdot) \text { is not a point mass }\} .
$$

These are members of $\mathscr{B}(Y)$: for example, $D(P)$ is the inverse image of $\{\mu \in \mathscr{P}(X): \mu$ is not a point mass\} under the mapping $y \mapsto P(y, \cdot)$; this last set is open for the topology of weak convergence in $\mathscr{P}(X)$, so that $D(P)$ is measurable.

Theorem 2. The following statements are equivalent:

1. $V(P, Q)$ is a singleton set;
2. $P_{1}(D(P) \cap D(Q))=0$.

Proof. Statement 1 implies statement 2. We prove the contrapositive, supposing $P_{1}(D(P) \cap D(Q))>0$. Recall that X and Z are metrised as the interval I and written interchangeably with it. We define the Markov kernels $R_{1}(y, \cdot)$ and $R_{2}(y, \cdot)$ on $Y \times \mathscr{B}(X \times Z)$ as follows:
$R_{1}(y, \cdot)$ and $R_{2}(y, \cdot)$ are laws on $X \times Z$ with cumulative distribution functions

$$
\begin{gathered}
R_{1}(y,[0, x] \times[0, z])=P(y,[0, x]) \cdot Q(y,[0, z]) \\
R_{2}(y,[0, x] \times[0, z])=P(y,[0, x]) \wedge Q(y,[0, z])
\end{gathered}
$$

where $a \wedge b=$ minimum $\{a, b\}$. Thus the mappings $x \rightarrow R_{1}(y, A)$ and y $\rightarrow R_{2}(y, A)$ are measurable for each $A \in \mathscr{A}(X \times Z)$, the algebra generated by all
sets of the form $[0, x] \times[0, y]$; since this algebra generates $\mathscr{S}(X \times Z)$, lemma 5 implies that $R_{1}(y, \cdot)$ and $R_{2}(y, \cdot)$ are in fact Markov kernels for laws R_{1} and R_{2} on $X \times Y \times Z$ over $\left(Y, P_{1}\right)$.

Claim 1. Both R_{1} and R_{2} have marginals P on $X \times Y$ and Q on $Y \times Z$, i.e. are members of $V(P, Q)$. (This is easily checked.)

We shall now endeavour to show that $R_{1} \neq R_{2}$, so that statement 1 does not hold.

Define the functions $g_{1}: X \times Y \rightarrow I$ and $g_{2}: Y \times Z \rightarrow I$ by $g_{1}(t, y)$ $=P(y,[0, t])$ and $g_{2}(y, t)=Q(y,[0, t])$.

Claim 2. The functions g_{1} and g_{2} are jointly Borel-measurable: this follows e.g. from Lange [7], Lemma 3.1 and the right - continuity of $g_{1}(t, y)$ and $g_{2}(y, t)$ in t for each fixed y.

Define the Borel sets

$$
S=\left\{(t, y) \in X \times Y: 0<g_{1}(t, y)<1\right\}
$$

and

$$
T=\left\{(y, t) \in Y \times Z: 0<g_{2}(y, t)<1\right\},
$$

noting that $D(P)$ and $D(Q)$ are the projections to Y of S and T, respectively.
Claim 3. There are measurable functions $h: D(P) \rightarrow X$ and $k: D(Q) \rightarrow Z$ whose graphs lie entirely within S and T.

This follows from Blackwell and Ryll-Nardzewski [1], Theorem 2 in this way: the sections of S and T over a point $y \in Y$ are given by

$$
S_{y}=\left\{t \in X: 0<g_{1}(t, y)<1\right\}, \quad T_{y}=\left\{t \in Z: 0<g_{2}(y, t)<1\right\}
$$

so that

$$
P\left(y, S_{y}\right)>0 \text { whenever } y \in D(P)
$$

and

$$
Q\left(y, T_{y}\right)>0 \text { whenever } y \in D(Q)
$$

The claim follows.
We extend the functions h and k (measurably) to all of Y by setting

$$
h(y)=1 \text { for } y \in Y \backslash D(P) \quad \text { and } \quad k(y)=1 \text { for } y \in Y \backslash D(Q)
$$

Define the Borel subsets $H \subset X \times Y$ and $K \subset Y \times Z$ by

$$
H=\{(t, y): t \leqslant h(y)\} \quad \text { and } \quad K=\{(y, t): t \leqslant k(y)\} .
$$

Then the sections of H and K over a point $y \in Y$ are simply $H_{y}=[0, h(y)]$ and $K_{y}=[0, k(y)]$, so that

$$
\begin{cases}0<P\left(y, H_{y}\right)<1 & \text { whenever } y \in D(P) \tag{*}\\ 0<Q\left(y, K_{y}\right)<1 & \text { whenever } y \in D(Q)\end{cases}
$$

Define

$$
B=(H \times Z) \cap(X \times K) \quad \text { and } \quad C=(X \times(D(P) \cap D(Q)) \times Z) \cap B
$$

in $\mathscr{B}(X \times Y \times Z)$; then according to lemma 2 ,

$$
\begin{aligned}
R_{1}(C) & =\int_{D(P) \cap D(Q)} R_{1}\left(y, B_{y}\right) d P_{1}(y) \\
& =\int_{D(P) \cap D(Q)} R_{1}(y,[0, h(y)] \times[0, k(y)]) d P_{1}(y) \\
& =\int_{D(P) \cap D(Q)} P\left(y, H_{y}\right) Q\left(y, K_{y}\right) d P_{1}(y),
\end{aligned}
$$

and likewise

$$
R_{2}(C)=\int_{D(P) \cap D(Q)} P\left(y, H_{y}\right) \wedge Q\left(y, K_{y}\right) d P_{1}(y)
$$

But from $(*), P\left(y, H_{y}\right) Q\left(y, K_{y}\right)<P\left(y, H_{y}\right) \wedge Q\left(y, K_{y}\right)$ for all y in $D(P) \cap D(Q)$, a set assumed to have positive P_{1}-measure. Thus $R_{1}(C)<R_{2}(C)$, and the result is proved.

Statement 2 implies statement 1. Suppose that $P_{1}(D(P) \cap D(Q))=0$ and that R is any law in $V(P, Q)$. Put $A_{1}=Y \backslash D(P)$ and $A_{2}=Y \backslash\left(D(Q) \cup A_{1}\right)$; these are disjoint sets such that $P_{1}\left(A_{1}\right)+P_{1}\left(A_{2}\right)=1$.

Define functions $f_{1}: A_{1} \rightarrow X$ and $f_{2}: A_{2} \rightarrow Z$ as follows: for each $y \in A_{1}$, $P(y, \cdot)$ is a point mass at $f_{1}(y)$; for each $y \in A_{2}, Q(y, \cdot)$ is a point mass at $f_{2}(y)$. These functions are measurable:

$$
f_{1}^{-1}(B)=\left\{y \in A_{1}: P(y, B)=1\right\} \quad \text { for any } B \in \mathscr{B}(X)
$$

and

$$
f_{2}^{-1}(C)=\left\{y \in A_{2}: Q(y, C)=1\right\} \quad \text { for any } C \in \mathscr{B}(Z)
$$

Let $G_{1} \subset X \times Y$ and $G_{2} \subset Y \times Z$ be the (measurable) graphs of the functions f_{1} and f_{2}; then $G_{1} \times Z$ and $X \times G_{2}$ are disjoint sets with $R\left(G_{1} \times Z\right)+$ $+R\left(X \times G_{2}\right)=P_{1}\left(A_{1}\right)+P_{1}\left(A_{2}\right)=1$.

Define

$$
F_{1}: A_{1} \times Z \rightarrow G_{1} \times Z \quad \text { and } \quad F_{2}: X \times A_{2} \rightarrow X \times G_{2}
$$

by $F_{1}(y, z)=\left(f_{1}(y), y, z\right)$ and $F_{2}(x, y)=\left(x, y, f_{2}(y)\right) ; F_{1}$ and F_{2} are easily seen to be Borel isomorphisms onto $G_{1} \times Z$ and $X \times G_{2}$.

If now B is a Borel subset of $X \times A_{1} \times Z$, then

$$
B \cap\left(G_{1} \times Z\right)=\left[X \times F_{1}^{-1}\left(B \cap\left(G_{1} \times Z\right)\right)\right] \cap\left(G_{1} \times Z\right)
$$

so that $R\left(B \cap\left(G_{1} \times Z\right)\right)=R\left(X \times F_{1}^{-1}\left(B \cap\left(G_{1} \times Z\right)\right)\right)=Q\left(F_{1}^{-1}\left(B \cap\left(G_{1} \times Z\right)\right)\right)$;
thus the value of R on subsets of $G_{1} \times Z$ is wholly determined by Q.
Likewise, if B is a Borel subset of $X \times A_{2} \times Z$, then $R\left(B \cap\left(X \times G_{2}\right)\right)$
Received on 18. 2. 1983
Michigan Technological University
Houghton, Michigan 49931, USA
[13] V.S. Varad araja n, Groups of automorphisms of Borel spaces, Transactions AMS 109 (1963), p. [12] R. M. Shortt, Universally measurable spaces: an invariance theorem and diverse characteris[11] R. C. Shiflett, Extreme stochastic measure and Feldman's conjecture, Journal Math. Analysis [10] J. Neveu, Mathematical foundations of the calculus of probability, Holden - Day, Sand Francisco
 [8] J. Lindenstr auss, A remark on extreme doubly stochastic measures, Amer. Math. Monthly 72 [7] K. Lange, Borel sets of probability measures, Pacific Journal Math. 48 (1) (1973), p. 141-161. [6] K. Kuratowski, Topology, Vol. I, Academic Press, New York 1966 5] S. Karlin and W. J. Studden, Tchebycheff systems with applications to analysis and statistics,
Interscience 1966.
 [3] R. G. Douglas, On extremal measures and subspace density, Michigan Journal Math. 11 distributions, Annals Math. Stat. 34 (1963), p. 223-225.
[2] D. L. Cohn, Measure theory, Birkhäuser, Boston 1980.
[1] D. Blackwell and C. Ryll-Nardzewski, Non-existence of everywhere proper conditional
REFERENCES
by P. Since $R\left(G_{1} \times Z\right)+R\left(X \times G_{2}\right)=1$, this establishes the uniqueness of R,
q.e.d.

