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0. Introduction. Since the fundamental papers of Douglas [3] and
Lindenstrauss [8], much has been written concerning the convex set of doubly -
stochastic measures (probability measures on the unit square with uniform
marginals), most of it an attempt to obtain a clearer understanding of this set’s
extreme points; the problem is hard, and success has been limited. We present a
three - dimensional analogue for the class of doubly - stochastic measures related
to some earlier work on property (V) in Shortt [12]. There the concern was with
the existence of probabilities on a product X x Yx Z with prescribed marginals
on X x Yand Yx Z, and a rather detailed measure - theoretic description of those
separable spaces X, Y, Z for which such a construction is possible was obtained.
The question of uniqueness was not adressed, nor that of determining the extreme
points of the solution set; this is the substance of theorems 1 and 2 infra.

Note that if Yreduces to a single point, then the problem becomes doubly -
stochastic; the point of theorem 2 is to analyse three -dimensional extreme
points in terms of two -dimensional extreme “slices”.

Before treating these results, we offer a prchrmnary section tuuchmg on some
basic facts about separable spaces and reviewing the notion of a Markov
transition kernel. This is a natural and important tool, but its use requires care; in
Shiflett [11], for example, the measurability of P(x, B(x)} in the proof of
Theorem 3 is by no means assured. The argument may be completed by an appeal
to the Blackwell and Ryll - Nardzewski [1] selection theorem, much as in the
proof of theorem 2, claim 3 below. In what follows, we have been to some degree
fastidious concerning measurability guestions.

1. Preliminaries. We deal exclusively with separable spaces, i.e. measurable
spaces (X, &) for which:

(a) there is a metric d on X under which (X, d) becomes a separable metric
space, and

(b} #is the o -algebra of Borel sets generated by the topology of (X, d). Then
d is said to be a metric for (X, (X))
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By a result of Marczewski [9], a measurable space (X, ) is separable if and
only if 4 is countably generated and contains all singletons drawn from X. We
shall often suppress the notation of a o - algebra, calling the space X and, where
necessary, indicating its measurable structure with % = #(X). If 4 is asubset of a
separable space X, then A itself becomes a separable space with the relativised o -
algebra #(A)= AN B:Be #(X)}.

A separable space X is standard if there is a metric d for X under which (X, d)
becomes a Polish space (i.e. a topologically complete and separable metric space).
It is well -known that if X is an uncountable standard space, then X is Borel -
isomorphic with the unit interval I = [0, 1] under its usual Borel structure. (This
equivalence allows one, in questions of pure measure theory, to replace any
uncountable standard space with the interval I.) A subset 4 of a standard space
X is itself standard if and only if A is a member of #(X).

For proofs of these facts, as well as additional information on standard spaces,
we refer the reader to Cohn [2], Chapter 8; for the classical treatment of these
topics, see Kuratowski [6], Volume I, Chapter 3.

If X is a separable space, let .# (X) denote the linear space of all finite signed
measures on (X, #(X)). If d is a metric for X, then .#(X) may be given the
topology of weak convergence of measures; this topology is separable and
metrisable, so that under the corresponding Borel structure, .# (X) becomes a
separable space. As is shown in Varadarajan [13], p. 193, this separable Borel
structure on .# (X) is generated by all mappings of the form u — u(B) as B ranges
over #(X); thus the Borel structure on .# (X) does not depend on the choice of d.
The probability measures in .4 (X) will be called laws, and 22(X) will denote the
collection of all laws on X.

Let X and Y be separable spaces; following Neveu [10], Chapter 11.2,
we call a real function P(x, B) on X x #4(Y) a Markov (transition) kernei over
the space X if

(1} P{(x, -) is a law on Y for each xe X, and

(2) P(x, B) is measurable in x for each Be 5(Y).

Condition 2 is equivalent to:

{2') the mapping x — P(x, -) is measurable from X to #(Y) under the
- separable structure it inherits from .#(Y).

The following two lemmas are essentially a restatement of Neveu [10]
Proposition 1I1.2.1:

Lemma 1. Suppose that P{x, B) is a Markov kernel over X. If P, is any law on
X, then the set function

P(4 xB)= | P(x, B)dP, (x),
A
defined for all rectangles A x B with Ae 2(X), Be %(Y), extends uniquely to a law
P on X x Y with marginal P, on X.
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Remark. In this situation, we call P(x, -} a Markov kernel for P over
(X, P,), or simply over X.
Lemma 2. If P(x, *) is a Markov kernel for a law P over- X, then
(a) the mapping x — P{x, B,) is measurable on X for each Be (X x Y); here
B, denotes the section of B over xe X, and
(b) P((Ax Y)nB) = [P(x, B))dP(x)for all Ac 3(X), Be #(X x Y), where
A

P, is the marginal of P on X.

If P(x, B) is a Markov kernel for P over (X, P,), then the function
Q((x, y), By= P(x, B, is a proper conditional distribution for P given
projection onto X, as defined in Blackwell and Ryll-Nardzewski [1].
Conversely, if @ ((x, y), B)is such a proper conditional distribution, its values do
not depend on Yand P(x, B) = Q((x, y), X x B) defines a Markov kernel for P.
Essentially, the two notions coincide here, and theorems regarding the existence
of one may be used to prove the existence of the other.

Lemma 3. Let P be a law on X x Ysuch that thereis a standard subset S < Ywith
P(X x8)= 1. Then there is a Markov kernel for P over X.

Proof. Easily adapted from Blackwell and Ryll - Nardzewski [1] Theorem 1
or Shortt [12] Theorem 4.

Lemma 4. Let P be a law on X x Y with marginal Py on X and suppose that
P(x, B) and Q(x, B) are Markov kernels for P over X ; then P(x,*) = Q(x,") as
laws on Y as. (Py).

Remark. From condition 2" in the definition of Markov kernel, it follows
that [x: P(x, )= Q(x,*)} belongs to #(X).

Proof. Let /(YY) be a countable algebra generating #(Y). For each
Be «/(Y), P(x, B) = Q(x, B) for P, -almost all x: if, say, P(x, B} > Q(x, B) for
all xed with P,(4) > 0, then

P(AxB) = [ P(x, B)dP; (x) > [Q(x, B)dP, (x) = P(4 x B),
A A

a contradiction. From the countablility of «/(¥) it follows that P(x, B)
= Q{(x, B) for all Be o/(Y) a.s. (Py). Since o/(Y) generates 2(Y), the lemma is
obtained, q.e.d.

Lemma 5. Let P(x, B) be a real function on X x #(Y) such that

(a) P(x, ) is a law on Y for each xe X, and

(b) P(x, A) is measurable in x for all Ae o/(Y), where o/(Y) is some algebra
generating #(Y).

Then P(x, B) is a Markov kernel over X.

Proof. Inspecting the collection of those Be #(Y) for which P(-, B) is
measurable, we find it to be closed under increasing unions and decreasing
intersections. The usual monotone class argument finishes the proof, g.e.d.
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2. The Principal Results. Let X, Y, Z be separable spaces with X and
Z uncountable and standard. As noted in Section 1, metrics may be chosen for X
and Z under which both become homeomorphic with the unit interval /
= [0, 1]; without hesitation, X and Z are written interchangeably with I.

Suppose now that Pand @ are lawson X x Yand Y x Z, respectively, sharing a
common marginal P, on Y. Our primary object of study will be V' (P, Q), the set of
all laws on X x ¥x Z having marginals Pon X x Yand Q on ¥YxZ. V(P, Q) is
clearly a convex set, and Shortt [ 127, Theorem 5 implies that it is non-empty. The
two questions before us are:

1. What are the extreme points of V(P, Q)?

2. When is V(P, Q) a singleton set?

The answers to these are the content of theorems 1 and 2 below.

Before proceeding, however, it might be worthwhile to consider the case
where X, Y, Z are finite sets; the marginal problem then becomes one of finding a
3-dimensional array a(i, j, k) of non - negative numbers subject to the constraint
that

Yali,j,k) and Y a(i,j, k)
i k

are given matrices. It is not too hard to prove that a solution is extreme if and only
if for each fixed j, a(i, j, k) is an extreme matrix with specified row and column
sums
Ya(i,j, k) and Ya(i,jk
i &
Also, the solution is unique precisely when for each fixed j, either
):a(t j» k) >0 for at most one k, or Za(t j, k) > 0 for at most one i.

The conditions we obtain will in fact be “continuous” versions of these.

If M, and M, are laws on X and Z, respectively, then by S(M,, M,)
is denoted the set of all laws on X x Z with marginals M, on X and M, on Z.
S(M,, M,) is convex and, for the topologies we have chosen for X and Z,
compact under weak convergence (it is a closed subset of (X xZ) = #(I xI),
which is compact).

By lemma 3, there are Markov kernels P(y, ) and @(y, *)for Pand Q over
(Y, P,). We assume that these kernels are fixed for the extent of this section. Again
by lemma 3, any law R in V(P, Q) also has a Markov kernel R(y, -)over (Y, P,).
IfR(y, -)eS(P(y, ), Q(y, *))foreach ye Y, then call R(y, *) a canonical kernel
for R. Tt follows easily from lemma 4 that any Markov kernel for R may be altered
on a set of ye N with P;(N) =0 to obtain a canonical kernel.

Let R(y, -) be a canonical kernel for a law R in V(P, Q); define E < Y by

E={yeY: R(y, ) is an extreme point of S(P(y, ), Q(y, *))}.

Lemma 6. E is a Borel subset of Y.
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Proof. Foreach pin K = #(X x Z), denote by y, and p, the marginals of u
on X and on Z. Define

Ko = {peK: pis not an extreme point of S(u,, &)},
M = {(uy, u;)e K xK: py and p, have the same marginals on X and Z},
Mo = (11, p2)e M py # py).

Then M is compact, and M, is open in M, and therefore o -compact. Define
G: M = Kby G(uy, ftz) = 3(u; + o). Then K is the image of M, under G; since
G is continuous, K, is ¢-compact.

Finally, E is the inverse image of K\K, under the mapping y — R(y, *)andso
is measurable in ¥, qed.

Lemma 7. Let Ky be as in the preceding proof; then there is a measurable
Junction f: Ko — #(X xZ) such that for all pe K, :

(1) p+f(wek,

2 p—fwek,

3) fw+#0,

@) fe=fw. =0.

Remark. Compare Karlin and Studden, [5] p. 270-274.

Proof. Define the sets

L=%%(#"ﬁ3~' #,ﬁeK% and Lo = L\{0}.

Then L is a continuous image of K and is therefore compact, whilst L; is
open in L and so is ¢-compact. Also define

A= {(;u,‘ MeKoxLo: (u+f, p—ieK xK and fi,=j, = 0}.

Then A is relatively closed in K x Ly and hence is o - compact. If pe K, then
p= 4y + pp) with i = 4 (i, — py) € Lo and (u, fi) e 4; thus each section of 4 over
points ue Ky is non-empty.

Hoffmann - Jgrgensen [4], p. 137 Theorem 3, implies the existence of a
measurable function f: K, — L, whose graph is contained in A, q.e.d.

Lemma 8. Let K and K, be as above; then there are measurable functions
Fy: Kg— K and Fy: Ko— K such that for each peK,

() Fyu=Fy(@s=p,  and  Fy(W), =Fy(1). = 1,

(2) (Fy(w+Fo ()2 = p,

(3) Fy(w) # Fa().

Proof. Let f: Ko — .#(X xZ) be as in lemma 7 and set F,(u) = u+
+f (Wand Fz () = p—f ().

THeoREM 1. 4 law R in V(P, Q) is an extreme point of V (P, Q) if and only if for
each canonical kernel R(y, ) for R over (Y, P,), R(y, *) is an extreme point of
S(P(y, ), Q(y, ")) as.(P,), ie. P{(E) = 1, where E is the subset of Yin lemma 6.
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Proof. Suppose that R is not extreme; then R = 2R, +(1 —a) R, for distinct
Ry, RyinV(P, 0),0 <a < 1.Let R(y, ‘)and R, (v, -) be canonical kernels for
R, and R;;then R(y, ') =aR,(y, '} +(1—a)R,(y, -)defines a canonical kernel
for R.Since R, # R, thelaws R, (y, ‘)and R, (y, ) differ for all y in some set of
positive P, - measure; R(y, *)is not extreme in S(P(y, *), Q(y, -))for all such p.

Suppose, conversely, that there is a canonical kernel R(y, -) for R for which
P, (E) < 1. Define K, and K as before, and let Fy: Ky — K and F;: Ky — K be
as in lemma 8. Define R, and R; on Yx #(X xZ) by

: - JFi(R(y, "))(B)  yeNE,
Tl B)”%R(y, B) yeE:;
| _JF2(R(y, (B  yeY\E,
Ra0 B = {Rm B) yeE.

Then R, (y, *) and R,(y, -) are canonical kernels for laws R, and R, over
(Y, P,); R, and R, are in V(P, Q), and (R, +R,) = R. Now for each y¢E,
R(y, ) is in K, so that R, (y, ) # Ry(y, *) for such y. If R, = R,, then by
lemma 4, R, (y, ') = R,(y, *)as.(Py), a contradiction. Thus R; # R,, and R is
not extreme in V(P, Q), q.ed.

We maintain the notations used in theorem 1, recalling that the Markov
kernels P(y, -) and Q(y, -) were fixed. Define the sets

D(P)y={y: P(y, ) is not a point mass]
and
D(Q)={y: Q(y, -) is not a point mass].

These are members of 2(Y): for example, D(P) is the inverse image of
{ue P(X): pisnot a point mass} under the mapping yi» P(y, -); this last set is
open for the topology of weak convergence in 2(X), so that D (P) is measurable.

Tueorem 2. The following statements are equivalent:

1. V(P, Q) is a singleton set;

2. P, (D(P):hD(Q)) ={.

Proof. Statement 1 implies statement 2. We prove the contrapositive,
supposing P, (D(P) n D(Q)) > 0. Recall that X and Z are metrised as the interval
I and written interchangeably with it. We define the Markov kernels R, (y, -)and
Ry(y, ) on ¥Yx #(X xZ) as follows:

Ri(y, ') and R,(y, ') are laws on X xZ with cumulative distribution
functions

R, (y, [0, xIx [0, z]) = P(y, [0, x])- Q(¥, [0, z]),
Ry (y, [0, x]x [0, z]) = P(y, [0, x]) ~ Q(», [0, z]),

where a A b = minimum [a, b}. Thus the mappings x — R;(y, 4) and y
— R, (y, A) are measurable for each A e o/(X x Z), the algebra generated by all




Multiply-stochastic measures 231

sets of the form [0, x] x [0, y]; since this algebra generates #(X x Z), lemma 5
implies that R, (y, -)and R, (y, -)are in fact Markov kernels for laws R, and R,
on X xYxZ over (Y, Py).

Claim 1. Both R, and R, have marginals Pon X x Yand Q on ¥Yx Z, i.e. are
members of V(P, Q). (This is easily checked.)

We shall now endeavour to show that R, # R,, so that statement 1 does not
held.

Define the functions g;: XxY—1 and g,: ¥xZ—1 by g,(t )
= P(y, [0, 7]) and g;(y, ) = Q(y, [0, 1]).

Claim 2. The functions g, and g, are jointly Borel - measurable: this follows
e.g. from Lange [7], Lemma 3.1 and the right -continuity of g, (¢, y)and g, (v, 1)
in t for each fixed y.

Define the Borel sets

S=1{t,NeXxY 0<g,(t,y) <1}
and .
T={(y,0)e¥xZ: 0 <gy(y, 1) <1j,
noting that D(P) and D(Q) are the projections to Y of § and T, respectively.

Claim 3. There are measurable functions h: D(P)— X and k: D(Q)—~ Z
whose graphs lie entirely within § and T.

This follows from Blackwell and Ryll - Nardzewski [1], Theorem 2 in this
way: the sections of § and T over a point yeY are given by

S,=lteX: 0<g,(t,y) <1}, T,=lteZ: 0<g,(y, 1) <1},
so that

P(y, S,) > 0 whenever yeD(P),
and
Q(y, T,) > 0 whenever yeD(Q).

The claim follows.
We extend the functions h and k (measurably) to all of Y by setting

h(y) =1 for ye \D(P) and k(y)=1 for ye Y\D(Q).
Define the Borel subsets H c X x Y and K « ¥YxZ by
H={ty:t<h(y)}] and K={, 1) t<k(y)].
Then the sections of H'and K over a point y e Yare simply H, = [0, h(y)] and
K, =[0, k(y)], so that
(%) %0 < Py, H)<1 whenever yeD(P),
10 <Q(y, K;) <1 whenever yeD(Q).
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Define
B=HxZ)n(XxK) and C=(Xx(D(P)nD@Q)xZ)nB
in #(X x YxZ); then according to lemma 2,

R (C)= [ Ry, B)dP(y
DRADID)

= | Ri(. [0, kOGN [0, k(G))AP; ()

DPIDAQ)

= 3- P(}’, Hy) Q (y‘.' Ky}dPEL (J”)'.'
D(PyINQ)

and likewise

R (C)= | Py, H)AQy K)dPy(y).
DEPIDIQ)

But from (%), P(y, H) @ (v, K,) < P(y, H,) A @(y, K,)for all yin D(P)n D(Q),
a set assumed to have positive P, - measure. Thus R, (C) < R;(C), and the result
is proved.

Statement 2 implies statement 1. Suppose that P, (D(P) n D(Q)) = 0 and that
R is any law in V(P, Q). Put 4, = Y\D(P) and 4, = Y\(D(Q)u 4,); these are
disjoint sets such that P,(A4,}+Py(A4;) =1

Define functions f;: 4, = X and f,: 4, - Z as follows: for each ye 4,,
P(y, *)is a point mass at f; (y); for each ye 4,, @(y, *) is a point mass at {5 (y).
These functions are measurable:

S7'(B)={yeA;: P(y,B)=1) for any Be 2(X),
and
f7UC) = lyed,: Oy, O)=1] for any Ce #(Z).

Let G, =« X xY and G, « YxZ be the (measurable) graphs of the func-
tions f; and f,; then G, xZ and X x G, are disjoint sets with R(Gy xZ)+
+R(X X Gz) = PI (Al)—i_PI (AE) =1,

Define

Fi: AyxZ->G,xZ and F,: XxAd,-XxG,
by Fy(y, 2) = (f1(9), ¥ z) and F(x, y) = (x, y, 2(y)); F, and F; are casily seen
to be Borel isomorphisms onto G, xZ and X xG,.

If now B is a Borel subset of X x 4; xZ, then

BA(G, xZ) =X xF7 (Bn(G, x Z))] n(G, x 2),
so that R(Bn (G xZ)) = R(X xF{ (B n(G, x Z))) = Q(F7 ' (B (G, x 2)));

thus the value of R on subsets of G, xZ is wholly determined by Q. "
Likewise, if B is a Borel subset of X xA,xZ, then R{B (X xG,))
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= P(F;'(B (X x G,))), and the value of R ofi subsets of X x G, is determined
by P. Since R(G; x Z)+ R(X x G,;) = 1, this establishes the uniqueness of R,
g.ed.
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