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UNQWNESS AND EXTWmEITU 
FOR A CLASS OF tBrll&iLTIPE;V - STOCHASTIC MEASURES 

41. gttiurrodrarcriaaa;. Since the fundamental paprs of Douglas [35 and 
Lindenstrauss C83, m u ~ h  has been written concerning tlne convex set ofdoublty - 
stachastic memures (probability measures sa the unit square with uniform 
marginah), most sf it an attempt to obt&n a cleaser understanding of this set's 
extreme points; the problem is had ,  and success bas k e n  limited, We present a 
three -dimensional analogue for the class of doubly - stoehtastic sneaures related 
to some earlier work a n  property (V) in Shortt 1121. There the concern was with 
the existence sf probabilities on a product X x Y x  Z with prescribed marginah 
on X x Yand Y x Z$ a d  a rather detailed measure - themetic description of those 
separable spacs X ,  I: 2 far which such a eonstruetion is possible was obtained. 
The question af uniqueness was not adressed, nor that of determining the extreme 
points of the s~Eutiolr set; tllis Is the substance of tkorerns 1 and 2 iaffa. 

Note that if Freduces to a single paint, then the probjern baames doubly - 
stochastic; the point of theorem 2 is to analyse three - dinleasionnl extreme 
points In terms of two -dimaasioaal extreme "slicesv3, 

Befare treatlag these results, we oEer a greliHli~~atry section torr~hing on some 
basic facts about separable spaces and reviewing the notion of a Markov 
transition kernel. This i s  a natural and important tool, but its use reqilires care; in 
ShiRett [41), fur example, the meslsurabigty of P(x, B(x)x)) in the proof sf 
Theorem 3 is f7y no means assured. Tbe argument may be completed by an appal 
to the $lackwell and Rylli-Piladzewski f t J  alection theorem, much as in the 
proof of theorem 2, elaim 3 bebav, In what follows, we Izsbvc been to some degtee 
fastidious canernine: measurabiilitty questions. 

1, Relidr~rariim. %Ire deal ex~lusively with sc~larabb spaces, LC. measurable 
spaces ( X ,  d) far which: 

(a) there is a meMc B on X under tvhicb (X, 4 beeam= a separable mret~c 
spa=, and 

(b) d is the -algebra oFBore1 sdss generated by the topolo& of {X, Rj;, Tbcn 
d i s  said to be tl nretric for (X, afm), 
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By a result of Marczewski a measurable space ( X ,  d) is separable if and 
only if & is countably gemrated and contains all singletons drawn from X. We 
shall often suppress rhe notation ofit a -algebra, calling the space X and, wlrere 
necessary, indicating its measurable structure with iiY =: a(3. if k is a subset ola 
separable space X ,  then A itself bewanes a seprzrnbie space with the relativised cr - 
algebra .#(A) - : A  n B : B E  & ( X I : .  

A separable s p c e  X is sraadard if there is a metric d far X under wkidl (X, 4 
bwomes a d"olis1r spsace ( i .~ .  a tspoIogically cornpkte and separabJe rnetri~ s ~ c e } ,  
fc  is well -known that if X is an uncountable standard s p c q  then X is Barel .- 
isomorphic with the unit interval d = CIO, I ]  under its usual Bore1 strudure. [This 
quivalence allows one, In quesriorrs of pure measure theory, to replace any 
uncountable stafldad spam with the intervsl f .) A subset A of a standard space 
X is itself standard if and only if A is a member of d(X). 

For proofs of tlaese fats, as well as additional Enfarmatinn on standard swces, 
we refer the reader ta Cohn [2 ] ,  Chapter 8; for the classical treatment of these 
topics, see Kuratowski [ti], Volume 1, Chapter 3, 

If X is a separable space? let . # (X f  deaa te the lineas space af all finj te sign& 
measures oa ( X ,  ,@[X'j). If rf is a mtric for X, then ..#(X) may be give~a the 
tapabg of weak convergence of measures; this tapelogy is separable and 
merrisable, so that under the carrespanding Bore1 strincture, ..V(X) becomes a 
separsdEr1e space. AS i~ s b w n  in Varadsrajarr [IJ], p. 193, this separable 'Bore1 
structure on ,,&'(X) is generated by all map@ny;s sf the form y -4 ~(15) as 13 ranges 
over &X); thus the Borel structure on .&(XI does not depend on the ~hoicr: OF& 
The probability measures in ,&(X)  will be ~nlled Issws, and P f X )  will denote the 
a;crlleelion of all laws s n  X. 

Let X and Y be separable spaces; folIawing Neveu [IO), Chapter 11.2, 
we call a real bnction P ( x ,  I?) on X x d(Y) a Markau {transidon) krrlsri ova  
the tipace X if 

( I f  P j x ,  * )  i s  a law an Y h r  each XEX, and 
12) P (Ix, B) i~ measurable in x for each B E  d ( Y ) .  
Conditiaa 2 is eqequivaient to: 
(2')  the mapping x -4 P(x,  = )  is mmsurable from X to g f Y )  under the 

- separable stl-ncture it inherits from .&(Y). 
The following two lemmas are essentiauy a restat~metlt sf Neveu Cl10J 

Propsition ITI.2. L : 
LEMMA, 1. S W ~ ~ U S L '  that P ( x ,  B)  is a Mcxrkou kr~nei auev X. I f  P ,  is arry b w  on 

X ,  rhea- ffie scar IJlmctioi~ 

de!rnrtlfiz~ all rectrdnyies A x 165 wirh R E  d ( X ) ,  $G &(Y),  cxtcblds uniquely ro sr law 
I" on X x k" wit!# rmrgiraal P I  nrz X .  



Remark ,  In this situation, wc a l l  P ( x ,  .) a Markev kernel for P over 
(X, P,), or simply over X, 

LEMMA 2. J j  P(x,  . )  is a Marlcoo kcw-riel for. a law P over X ,   the^ 
(a) the mappitq x -b P(x, B,) is measurable on Xlfor sat:I~ BE #(X x V); k e ~ e  

B, denslses riie section of B amr X E X  and 
(b) P ( ( A  x VnB) =. $ P ( x ,  B , ) d P , ( x ) f o r n [ ! A ~ b { X ) , B ~ , g ( X x  Y),  where 

A 
PJ, is rlze marginal of P on X .  

Sf P ( x ,  B)i is a Markov kerrrel far P aver (X, Pi), then the function 
Q ((x, y),  B) == P ( x ,  BE) is a proper conditional distribution for P given 
projection onto X, as defined in Bladwell and Ryll-Narhewski [I]. 
Catlverse;ely, iFQ ((x, y), B') is such a pr,rowr conditional distribution, its values do 
not: depend on Yand P(x ,  $3 = Q((x, y), X x B) defines a Markcrv kernel for P. 
Essentially, the two notions coincide here, and theorems rqarding the existence 
of one may be used to grove the existence OF the other. 

LEMMA 3. Ler P be a k;lw on X x Ysuch rhnt rkme is a stca~dardstrbse~ S c Ywith 
P ( X  xS) = 1. Therz there b a M@rklaa kernel for P oaer X, 

Pr  o 0 f, Easily adapted from Blackwell and Rykl - Nxdzewshi 61 1 Theorem 1 
or Shortt Ed23 %harem 4. 

LEMMA 4. Ler P be a law spr X x Y with namyi~lnl P ,  OR X a d  SUPPOSE t12af 
Pcx, Bf  nnd Q(xP dlf) w e  1 W n r . k ~ ~  kemeb,for P over X ;  then P(x;]  =; Q(x;j as 
Fnw an Y a,s. ( P I ] .  

Remark.  From condition 2' la the definition af M d o v  kernel, it follows 
that Ix: P ( x ,  - )  - Q(x;)j beIongs to O((X). 

Proof. Let . d (Y )  be a countabte algebra geaerating @(Y)I. For each 
B E  .r/'i/(Y), Y (x, Bj -- Q ( x ,  R) far P,  -almost a11 x: if, say, P ( x ,  B) Q (x, B) for 
all x E R with PI ( A )  3 0. then 

P ( A  x B )  = $ P ( x ,  B)dFl  (x) r [Q(x, B)dP1(x). = P ( A  xB) ,  
A A 

a ~antsadietiian, From the cvuntabglity of .d('Sr') it follows that Pfx ,  B) 
--- Q(x, B) for all B E  ,cJt'Y) a.s. (P , ) .  Since dd( generates ,@(I"), the lemma is 
obtained, q 8.d. 

LEMMA 5. Ler P ( x ,  B) be a weal fi~tcrion 011 X x d ( Y )  such that 
(a) Bfx, - )  b a law on Y f s r  mclz x~ X, are$ 
(h) PIX,  A) b nzsslswrable in x f ~ r  aIE A E  d(E"j), whe~e d [ Y )  i.9 srrliple algebtu 

ge~aerar in$ Y), 
TIgn P f x ,  B) is n Mwkou kernel auer X .  
Proof. Inspcting the collection of Chase B E  @(Yj far vvhieh P t . ,  B) i s  

measurabk, we find it ta be closed undw increasing utaions and d~reasing 
intersections. TEE usual lnonotolrc class argument finishes the proof> q.e+d. 



R Tb Rimipal Resulzs. k t  X, K Z be separable spsrces with X and 
Z uncountable and standard. As noted in Sation 1, metries may be chosen for X 
and Z under which bath become h~rne-~lmorphic with the unit interval I 
= [O, 11; without hesitation, X and Z are written inkerelnan~eably with I, 

Suppose now that Pand Q are t w s  on X x Yand Fx  Z, respectively, sharing a 
cornman marginal P,  on Z Our primary object of study will be Y (P, Q), the s%et of 
a11 laws en X x Y x  Z having marginals P an X x Yand Q on Yx Z .  VCP, Q) is 
clearly a convex set, and Shorts f 122, Theore~n 5 implies that it is ~on-empty.TRe 
two questions before us are: 

1. What are the extreme p i n t s  of VCP, Q)? 
2, When is V ( P ,  Q) a singleton set? 
The answers to these are the content of theorems 1 and 2 below. 
Bdore proceeding however, it might be: worthw~le  to consider the case 

where X, E; Z are finite sets; the marginal problem then beomes; one sf Ending a 
3-dimensional array a(i, j,  k)  s f l n ~ n  -negative numbers subjmt to tbe constraint 
that 

are @ven matrices. It is not too hard to prove that a solution is extreme i fad only 
if For each fixedj, a(i ,  j, k)  is an extrem matrix with specified row and a l u m n  
sum5 

Also, the s~lutton is unique precisely when Fss each fixed j, either 
C n ( i ,  j ,  k )  --4 (1 far at most one k, ar x a t i ,  j ,  k)  r 6 for at m s t  one i. 
i i 

The canditians we obtain will in fact be "contintto~s'~ veerrrions of these. 
If M, and M ,  are laws on X and Z5 respctivcly, then by S ( M , ,  M,) 

is denoted the set of all Patm an X: x X with marginals Mi on X a d  M ,  an Z. 
$(MI, M,) is convex and, for the topslogi:ies we have chosen for X and Zp 
compact under we& convergence (it is a closed subset of b f X  x 2) - PfI x J), 
which is compact]. 

By lemma 3, there are Markov kernels Pdy, a )  and Q (y, .) for P and & aver 
(Ir, P I ) .  We assume tfiat: these kernels are fixed for the extent of this smtiun* Again 
by lemma 3, any law R in VIP. Q) also has a Markov kernel R ly, s v ~  ( Y ,  P I ) ,  
lfrt(y, *)tzS(P[y, .), Q ( y ,  . ) ) foreachy~ theneallR[yI .)acaaoni~alkaael 
for R. It follcrws easily from lemma 4 that any Markov kernel far R may b allerd 
on a set of Y E N  with P, (hr) =;: 8 ta obtain a canonical kernel. 

Let R (y ,  % )  be a canonical kernel for a law R in V ( P ,  Q); define E c Y by 

E -; ~ Y E Y :  R(y, .) is an extrerm point nf ~ ( P ( j r ,  -), Qfy. -))]. 



Pro of. For each y in K = b ( X  x Z), denote by p, and p2 the nrarginaIs of g 
012 X and on 27. Define 

Ko = [ p ~  K: p is not an extreme point of S(ps ,  p,); 

M - trp,, p z ) ~  K x X: and p2 have the same marginsnls on X and Z;, 

Then M is compact, and M ,  is apn in K.I, and therefore s - compact, Betine 
C: M 4 K by E (p l ,  f i 2 )  = -I- p2). Then K ,  2s the- image d M, under G ; since 
G is cantinuaus, K, is ~-cornpwt. 

Finally, E is the inverse image oaf K\KQ unda the mapping y -+ R ( y ,  -) and so 
is measurable in E: g.e.d. 

~ M M A  7, kf Kg be as in titre precedil~ prooJr; then rkere is a measurable 
jfumrion f :  KO -+ ,&(X x 2) such that fo"orrsXE ~ E K ,  

(1) P + ~ ( P I E K >  
I 3  t t - f t ~ l ~ K %  
(3) SIP) i.l- 0, 
(4) f (PIX = f  (sdz = 0- 
Remark. Compare Karlin and Studden, [5] p. 291)- 274, 
Br oaf. Define the sets 

1 
I ( p - f l :  p,  P E K  and L,=L\fOj, 

Then E is a coqtil~uous image of K and is therefore cczmpaet, whilst L, is  
open in Land so is a-compact. Also define 

A =  ~ ( @ , ~ E K ~ X L , :  { p + p , p - @ ~ K x K  and ii,=,Gs =0 j .  

Then A is  relatively ckosed in KO x Lo and henee is tr -compact. If prz KQ, then 
g = (pr + p2) withp = +(&L, - pZ) E Lo and (p, @ E A ;thus each setion of A over 
points p E Ko is mn -empty, 

Hoffmann-Sldrgensea [dl, p. 1137 Theorem 3, impjies tile existence of a 
mcasrnrable function f ;  K ,  --. L, whose graph is contained :din A, q.c.d. 

L~~h.lun 8.. k l  K a d  K ,  bt? as aboue; rhen t k r e  are! mea~rtrablc fer~rcfions 
F ,  : KO -+ K and F 2 :  K ,  -t K suck that fir each P E  KO 

(1 1 F j  (PI, Fz ( P ) ~  = PX Q ~ l c  = F z  (r f l ) :  = Mr 
t2E CP)  + F ,  (~jbrl2 = P, 
(3) F ,  (PI =-# F2 (c~S* 
Proof. Lel f :  K, --a ,&(X xi51 be as in lemma 7 and set F ,  (p)  = p+ 

-tStphnd P,IsO = P-.f (PI. 
THEOREM 1 A ICI w R i n  F(P,  Q) is on exfreme plftt of V (P ,  Q) if a d  onbjl $fur 

each can-tcluricul ker-nel W ( y ,  .)for R over (Y, P I ) ,  R ( y ,  * )  is urn extreftie pclitzr QJ 

S ( P ( y l  a ) ,  QCy, 3 )  o.s. (P , ) ,  i,e. P ) ,  (&) f= 1, where E is the subset of Yin ieotntrl. 6.  



Proof. Suppose that R is not extrem; then R = orR, -I- (I -a) R, far distinct 
R , ,  Rz in V I P ,  Q), 0 < GE < I. Let R, ( y ,  . )and R , ( y ,  - )  becanonical kernels for 
R ,  and R, ; t22en R Cv, * 3 = csR, (y7 .) + (1 -lx) R, ( y ,  .) defincs a canonical kaneI 
far Pi. Since W ,  p R,,  the laws R ,  (yo  .) and R ,  (y, s f  diEer for ally in same set of 
positive P,  -measure; R(y,  * ) i s  not exlreme in S ( P ( y ,  s), Qry, -1) far all such y. 

Suppase, conversely, that there is a canonical kernel R (r, *)  for R far whiclu. 
P ,  ( E )  < 1, Defitxe K O  and K as before, and let F , :  K, -, k" and F, :  K ,  -+ K be 
as in, lemma 8. Define R,  and R, on Y x .@(X x Zj by 

Then R ,  ( y ,  - )  and R ,  ( y ,  - )  we canonical kernels for laws Rr and 8, over 
(Y, PIS; XI and R2 are in VCP, Q), and f (R,+R,) = Pl, Mow for each y@$ 
R ( y ,  V )  is in KO, so that R ,  (y ,  .) + R 2 ( y s  * )  for such y, If R ,  = R,, then by 
lemma 4, R, (y ,  * )  = R,  ( y ,  - 1  as. (P, ) ,  a contradiction. Thus RI -71: R, ,  and R is 
not extreme in V(P,  Q), q,e,d, 

We mailltaiain the notations used in thwrern 1, recalling that the Mukov 
kernels P ( y  , -) and Q (y, .) were fixed. Define the sets 

D ( B )  = by: P ( y ,  -1 is not a p i n t  mass: 
and 

D (Q) = (y:  Q {y* a) is nor a. point mass: 

TheSe are members of a(3'): for example, D ( P )  is the inverse image of 
~ P E  P(X): bt i s  not a paint mass) under the mapping y i-+ P ( ( y  - 1; iliis last set is 
open for the topology of weak convergnce in &@(X), so that D(PJ b mws~drrlbie, 

THEOREM 2. The f o i l o w i ~  stnteme~~ts arc ~quiuaie~at: 
I ,  V ( P ,  Q) is a singleron sa; 
2, P ,  (D [PI ")n D (Q)) = 0. 

Proof. SrnremenP 1 implies sstarmenl 2. We prove the coalrapositive, 
supposing P ,  (63 (f") n D(Q)) > 0. Recall that X and Z are metPised as the interval 
E and written interehang~ably with it. We define the Markov kernels X ,  (y , - ) and 
R, (y ,  "1  on Yx# (XxZ )  as follows: 

R ,  ( ~ 7 ,  * )  and R,(y, =)  ore laws on X x.Z with cumulative: distrihtion 
functions 

R,  CY, Lo7 XI x 21) = Pbp &a, XI) * Q(Y, Cf-4 Y.I)+ 

where: a A b = minimvsn t ~ ,  1 1 1 .  Thus the mappings .w -+ 8, (y, A) and y 
--+ X , ( y l  A) are measurabIe For each A E . d ( X  x Z), the algebra generaked by all 





B - ( H x Z ) n ( X x K f  and C = ( X X  [ D ( P I ~ D ( & ) ) X Z ) R B  

la id (X x Y x Z ]  ; then according to lemma 2, 

and likewise 

R,(CI= J P ( Y , H ~ ~ ~ Q ( ~ ~ K , ) ~ P , @ ~ ~  
@(P!nDfQt 

But from. I+), P Cy, H,l Q (y ,  K,) < PSy, Hy) A Q ( y ,  K,) far all y in D IFY) n D IQ), 
a set assum& ta hatre positive PI -mewwe. Thus R,  (C) < R2(CI2 and the result 
is proved. 

Statentent 2 implies statement 1. Suppose that P,  (D (T") n D (Q)) = O and ehal 
R is; any law in V ( P ,  Q), Put A, = Y\DCP) and A,  - Y\(D(&) w d $1;  these are 
disjoint sets such that P ,  ( A , ) + P 1  ( A , )  = 1. 

Define functions : A,  -+ X and _f, : A,  -+ Z as follows: far each y E A ,  , 
Y (J" , - ). is a point mass at f; (y)  ; for each y E Aa, Q (y , - ) is a p i n t  mass at Lv). 
These functions are measurable: 

f ; S ( ~ ) = [ y e A , :  P ( y , B ) = 1 ;  for any B E @ ( X ) ,  
and 

j ' ; "C t - - ; j~A , :  Q ( y , C ) = i J  for any CE%(Z), 

L,.et C, c X x Y and 43, c Y x  Z be the jmemu~able) graphs BE the fum- 
Lions f, and J,; then G x Z and X x G2 are disjoint sets with R (Gt x Z) + 
+X(X x G2) Pr (A1)+Pll (A2) P2 I .  

Defim 

P i :  A 1 x Z - - - t C 1 x Z  and F, :  X x A , + X x G ,  

by F ,  (yr z) = ( f i  ( 3 ~ ) ~  9, z) and F ,  (x, y) = (x, y ,  fz (y ] ) ;  F1 an".lF, arc easily geen 
to be Barel isemergXrjsms anto S, x Z and % x 6,. 

If now B is a Barel subsat af X x Al x Z, then 

B n ( G ,  xZ) - [ X  x.8';' (Bn(G1 X Z ) ~  "(Gr xZ)% 

so that R ( B ~ ( G ,  ~ z ) ) = R ( x x F ; ' ( B ~ ( c ,  X Z ) ) ) = Q ( F ; ' ( B ~ ( F ,  XZ) ) ) ;  

thus the value of R on subsets of G, x Z is wholly deterhnerli by Q, 
I,ikcwisc, id' B is a, Bore1 subset of X x A, x Z ,  then R ( B  n(X x G,)) 






