PROBABILITY AND MATHEMATICAL STATISTICS Vol. 5, Fasc. 2 (1985), p. 225-233

UNIQUENESS AND EXTREMALITY FOR A CLASS OF MULTIPLY-STOCHASTIC MEASURES

÷.,

BY

RAE MICHAEL SHORTT, (HOUGHTON, MICHIGAN)

0. Introduction. Since the fundamental papers of Douglas [3] and Lindenstrauss [8], much has been written concerning the convex set of doubly-stochastic measures (probability measures on the unit square with uniform marginals), most of it an attempt to obtain a clearer understanding of this set's extreme points; the problem is hard, and success has been limited. We present a three - dimensional analogue for the class of doubly - stochastic measures related to some earlier work on property (V) in Shortt [12]. There the concern was with the existence of probabilities on a product $X \times Y \times Z$ with prescribed marginals on $X \times Y$ and $Y \times Z$, and a rather detailed measure - theoretic description of those separable spaces X, Y, Z for which such a construction is possible was obtained. The question of uniqueness was not adressed, nor that of determining the extreme points of the solution set; this is the substance of theorems 1 and 2 infra.

Note that if Y reduces to a single point, then the problem becomes doublystochastic; the point of theorem 2 is to analyse three-dimensional extreme points in terms of two-dimensional extreme "slices".

Before treating these results, we offer a preliminary section touching on some basic facts about separable spaces and reviewing the notion of a Markov transition kernel. This is a natural and important tool, but its use requires care; in Shiflett [11], for example, the measurability of P(x, B(x)) in the proof of Theorem 3 is by no means assured. The argument may be completed by an appeal to the Blackwell and Ryll-Nardzewski [1] selection theorem, much as in the proof of theorem 2, claim 3 below. In what follows, we have been to some degree fastidious concerning measurability questions.

1. Preliminaries. We deal exclusively with *separable* spaces, i.e. measurable spaces (X, \mathcal{B}) for which:

(a) there is a metric d on X under which (X, d) becomes a separable metric space, and

(b) \mathscr{B} is the σ -algebra of Borel sets generated by the topology of (X, d). Then d is said to be a metric for $(X, \mathscr{B}(X))$.

4 - Prob. Math. Statist. 5 (2)

R. M. Shortt

By a result of Marczewski [9], a measurable space (X, \mathscr{B}) is separable if and only if \mathscr{B} is countably generated and contains all singletons drawn from X. We shall often suppress the notation of a σ -algebra, calling the space X and, where necessary, indicating its measurable structure with $\mathscr{B} = \mathscr{B}(X)$. If A is a subset of a separable space X, then A itself becomes a separable space with the relativised σ algebra $\mathscr{B}(A) = \{A \cap B : B \in \mathscr{B}(X)\}$.

A separable space X is standard if there is a metric d for X under which (X, d) becomes a *Polish space* (i.e. a topologically complete and separable metric space). It is well-known that if X is an uncountable standard space, then X is Borelisomorphic with the unit interval I = [0, 1] under its usual Borel structure. (This equivalence allows one, in questions of pure measure theory, to replace any uncountable standard space with the interval I.) A subset A of a standard space X is itself standard if and only if A is a member of $\mathscr{B}(X)$.

For proofs of these facts, as well as additional information on standard spaces, we refer the reader to Cohn [2], Chapter 8; for the classical treatment of these topics, see Kuratowski [6], Volume I, Chapter 3.

If X is a separable space, let $\mathcal{M}(X)$ denote the linear space of all finite signed measures on $(X, \mathcal{B}(X))$. If d is a metric for X, then $\mathcal{M}(X)$ may be given the topology of weak convergence of measures; this topology is separable and metrisable, so that under the corresponding Borel structure, $\mathcal{M}(X)$ becomes a separable space. As is shown in Varadarajan [13], p. 193, this separable Borel structure on $\mathcal{M}(X)$ is generated by all mappings of the form $\mu \to \mu(B)$ as B ranges over $\mathcal{B}(X)$; thus the Borel structure on $\mathcal{M}(X)$ does not depend on the choice of d. The probability measures in $\mathcal{M}(X)$ will be called *laws*, and $\mathcal{P}(X)$ will denote the collection of all laws on X.

Let X and Y be separable spaces; following Neveu [10], Chapter II.2, we call a real function P(x, B) on $X \times \mathscr{B}(Y)$ a Markov (transition) kernel over the space X if

(1) $P(x, \cdot)$ is a law on Y for each $x \in X$, and

(2) P(x, B) is measurable in x for each $B \in \mathscr{B}(Y)$.

Condition 2 is equivalent to:

(2') the mapping $x \to P(x, \cdot)$ is measurable from X to $\mathscr{P}(Y)$ under the separable structure it inherits from $\mathscr{M}(Y)$.

The following two lemmas are essentially a restatement of Neveu [10] Proposition III.2.1:

LEMMA 1. Suppose that P(x, B) is a Markov kernel over X. If P_1 is any law on X, then the set function

$$P(A \times B) = \int_{A} P(x, B) dP_1(x),$$

defined for all rectangles $A \times B$ with $A \in \mathcal{B}(X)$, $B \in \mathcal{B}(Y)$, extends uniquely to a law P on $X \times Y$ with marginal P_1 on X.

Remark. In this situation, we call $P(x, \cdot)$ a Markov kernel for P over (X, P_1) , or simply over X.

LEMMA 2. If $P(x, \cdot)$ is a Markov kernel for a law P over X, then

(a) the mapping $x \to P(x, B_x)$ is measurable on X for each $B \in \mathcal{B}(X \times Y)$; here B_x denotes the section of B over $x \in X$, and

(b) $P((A \times Y) \cap B) = \int_{A} P(x, B_x) dP_1(x)$ for all $A \in \mathcal{B}(X), B \in \mathcal{B}(X \times Y)$, where

 P_1 is the marginal of P on X.

If P(x, B) is a Markov kernel for P over (X, P_1) , then the function $Q((x, y), B) = P(x, B_x)$ is a proper conditional distribution for P given projection onto X, as defined in Blackwell and Ryll-Nardzewski [1]. Conversely, if Q((x, y), B) is such a proper conditional distribution, its values do not depend on Y and $P(x, B) = Q((x, y), X \times B)$ defines a Markov kernel for P. Essentially, the two notions coincide here, and theorems regarding the existence of one may be used to prove the existence of the other.

LEMMA 3. Let P be a law on $X \times Y$ such that there is a standard subset $S \subset Y$ with $P(X \times S) = 1$. Then there is a Markov kernel for P over X.

Proof. Easily adapted from Blackwell and Ryll-Nardzewski [1] Theorem 1 or Shortt [12] Theorem 4.

LEMMA 4. Let P be a law on $X \times Y$ with marginal P_1 on X and suppose that P(x, B) and Q(x, B) are Markov kernels for P over X; then $P(x, \cdot) = Q(x, \cdot)$ as laws on Y a.s. (P_1) .

Remark. From condition 2' in the definition of Markov kernel, it follows that $\{x: P(x, \cdot) = Q(x, \cdot)\}$ belongs to $\mathscr{B}(X)$.

Proof. Let $\mathscr{A}(Y)$ be a countable algebra generating $\mathscr{B}(Y)$. For each $B \in \mathscr{A}(Y)$, P(x, B) = Q(x, B) for P_1 -almost all x: if, say, P(x, B) > Q(x, B) for all $x \in A$ with $P_1(A) > 0$, then

$$P(A \times B) = \int_{A} P(x, B) dP_1(x) > \int_{A} Q(x, B) dP_1(x) = P(A \times B),$$

a contradiction. From the countability of $\mathscr{A}(Y)$ it follows that P(x, B) = Q(x, B) for all $B \in \mathscr{A}(Y)$ a.s. (P_1) . Since $\mathscr{A}(Y)$ generates $\mathscr{B}(Y)$, the lemma is obtained, q.e.d.

LEMMA 5. Let P(x, B) be a real function on $X \times \mathscr{B}(Y)$ such that

(a) $P(x, \cdot)$ is a law on Y for each $x \in X$, and

(b) P(x, A) is measurable in x for all $A \in \mathcal{A}(Y)$, where $\mathcal{A}(Y)$ is some algebra generating $\mathcal{B}(Y)$.

Then P(x, B) is a Markov kernel over X.

Proof. Inspecting the collection of those $B \in \mathscr{B}(Y)$ for which $P(\cdot, B)$ is measurable, we find it to be closed under increasing unions and decreasing intersections. The usual monotone class argument finishes the proof, q.e.d.

R. M. Shortt

2. The Principal Results. Let X, Y, Z be separable spaces with X and Z uncountable and standard. As noted in Section 1, metrics may be chosen for X and Z under which both become homeomorphic with the unit interval I = [0, 1]; without hesitation, X and Z are written interchangeably with I.

Suppose now that P and Q are laws on $X \times Y$ and $Y \times Z$, respectively, sharing a common marginal P_1 on Y. Our primary object of study will be V(P, Q), the set of all laws on $X \times Y \times Z$ having marginals P on $X \times Y$ and Q on $Y \times Z$. V(P, Q) is clearly a convex set, and Shortt [12], Theorem 5 implies that it is non-empty. The two questions before us are:

1. What are the extreme points of V(P, Q)?

2. When is V(P, Q) a singleton set?

The answers to these are the content of theorems 1 and 2 below.

Before proceeding, however, it might be worthwhile to consider the case where X, Y, Z are finite sets; the marginal problem then becomes one of finding a 3-dimensional array a(i, j, k) of non - negative numbers subject to the constraint that

$$\sum_{i} a(i, j, k)$$
 and $\sum_{k} a(i, j, k)$

are given matrices. It is not too hard to prove that a solution is extreme if and only if for each fixed j, a(i, j, k) is an extreme matrix with specified row and column sums

$$\sum_i a(i, j, k) \quad \text{and} \quad \sum_k a(i, j, k).$$

Also, the solution is unique precisely when for each fixed j, either $\sum_{i} a(i, j, k) > 0$ for at most one k, or $\sum_{i} a(i, j, k) > 0$ for at most one i.

The conditions we obtain will in fact be "continuous" versions of these.

If M_1 and M_2 are laws on X and Z, respectively, then by $S(M_1, M_2)$ is denoted the set of all laws on $X \times Z$ with marginals M_1 on X and M_2 on Z. $S(M_1, M_2)$ is convex and, for the topologies we have chosen for X and Z, compact under weak convergence (it is a closed subset of $\mathcal{P}(X \times Z) = \mathcal{P}(I \times I)$, which is compact).

By lemma 3, there are Markov kernels $P(y, \cdot)$ and $Q(y, \cdot)$ for P and Q over (Y, P_1) . We assume that these kernels are fixed for the extent of this section. Again by lemma 3, any law R in V(P, Q) also has a Markov kernel $R(y, \cdot)$ over (Y, P_1) . If $R(y, \cdot) \in S(P(y, \cdot), Q(y, \cdot))$ for each $y \in Y$, then call $R(y, \cdot)$ a canonical kernel for R. It follows easily from lemma 4 that any Markov kernel for R may be altered on a set of $y \in N$ with $P_1(N) = 0$ to obtain a canonical kernel.

Let $R(y, \cdot)$ be a canonical kernel for a law R in V(P, Q); define $E \subset Y$ by

 $E = \{y \in Y: R(y, \cdot) \text{ is an extreme point of } S(P(y, \cdot), Q(y, \cdot))\}.$

LEMMA 6. E is a Borel subset of Y.

228

Proof. For each μ in $K = \mathscr{P}(X \times Z)$, denote by μ_x and μ_z the marginals of μ on X and on Z. Define

 $K_0 = \{ \mu \in K : \mu \text{ is not an extreme point of } S(\mu_x, \mu_z) \},\$

 $M = \{(\mu_1, \mu_2) \in K \times K : \mu_1 \text{ and } \mu_2 \text{ have the same marginals on } X \text{ and } Z\},\$ $M_0 = \{(\mu_1, \mu_2) \in M : \mu_1 \neq \mu_2\}.$

Then *M* is compact, and M_0 is open in *M*, and therefore σ -compact. Define *G*: $M \to K$ by $G(\mu_1, \mu_2) = \frac{1}{2}(\mu_1 + \mu_2)$. Then K_0 is the image of M_0 under *G*; since *G* is continuous, K_0 is σ -compact.

Finally, E is the inverse image of $K \setminus K_0$ under the mapping $y \to R(y, \cdot)$ and so is measurable in Y, q.e.d.

LEMMA 7. Let K_0 be as in the preceding proof; then there is a measurable function $f: K_0 \to \mathcal{M}(X \times Z)$ such that for all $\mu \in K_0$

(1) $\mu + f(\mu) \in K$, (2) $\mu - f(\mu) \in K$, (3) $f(\mu) \neq 0$,

(4)
$$f(\mu)_x = f(\mu)_z = 0.$$

Remark. Compare Karlin and Studden, [5] p. 270-274.

Proof. Define the sets

$$L = \left\{ \frac{1}{2} (\mu - \tilde{\mu}): \ \mu, \ \tilde{\mu} \in K \right\} \text{ and } L_0 = L \setminus \{0\}.$$

Then L is a continuous image of K and is therefore compact, whilst L_0 is open in L and so is σ -compact. Also define

 $A = \{(\mu, \tilde{\mu}) \in K_0 \times L_0: (\mu + \tilde{\mu}, \mu - \tilde{\mu}) \in K \times K \text{ and } \tilde{\mu}_x = \tilde{\mu}_z = 0\}.$

Then A is relatively closed in $K_0 \times L_0$ and hence is σ -compact. If $\mu \in K_0$, then $\mu = \frac{1}{2}(\mu_1 + \mu_2)$ with $\tilde{\mu} = \frac{1}{2}(\mu_1 - \mu_2) \in L_0$ and $(\mu, \tilde{\mu}) \in A$; thus each section of A over points $\mu \in K_0$ is non-empty.

Hoffmann-Jørgensen [4], p. 137 Theorem 3, implies the existence of a measurable function $f: K_0 \rightarrow L_0$ whose graph is contained in A, q.e.d.

LEMMA 8. Let K and K_0 be as above; then there are measurable functions $F_1: K_0 \rightarrow K$ and $F_2: K_0 \rightarrow K$ such that for each $\mu \in K_0$

(1) $F_1(\mu)_x = F_2(\mu)_x = \mu_x$ and $F_1(\mu)_z = F_2(\mu)_z = \mu_z$,

(2) $(F_1(\mu) + F_2(\mu))/2 = \mu$,

(3) $F_1(\mu) \neq F_2(\mu)$.

Proof. Let $f: K_0 \to \mathcal{M}(X \times Z)$ be as in lemma 7 and set $F_1(\mu) = \mu + f(\mu)$ and $F_2(\mu) = \mu - f(\mu)$.

THEOREM 1. A law R in V(P, Q) is an extreme point of V(P, Q) if and only if for each canonical kernel $R(y, \cdot)$ for R over (Y, P_1) , $R(y, \cdot)$ is an extreme point of $S(P(y, \cdot), Q(y, \cdot))$ a.s. (P_1) , i.e. $P_1(E) = 1$, where E is the subset of Y in lemma 6.

R. M. Shortt

Proof. Suppose that R is not extreme; then $R = \alpha R_1 + (1-\alpha) R_2$ for distinct R_1, R_2 in $V(P, Q), 0 < \alpha < 1$. Let $R_1(y, \cdot)$ and $R_2(y, \cdot)$ be canonical kernels for R_1 and R_2 ; then $R(y, \cdot) = \alpha R_1(y, \cdot) + (1-\alpha) R_2(y, \cdot)$ defines a canonical kernel for R. Since $R_1 \neq R_2$, the laws $R_1(y, \cdot)$ and $R_2(y, \cdot)$ differ for all y in some set of positive P_1 - measure; $R(y, \cdot)$ is not extreme in $S(P(y, \cdot), Q(y, \cdot))$ for all such y.

Suppose, conversely, that there is a canonical kernel $R(y, \cdot)$ for R for which $P_1(E) < 1$. Define K_0 and K as before, and let $F_1: K_0 \to K$ and $F_2: K_0 \to K$ be as in lemma 8. Define R_1 and R_2 on $Y \times \mathscr{B}(X \times Z)$ by

$$R_{1}(y, B) = \begin{cases} F_{1}(R(y, \cdot))(B) & y \in Y \setminus E, \\ R(y, B) & y \in E; \end{cases}$$
$$R_{2}(y, B) = \begin{cases} F_{2}(R(y, \cdot))(B) & y \in Y \setminus E, \\ R(y, B) & y \in E. \end{cases}$$

Then $R_1(y, \cdot)$ and $R_2(y, \cdot)$ are canonical kernels for laws R_1 and R_2 over (Y, P_1) ; R_1 and R_2 are in V(P, Q), and $\frac{1}{2}(R_1 + R_2) = R$. Now for each $y \notin E$, $R(y, \cdot)$ is in K_0 , so that $R_1(y, \cdot) \neq R_2(y, \cdot)$ for such y. If $R_1 = R_2$, then by lemma 4, $R_1(y, \cdot) = R_2(y, \cdot)$ a.s. (P_1) , a contradiction. Thus $R_1 \neq R_2$, and R is not extreme in V(P, Q), q.e.d.

We maintain the notations used in theorem 1, recalling that the Markov kernels $P(y, \cdot)$ and $Q(y, \cdot)$ were fixed. Define the sets

 $D(P) = \{y: P(y, \cdot) \text{ is not a point mass}\}$

and

$$D(Q) = \{y: Q(y, \cdot) \text{ is not a point mass}\}.$$

These are members of $\mathscr{B}(Y)$: for example, D(P) is the inverse image of $\{\mu \in \mathscr{P}(X): \mu \text{ is not a point mass}\}$ under the mapping $y \mapsto P(y, \cdot)$; this last set is open for the topology of weak convergence in $\mathscr{P}(X)$, so that D(P) is measurable.

THEOREM 2. The following statements are equivalent:

1. V(P, Q) is a singleton set;

2. $P_1(D(P) \cap D(Q)) = 0.$

Proof. Statement 1 implies statement 2. We prove the contrapositive, supposing $P_1(D(P) \cap D(Q)) > 0$. Recall that X and Z are metrised as the interval I and written interchangeably with it. We define the Markov kernels $R_1(y, \cdot)$ and $R_2(y, \cdot)$ on $Y \times \mathcal{B}(X \times Z)$ as follows:

 $R_1(y, \cdot)$ and $R_2(y, \cdot)$ are laws on $X \times Z$ with cumulative distribution functions

$$R_1(y, [0, x] \times [0, z]) = P(y, [0, x]) \cdot Q(y, [0, z]),$$

$$R_2(y, [0, x] \times [0, z]) = P(y, [0, x]) \land Q(y, [0, z]),$$

where $a \wedge b = \text{minimum } \{a, b\}$. Thus the mappings $x \to R_1(y, A)$ and $y \to R_2(y, A)$ are measurable for each $A \in \mathcal{A}(X \times Z)$, the algebra generated by all

Multiply-stochastic measures

sets of the form $[0, x] \times [0, y]$; since this algebra generates $\mathscr{B}(X \times Z)$, lemma 5 implies that $R_1(y, \cdot)$ and $R_2(y, \cdot)$ are in fact Markov kernels for laws R_1 and R_2 on $X \times Y \times Z$ over (Y, P_1) .

Claim 1. Both R_1 and R_2 have marginals P on $X \times Y$ and Q on $Y \times Z$, i.e. are members of V(P, Q). (This is easily checked.)

We shall now endeavour to show that $R_1 \neq R_2$, so that statement 1 does not hold.

Define the functions $g_1: X \times Y \rightarrow I$ and $g_2: Y \times Z \rightarrow I$ by $g_1(t, y) = P(y, [0, t])$ and $g_2(y, t) = Q(y, [0, t])$.

Claim 2. The functions g_1 and g_2 are jointly Borel - measurable: this follows e.g. from Lange [7], Lemma 3.1 and the right - continuity of $g_1(t, y)$ and $g_2(y, t)$ in t for each fixed y.

Define the Borel sets

$$S = \{(t, y) \in X \times Y: 0 < g_1(t, y) < 1\}$$

and

$$T = \{(y, t) \in Y \times Z: 0 < g_2(y, t) < 1\},\$$

noting that D(P) and D(Q) are the projections to Y of S and T, respectively.

Claim 3. There are measurable functions h: $D(P) \rightarrow X$ and k: $D(Q) \rightarrow Z$ whose graphs lie entirely within S and T.

This follows from Blackwell and Ryll-Nardzewski [1], Theorem 2 in this way: the sections of S and T over a point $y \in Y$ are given by

$$S_y = \{t \in X: 0 < g_1(t, y) < 1\}, \quad T_y = \{t \in Z: 0 < g_2(y, t) < 1\},\$$

so that

 $P(y, S_y) > 0$ whenever $y \in D(P)$,

and

 $Q(y, T_y) > 0$ whenever $y \in D(Q)$.

The claim follows.

We extend the functions h and k (measurably) to all of Y by setting

h(y) = 1 for $y \in Y \setminus D(P)$ and k(y) = 1 for $y \in Y \setminus D(Q)$.

Define the Borel subsets $H \subset X \times Y$ and $K \subset Y \times Z$ by

$$H = \{(t, y): t \le h(y)\}$$
 and $K = \{(y, t): t \le k(y)\}.$

Then the sections of H and K over a point $y \in Y$ are simply $H_y = [0, h(y)]$ and $K_y = [0, k(y)]$, so that

(*)
$$\begin{cases} 0 < P(y, H_y) < 1 & \text{whenever } y \in D(P), \\ 0 < Q(y, K_y) < 1 & \text{whenever } y \in D(Q). \end{cases}$$

Define

 $B = (H \times Z) \cap (X \times K) \quad \text{and} \quad C = (X \times (D(P) \cap D(Q)) \times Z) \cap B$ in $\mathscr{B}(X \times Y \times Z)$; then according to lemma 2,

$$R_{1}(C) = \int_{D(P) \cap D(Q)} R_{1}(y, B_{y}) dP_{1}(y)$$

= $\int_{D(P) \cap D(Q)} R_{1}(y, [0, h(y)] \times [0, k(y)]) dP_{1}(y)$
= $\int_{D(P) \cap D(Q)} P(y, H_{y}) Q(y, K_{y}) dP_{1}(y),$

and likewise

$$R_{2}(C) = \int_{D(P) \cap D(Q)} P(y, H_{y}) \wedge Q(y, K_{y}) dP_{1}(y).$$

But from (*), $P(y, H_y)Q(y, K_y) < P(y, H_y) \land Q(y, K_y)$ for all y in $D(P) \cap D(Q)$, a set assumed to have positive P_1 - measure. Thus $R_1(C) < R_2(C)$, and the result is proved.

Statement 2 implies statement 1. Suppose that $P_1(D(P) \cap D(Q)) = 0$ and that *R* is any law in V(P, Q). Put $A_1 = Y \setminus D(P)$ and $A_2 = Y \setminus (D(Q) \cup A_1)$; these are disjoint sets such that $P_1(A_1) + P_1(A_2) = 1$.

Define functions $f_1: A_1 \to X$ and $f_2: A_2 \to Z$ as follows: for each $y \in A_1$, $P(y, \cdot)$ is a point mass at $f_1(y)$; for each $y \in A_2$, $Q(y, \cdot)$ is a point mass at $f_2(y)$. These functions are measurable:

$$f_1^{-1}(B) = \{ y \in A_1 : P(y, B) = 1 \}$$
 for any $B \in \mathscr{B}(X)$,

and

$$f_2^{-1}(C) = \{y \in A_2 : Q(y, C) = 1\}$$
 for any $C \in \mathcal{B}(Z)$.

Let $G_1 \subset X \times Y$ and $G_2 \subset Y \times Z$ be the (measurable) graphs of the functions f_1 and f_2 ; then $G_1 \times Z$ and $X \times G_2$ are disjoint sets with $R(G_1 \times Z) + R(X \times G_2) = P_1(A_1) + P_1(A_2) = 1$.

Define

$$F_1: A_1 \times Z \to G_1 \times Z$$
 and $F_2: X \times A_2 \to X \times G_2$

by $F_1(y, z) = (f_1(y), y, z)$ and $F_2(x, y) = (x, y, f_2(y))$; F_1 and F_2 are easily seen to be Borel isomorphisms onto $G_1 \times Z$ and $X \times G_2$.

If now B is a Borel subset of $X \times A_1 \times Z$, then

$$B \cap (G_1 \times Z) = \left[X \times F_1^{-1} \left(B \cap (G_1 \times Z) \right) \right] \cap (G_1 \times Z),$$

so that $R(B \cap (G_1 \times Z)) = R(X \times F_1^{-1}(B \cap (G_1 \times Z))) = Q(F_1^{-1}(B \cap (G_1 \times Z)));$

thus the value of R on subsets of $G_1 \times Z$ is wholly determined by Q.

Likewise, if B is a Borel subset of $X \times A_2 \times Z$, then $R(B \cap (X \times G_2))$

q.e.d. by P. Since $R(G_1 \times Z) + R(X \times G_2) = 1$, this establishes the uniqueness of R, $= P(F_2^{-1}(B \cap (X \times G_2)))$, and the value of R on subsets of $X \times G_2$ is determined

REFERENCES

- Ξ D. Blackwell and C. Ryll-Nardzewski, Non-existence of everywhere proper conditional distributions, Annals Math. Stat. 34 (1963), p. 223-225.
 D. L. Cohn, Measure theory, Birkhäuser, Boston 1980.
- 5
- G R. G. Douglas, On extremal measures and subspace density, Michigan Journal Math. 11 (1964), p. 243-246.
- [4] J. Hoffman-Jørgensen, The theory of analytic spaces, Various Publications Series No. 10 (1970), Aarhus Universitat, Aarhus.
- [S] S. Karlin and W. J. Studden, Tchebycheff systems with applications to analysis and statistics, Interscience 1966.
- 6 K. Kuratowski, Topology, Vol. I, Academic Press, New York 1966.
- [8] J. Lindenstrauss, A remark on extreme doubly stochastic measures, Amer. Math. Monthly 72 Ξ K. Lange, Borel sets of probability measures, Pacific Journal Math. 48 (1) (1973), p. 141-161. (1965), p. 379-382.
- [9] E. Marczewski (Szpilrajn), The characteristic function of a sequence of sets and some of its applications, Fund. Math. 31 (1938), p. 207-223.
- [10] J. Neveu, Mathematical foundations of the calculus of probability, Holden Day, Sand Francisco 1965.
- [11] R. C. Shiflett, Extreme stochastic measure and Feldman's conjecture, Journal Math. Analysis and Appl. 68 (1979), p. 111-117.
- [12] R. M. Shortt, Universally measurable spaces: an invariance theorem and diverse characterisations, Fund. Math. (to appear) (1982).
- [13] V.S. Varadarajan, Groups of automorphisms of Borel spaces, Transactions AMS 109 (1963), p. 191 - 220.

Houghton, Michigan 49931, USA Michigan Technological University Department of Mathematical and Computer Sciences

Received on 18. 2. 1983

