PROBABILITY
) AND
MATHEMATICAL STATISTICS
Vol. 5, Fase. 2 {1985), p. 235.249

ON THE LIMIT BEHAVIOUR OF RANDOM SUMS
OF INDEPENDENT RANDOM VARIABLES

BY

K. S. KUBACKI ano D. SZYNAL (Luguiny

Abstract. The aim of the paper is to give some new results on weak
convergence of random -indexed partial sums to infinitely divisible
distributions. To this end we introduce new versions of the Lindeberg
condition which allow us to strengthen or generalize results given in [5],

[97, 111}, [13] [14] and [15].

1. Iniroduction and notation. Let (X ), ..y be a doubly infinite array (DIA) of
random variables (r.v’s) such that for every n, the rv's X, k=1, 2, ..., are
k

independent, let F,, be the distribution function of X, and let S, = Y X,;.

i=1
We put
+ o0 + ot
au=BXu= | xdFu(d, oh=DXy= | x*dFu(x)-al,
bt~ 53
ML = Z a!l‘;‘ Vnk Z gmj: bnk = maxv O-J%j!
ji=1 15j<k
while for Y, = X —a,, k=1,2, ...;n=1,2,..., we write
] + ) k
@u(t) = Eexplity,] = j exp {itx} dF g (x+au), ful) = H @ (1)
- Jj=1

Now let {N,, n = 1} be a sequence of positive integer - valued r.v’s such that
N, is for every n mdependent of X, k > 1. We assume that the distribution
function of N, is determined by the values

Pu=PIN =Kl k=12; % pu=
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Under these assumptions on N,, the distribution function of
‘h'"
Snn,, = kg1 X
depends on N,, and

ESnNn = Z P Ln]u = A,,, EL:;N Z pnk nk = Am
k=1 k=
a o
Ei};‘:lz\f” = Z Pt Vﬁk = Ons DZ LnN Z kLZ A’?,
k=1 k=
X G
D*Suy, = Y PuVit+ ), PuLi— A7 = 0u+ 4% =07,
k=1 k=1

Furthermore, let H be a bounded, nondecreasing function such that
H(—ow)=0, 0< H(x)< 1 for all x, and H(+ o) = 1. We write

(x) = {(exp tx) —1—irx)/x?  for x # 0,
9:(x) = | 132 for x =0,
(1) fty=exp| | g.(x)dH(x)}.

Then f(r) is a characteristic function (ch. f} of an infinitely divisible
distribution with zero mean and unit variance {(see, e.g, [4], Theorem 5.5.3).

For the moment, let us assume that N, = k, almost surely (as.) for all n,
where |k, is a sequence of positive integers such that k, = o, n —oc. The
following conditions are well known:

The classical Feller condition:

(F) b [V, = 0, n— o0,
The classical Lindeberg condition:
1 kJ’( ’
(L) x2dF 4 (x+a,) >0, n— o,

;“;lk k=1 i i,,ag'ff”k
for every & > 0.
The condition
1 o
—— ¥ | x*dF,(x+ay)—H(), n-cw,

(Ly) ; V
why k=1 xSV

for every continuity point y of H, which we shall call the generalized
Lindeberg condition {this condition is similar to the one used by Loéve in
the “bounded variances limit theorem™ (cf. [37).

- Furthermore, the following facts hold (cf. [3], p. 293-295):

(A) (L) < {(F) and(S,, — Lu ) Vo, > A 0.00 1= 0},
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. 1 u D
where .4, , denotes a normal r.v. with mean a and variance b, and — denotes
convergence in distribution (weak convergence);

(B) (Ly) < [Eexp it (Su, — Lu,)/Vas,] =1 (1), 71— 0],

provided that (F) is satisfied.

However, in the general case, for sums with random indices such results
are not known. Following the classical work [97], many authors (see, e.g., [8],
[61, [71, p. 471-475, [1], [2] [13], [11], [15} [10], [12], [14]) have
investigated the limit behaviour of the distribution of random -sums. Among
them, [15] introduces the random Lindeberg gondition and proves its
sufficiency for the asymptotic normality of (S,,Nn“l,,.”“]/‘[’f;ﬁn_ The necessity of
that condition, as we know, was not yet proved.

The aim of this paper is to extend the results (A) and (B) to partial sums
with random indices. For this purpose we introduce new versions of the
Lindeberg condition which allow us to strengthen or generalize results given
in [5], [9], [11], [13], [14] and [15]

2. A generalized random Lindeberg condition.

Definition. A DIA (X,,) is said to satisfy the generalized random
Lindeberg condition (RLy) if

Nll

— 5 | X*dFulx+an) > H(y), n-x,

2 A
Vuh’" k=1 xﬁ.yV"Nn

(RLy)

for every continuity point y of H.
It is easy to see that if we put H(x) =I(x = 0), then

+
f(y=exp! | g (x)dH(x)} = exp{—r?/2},

ie. f(¢) is the ch. f. of a normal distribution with zero mean and unit
variance, and (RLy) gives the random Lindeberg condition (RL) introduced
in [15], ie.

Nﬂ

(RL) E%—E— 5

. xzdF“k(x-f-a,,k}é—ri), n— o,
Vin, k=1 1x 2oV,

for every & > 0. However, we shall use the following equivalent form of (RL)
1 Nﬂ } )
(RLo) i L | XdFulx+a) 50, n—o,

V;?;’. .
niNy k=1 ﬂxf;clfnﬁn

for every ¢ > 0. This version of (RL) was used in [11].
Furthermore, if H(x) = I(x = ¢}, where ¢ = 0, then

(2) f{t)=exp %%{exp fite} —1—itc) %,
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ie. f(r) is the ch. f. of a Poisson type distribution with zero mean and unit
variance. and (RLy) takes the form

‘ 1 N .
(RLC) z j x?; dFuk(x"i—ania);[l 0: n— oo,
V;m k=1 [Vx —plZe
N i

for every ¢ > 0. Other infinitely divisible distributions may be obtained by
suitable choice of the function H (see, e.g., [4]).
Moreover, in what follows, we shall use the random Feller condition

(RF) bu, [ Vidy 20, n—c,
introduced in [12]. Of course, (RF) follows from (RL,) as for every e > 0
Ny
b Vi, S +— ¥ | XdFulx+a) >, n-ox,

IHfmr,, k=1 ]rlsaev"m

(cf. [15], the proof of Lemma 2). However, in the general case, (RL,) does
not imply (RF) (e.g. (RLy) with H(x)=I(x>=¢c), ¢ = 0).

Remark 1. Let us observe that if N, =k, as. for all n, where {k,} is a
sequence of positive integers such that k, — sc, n — oc, then (RLy) reduces to
(Ly), while (RL,) and (RF) reduce to (L) and (F), respectively.

The following result extends (B) to sums with random indices and at the
same time generalizes the main result of [15] (Theorem 1).

ProrosiTion 1. Ler (X,,) be a DIA of r.a’s such that for all n, the rv's X,
k=1,2,..., are independent, and {N,} be a sequence of positive integer-
ualued r.v's such that N, is for each n mdependenr of Xypo k=1, 2, ... Suppose
rhar (RF) is satisfied. Then

Eexp {it (Suv, — Lun, )} Van,} —rf (1, n- oo,
where f(t) is given by (1), if and only if (RLg) holds.

Proof. First we note that
B exp it (Spn,~ Lun Von,) = 3 P S (1Y)
= Igl P €XP f}i Loui(t/ V) =11} + A4 (1),
where, by (RF),
|4, ()] = ]:‘21 P [€xD { Z 1og ¢ (t/ V) } —exp { }:: (i (t/ Vo) = 1)}

@® &
< (“Hexp (28 Ebuw,/ Vi, =0, n 00,
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as b,y,/ Ifjj.,n <1 as. for all n. Moreover, we observe that
’ Ny

o k
(b) Y. Pwexp | Y, [9,(t/Vy)—1]} = Eexp | Z[wnm 11},
k=1 j=1

=
where @,y (1) is an r.v. taking values @,; (1) = @,;(t/Vy), k =1, 2, ... Hence,
we see that the right hand side of (b} is equal to

Ny

Y | 6(x/Viy) x*dF,;(x+a,)} = Eexp {R,(t)}, say.

2
I/NNM j=1 —wm

Eexp%

Thus, taking into account (a), we get
Eexp {it(Suv,— Lun )/ Van,} = Eexp {Ru ()} + A, () = f (1), n— o0,

if and only if

(c) Eexp{R,(t)} - f(1), n— 0.
Therefore, it is enough to show that
(d) R0 | g(dH(x), n- oo,

if and only if (RL,) holds.

Now, for arbitrary positive &;, £, and &3, choose an integer m sufficiently
large and a subdivision x, < X; < ... < X,,, all continuity poinis of H, so
that

+ w
1B(m) = IJZ 9u055- ) H ()~ Hgy )]~ [ g dH ()] < e,

max |x;—x;_4] <&, g (x) <& for x < xo or x> x,,.
1sjsm

Hence it follows, for n=1,2,...; m=1, 2, ..., that;

N“ + ‘ ’
C, ()] = 3. § 9:(e/Van,) x* dF o (x+ ay) —
Vi (=1
1 Naoom ,
] g (%/Vyw,) X* dF (X +a,)| < &5 as.;
VnN k=1 j:sl Xjor gﬁr*l’“w ‘53: )
\D, (m) = } FF . (X/ Vi) X2 AF (X + 1)

m‘i k=1 j=1 xj_iez’r,ﬂ’nw Txj

Z Z G (X5 1) ‘ xzdFm(x"'ﬂu}g)E < g, M, as,

nN k=1 j=1 j*l‘xﬁywﬂng‘j
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where M, = sup|dg,(x)/dx| < oo. Moreover, we have

Np 4w

V Z ‘. ge (x/ KIN,,) xz dF nk (X + ank}
nN” k=1 -

+ o

= | g.(xdH(x)+B(m+

R,() =

N
i 1 £ . ; ;
FLal5-gr T | xdFalcran)-
i=1 ! ﬂ‘Nn&::!ixjhx-ix-jV"Nnij
—[H(x)—H(x;-1)]} + D, (m)+C, (m).
Hence, by the estimates given above, we see that (d) holds if and only if
(RLy) is satisfied. The proof is complete.
The following modification of Proposition 1 is sometimes useful in
applications. ‘
ProrosiTioN. 2. Let (X,;) and {N,! be as in Proposition 1. Suppose that
there exists a sequence {s,) of positive real numbers such that

(3) &nN,,/Sa? 'E' O, -0,
4 WS 4D, n-x,
where D is a strictly positive real number.
Then
(5) Eexp lit(Say, — Lon, )5} =St .\,D n— %,
where
. + o ) -
(6) ft/Dy=expiD | g,(x)dH(x/\/D)},

if and only if

N = Z [ x ‘dF,,k(xv%-aﬁk)gDH{yfwf'E), n - oo,
Su k=1 xéy-e”
Jor every continuity point y of H(- /w/}j}'
Moreover, if (4) is satisfied with D =0, then

(3) (th‘“ml‘uﬁ")fs\n 'E} 05 n— oo,
Proof. First we note that (3) is equivalent to (RF) and (5) is equivalent
to Eexp it (Sun,— Loy )/ Vin,} =/ (1), n— o0, as (4) is satisfied with D > 0.

Thus, the first part of Proposition 2 will be proved if we show that (RL,) is
equivalent to (7).
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Assume that (RLy) is satisfied. Then

R R
@ =2 | x*dFy(x+ay)
Su k=1 EE S,

N

n ) N
where
U,=1//V4 /st >1//D and Z, =V} [s2—D 20
for n— o0.

Hence the first term of (a) converges in pérobability to DH Lv/\/rﬁ}, and
the second one is less than |Z,|, where |Z,| =0, n— co, which gives (7).

On the other hand, if (7) holds, then in a similar way we can’prove that
(RLy) is satisfied.

Thus, the proof of Proposition 2 will be completed if we show that (8)
follows from V3§ /sy 250, n— . But this is so, as

P{iSu,~Luv > 651 = 3. P P[Su— Ll > 85,]
k=1

<UD S puVils2 = W E VA J52),
k=1

P
V2 [s2 -0, n— oo, and we may assume that
aN,/on 3

9 Vv fsi <1 as. for all n.
Of course, condition (9) implies no loss of generality, because if (Y,,) does,
not satisfy (9), then we can set Z, =Y, I(Vi/s2<1), k=1,2,...; n

=1, 2,..., and the DIA(Z,) will satisfy (9). Furthermore,
z‘"[}ijﬂl Yo # Zu}] < PV /st > 1120, n—w,
as Vi /si 50, n- oo, ie. |
Ny
S::N,,/er = (Snw,,“‘LnH /s, and  Siy /s, = g:l Z i/ Sn
have the.saine limit law. This completes the proof.
From Proposition 2 we can deduce the following generalization of

Theorem 2 in [15].
TueoreM 1. Let (X ) and {N,} be as in Proposition 1. Suppose that (RF) is

5 — Prob. Math. Statist. 5 (2}
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satistred, and
(10) (V,—e)oi 0, n->om,
(1 d,=A,fo,—-d, n- o0,

where g, = EV} . 47 = D* Ly, 0,+47 =0}, and 0<d < 1.
Then

(1 2) E exp {” {SHNN HN")/UR ) u"j (r ‘\f[ d?) n— G,
where

[ +w
(13) Flt J1—d*) =expl( ~d Q g,(x) tiH(}u/\jl ~d2}

if and only if (RLy) holds.

Moveover, if (11) is satisfied wirh d =1, then (8 holds.

Proof. It is easy to see that ,,N Jok 3 1—d? n— o, as (10) and (11)
hold, i.e. (4) is satisfied with s? = ¢? for all n and either D=0ifd=1 or
D> 0if 0<d < 1. Thus, the proof of Theorem 1 immediately follows from
- the proof of Proposition 2.

We now give conditions, expressed in terms of statistics such that (5)
holds.

ProprosiTion 3. Let (X,,,J and 1N, be as in Proposition 1. Suppose that
there exists a sequence 's,) of positive real numbers such that (3) holds, and
sueh that

(14) W;,i"/s D and o2 VN s¥—0, n-oo,

where
Ny

Z Y;vk’ Y; :X"k“"ﬂnk, k=1, 2,...; n= 1., 2,.

n\’"
and D is a strictly positive real number.
Then (5) holds if
. .
1 E P p—
(15) 5 ¥ Y2I(Y, < ys)— DH(y/\/D), n— o,

w k=1

for every continuity point y of H(- /\/B).

Moreover, if (14) holds with D = 0, then (8) is satisfied.

Proof. We shall verify the assumptions of Propositions 2. Suppose that
(X..) is a DIA satisfying assumptions (3) and (4) of Proposition 2. Then we
may assume that

(a) ,,N /s2< D+1 as. for all n.
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Condition (a) implies no loss of generality, because if (X,,) does not
satisfy (a), then we can set Z, = X, I(Vi/s3<D+1), k=1,2,...; n
=1,2,..., and the DIA (Z,) will satisfy (3), (4) and (a). Hence, under (a),
condition (7) is equivalent to

(b) = Z | x*dF,, {x+a,,k)_+DH(y/,‘/D} n— o,

Snok=1 XE sy
in a sense that if (X,,) satisfies (7) but does not (b), then there exists an
equivalent DIA (e& (Z,4) for which (b) holds.

Now, since EVj /st =EW] /s? for all n, then (4) is satisfied as (14)
holds, and for the prooi of Proposition 3 we only need to show that (15)
implies (7). Sim:e

N"

| .
(C} % 2 z Yn; I(}/Hk == J‘Tsn)% %gj z _I,‘ xz dFuk (x+{lalk]}

n k=1 n k=1 xSy,
for all n, then the proof will be completed if we show that (15) implies (b).
But

1’ Ny
= Z VR T(Y < ys,) < Nn/"’" as. for all n,
which by, (14) is uniformly integrable. This fact combined with (15) and (c)

implies the result.
Remark 2. It is known that assumption (14} is equivalent to

(16) W2, /s2~D and 6 V3, /st 0, n—w,
and
(16" {W /ssy s uniformly integrable.

Moreover, it is easy to see that (14) can be replaced by (16) and

17) {4 max Y2 21 s uniformly integrable,
! l‘kﬁ"&

as for a DIA (X,) one can find an equivalent DIA (eg,
Zitﬁ ?:(Xnk ank}‘{“' k- 1!32 < D’f'l)s

k=1,2,...;n=1,2,..) satisfying (14).
- Now we give simple consequences of Propositions 1, 2 and 3, which
extend or strengthen results given in [5], [14], and [15].
Tueorem 2 (cf. [15], Theorem 1). Let (X ) and {N,} be as in Proposition 1.
T hen

] o
' {SnN"m‘LnN”)iK!N" A 0,1 R — 30U,

and (RF) hold if and only if (RLy) is satisfied.
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Proof. The “only if” part was proved in Proposition 1. Knowing that
(RL,) implies (RF) we see, by Proposition 1, that the central limit theorem
holds if (RL,} is satisfied.

Tueorewm 3 (cf. [14], Theorem 2). Let (X ) and {N,} be as in Proposition 1.
Suppose that there exists a sequence {s,} of positive real numbers such that
(4) is satisfied with D > 0. Then

(18) (Suv, = L J/$n = N o.pr M= 0,

and (3) hold if and only if

(@) z z [ x2dF(x+ay) 50, n-oo,
n k=1 ixi?ssn

Jor every & > 0.

Tueorem 4 (cf. [15], Theorem 2). Let (X,;) and {N,} be as in Proposition 1.
Suppose that (10} and (11) are satisfied with 0 <d < 1. Then

D .
(SnN"“" LnNn)/ﬁu - V'Vn.i ~d2; n— 00,

and (RF) hold if and only if (RLy) is satisfied.
Proof. The result immediately follows from Theorem 1.
Tueorem 5 (cf. [5], Theorem 2.3). Let (X ) and {N,} be as in Proposition 1.

Suppose that there exists a sequence {s,} of positive real numbers such that
(16) and (17) are satisfied with D > 0. Then (18) and (3) hold if and only if

(19) { max [Yyl}/s, >0, n-oo.
. 1€KSEN,

Proof. It is enough to note that, under the assumptions of Theorem 5,
the condition (15) states that for every >0

N’l
[sl Y YaI(|Yl >es) > }—»G n- 0,
n k=1
which is equivalent to (19) as for every ¢ > 0
Ny ,
P[Z Y2I([Y,l = es,) = £2s2] = P[ max Yl >ss,],
1€k

and, moreover, by (17) and (19),

by /2 <E{{ max Y2}/s?}-0, n- .
" 1 Sk N, :

Remark 3. It is known (cf. [5], Theorem 2.3) that in the case N, =k,
as. for all n, the “if” part of Theorem 5 can be proved under weaker
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conditions, namely, it is enough to assume that (16) and (19) hold, and

{{ max [Yul}/fs,}
1SKSN,

is uniformly bounded in L, norm. ‘
Tueorem 6. Let (X ;) and {N,) be as in Proposition 1. Suppose that (RF) is
satisfied. Then , )

(th'ﬂ - LnN")/I/:;Nﬂ "2* Zes ft = 00,

where #, is a Poisson type r.v. with chf. f(t) given by (2), if and only if (RLg)
holds.

THeoreM 7. Let (X)) and {N,} be as in Proposition 1. Suppose that there
exists a sequence |s,) of positive real numbers such that (3) and (4) are satisfied
with D > 0. Then

(29} (S“Nﬁ;u L&N,)/Sﬂ B” é?cvﬁs - 00,
where P, 3 is a Poisson type rup. with chf. f(t .Vf'ﬁ) given by

20 @ \fD) = eXp E—i [exp lite \/5} —1=ite \/ﬁj}i,

if and only if for every e > 0,
1 M

(22) 52 | xXdFu(x+ax) >0, n-oo.
S k=1 E_Blze

Proof. Putting H(x)=I(x = ¢), the result immediately follows from
Proposition 2.

TureoreM 8. Let (X,,} and {N,} be as in Proposition 1. Suppose that there
exists a sequence |s,| of positive real numbers such that (3), (16) and (17) are
satisfied with D > 0. Then (20) holds if and only if

Yo
’-'S‘E‘w—“ﬂﬁ

H

1 Mo
(23) =5 2 Yél(
Sn k=1

. for every & > 0.

P
?«6)-—) 0, n—oo,

3. Random limit theorems of Robbins type. In this section we give
necessary and sufficient conditions for the weak convergence of (S,y, — 4,)/0,.
The results obtained are generalizations or extensions of those in [9], [13]
and [15].
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Putting
ho(0) = Eexplit (L, —ANA,} = 3. puexplit (Lu—A)/A,},
. 3 k=1
F2(0) = Bexp lit(Sun, = A} = 3 paexpitCu— Ao} fulilo),
d,= Ao, 0<d, <1, d=Ilimd, 0<d<1, h(t)=limh,(),
Jim Jlim

we have the following generalization of Theorem 3 of [15]:

Prorosimion 4, Let (X,,) be a DIA of rv's such that for all n, the r's
X, k=1,2, ..., are independent, and {N,} be a sequence of positive integer -
valued r.0’s such that N, is for each n independent of X ., k =1, 2, ... Suppose
that (RF), (10) and (11) are satisfied with 0 <d < 1. Then

(24) L= hd) [t J1-d*), n— oo,

where f (t\/1—d?) is given by (13), if and only if (RLy) holds.
Moreover, if (11) is satisfied with d = 1, then

(25) f) = h(), n-—om.
Proof. First we note that
(@)  fu(t) = E[expitd, (Lo, — AN Au; fun, (t/0)]
= [ (1 /1=d?) b (td )+ E [exp itd, (Luy, — A/ 4, (i, (t/o) —f (¢ S/T—dP)].
Then, if d =1, (25) immediately holds as '
Eexp it (Syy,— Law Yo} = Efux, (tfa.) =1, n— o0,

ie. fw, (t/5,) =1, n— o, and f(t /T—d?) =1 for all 1
Moreover, if 0 <d < 1, then Theorem 1 states that (RLy) holds if and
only if

S (/o) DI /1=d%), n-w.

Hence, by (a), (RLy) is equivalent to (24), which completes the proof.
An equivalent modification of Proposition 4 expressed in terms of
statistics runs as follows: .
Prorosimion 5. Let (X ) and |N,,; be as in Proposition 4. Suppose that (11)
is satisfied with 0 <d < 1, and that
(26) b by l52 0, >0,

(27) Q,J/G ~ 0 and o* V3 /a‘;:‘—i 0, n-oo.
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Then (24) holds if

N

@ o ¥ <) S (-PHONT-) 1w,
i k=1

for every continuity point y of H(" /\/1 —d?). -
Proof. First we note that if (11) holds with 0 <d < 1, then (27) is
equivalent to

L X -
(W%, ~e)fo2 =0 and o® V3 oi -0, n— 0.

Hence, Wm‘, /a,, 4 1 —d?, n - oc. Thus, the proof of Proposition 5 may be
obtained by 115mg Proposition 3 and the considerations analogous to those
in the proof of Proposition 4.

As consequences of Propositions 4 and 5 we get the following strengthen-
ings of Theorem 3 in [15].

Tueorem 9. Let (X,,) and {N,} be as in Proposition 4. Suppose that (10)
and (11) are m{‘i@ﬁed with 0 <d < 1. Then

(29) 1,0~ hied)exp L -, oo,

and (RF) hold if and only if (RL) is satisfied.
Tueorem 10. Let (X ) and |N,} be as in Proposition 4. Suppose that (11)
and (27) are satisfied with 0 < d < 1. Thern (29) and (26) hold if and only if

G0y { max [Yyl}/s, >0, n- 0.
15KSN,

Moreover, using Proposition 4 one can easily obtain the following
results:

Tueorem 11. Let (X ;) and {N,} be as in Proposition 4. Suppose that (RF)
(10) and (11) are satisfied with 0 < d < 1. Then

fu(ty = h{zrd) f (¢ \fl ~d2}, n— 0,
where f(t | /D), D =1-d? is given by (21), if and only if (RL¢) holds.
Remark 4. Suppose that (10) and (11) are satisfied with 0 < d < 1. Then

Vi -wma if and only if 62 > 0 (n— ).

Cororrary 1 (Robbins’ theorem [97]). Let X, k = 1] be a sequence of
independent and identically distributed rv’s with EX, = a, D* X, = b% and
'N,! be a sequence of positive integer - valued rv's such that N, is for each n




248 K. 8. Kubacki and D. Szynal

independent of X, k = 1. Suppose that

(a) N,,famk or 62-00 (n-— o),
(b) {hrn "‘“‘Gﬁnj‘/ﬁg ﬂ 0: R — CO,
where o, =EN,, n=1, 2, ...

Then

tz az BZ\ ]
lim f, (1) = lim g,,'(taﬁ.,f'ﬂ'n)exlﬂ% “"5(1~ ﬂg")},

where 2 =D>N,, ¢,(t) =Eexplit(N—a,)/B,}, n=1,2, ...

CoroLLary 2. Let (X,z) and {N,} be as in Proposition 4. Suppose that’
EXpu=a,=0(k=1,2,...;n=1,2,...), and that (RF) and
(a) Vi, /EVA, —1, n-oo,
are satisfied. Then f,(t) = f(t), n — oo, where f(t) is given by (1), if and only if
(RLy) holds.
" Cororrary 3. Let (X,;) and !N,} be as in Proposition 4. Suppose that
(RF), (10) and A} = o(c?) with n — co, are satisfied. Then f,(t) - (1), n — =,
if and only if (RLy) holds.

CoroLLARY 4. Let (X,) and |N,} be as in Proposition 4. Suppose that

{LnNnﬁAn)/Au&WD,h B - 0O,

and (10) and (11) are satisfied with 0 < d < 1. Then
2

[0 —z»exp% —a%%, n—s o0,

and (RF) hold if and only if (RLy) is satisfied.

CoroLLARY 5. Let (X ;) and {N,} be as in Proposition 4. Suppose that (RF)
and (10) are satisfied, and that :

(a) lim g,/4, =, 0<s<oo.

=+ o

R [ 8 )
f;,(f) — h(ﬁ)f (t m), n-— 00,

Then

if and only if (RLy) holds.

Remark 5. If s=0 (which holds if g,=0(42) with n-— o), then
ful) = (D), n— 0. If s = oo (which holds if 42 = o(g,) with n— o0), then
L@ —=f(t), n— oo (see Corollary 3). ,

The results given above generalize results of [9], [13] and [15].
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