
WORABrZITY 
AND 

mTHEG\.IATICII, STATISTICS 

OM THE LlMET BEHAVlOUR OF R A m 0 M  SBTW 
OF INDJEPEmEW R A N m M  VAIRHABLES 

Abs~rrrcr. The aim of the paper is to give same new results an weak 
convergence of random-idexed partial sums 10 inhiteb divisible 
distrjributiaos. To this end we introdue new versions of the Ikindeberg 
condition which atlow us to strmgthcn or generalize results given in [5], 
C9l [ti], Tl3l. C141 and E151. 

I. Hoatrradaaction and ~otstiorn. Let (Xak)u?.keM be a doubly infinite asray (DIA) of 
random variables I(r.v7s) suck that for every n, the r.v's X,, k = 1, 2, .. ., are 

A 

independent, let F,, be the distribution functian of X,, and let S,, = 1 Xej. 
j=  1 

We put 

2 q i =  2 G:, blh=  max g,,, 
j= 1 j=  l ISJICJL 

while Far x,, = X,-o,, k = I ,  2, . . . ; n = 1 ,  2, . . ., we write 

Now let: { N,, PI 3 I j bg: a sequence uf positive integm - valued rr.r'a such that 
N, is far every pl indepedent of X,, k 2 1. %qr, assume that the distribution 
function of N ,  is  determined by the values 



236 K .  S, Kubacki and D. Szynal  

Under these assumptions on N, , ,  the distribution function OF 
8 ,  

S.N, - x Xnk 
A =  I 

depends on N,,, and 

Furthermore, let ES be a bounded, nondec~asing function such that 
R ( - C B )  = 0, Q G  H ( x )  G I for all x, and H(d-m) = 1. We write 

(exp : iix j - 1- itx]Jx2 for x + 0, 
g,(.ul = for x = 0, 

Then j'tr) i s  a charaeteristi~ function (ch. f,) of an infinitely divisible 
distribution with zero mean and unit variance (seq e.g,. [4], Theorem 5.5.3). 

Far the moment, let us assume that N ,  = k ,  almost. surely (ass.) for ail n9 
where jk,,: is a sequerlse of" positive integers such that k ,  -+ x, PI -+ cc, The 
FotIawing conditions are well known: 

The classical Feller condition: 

The ~lassical Gindeberg condition: 
1 h" 

I U  7 f X ~ ~ F , ~ ~ X + C L , , ~ + O >  n-s  a, t : r ~ ~ ,  k" I. 1x1 >aV,hn 

for every 8 r 0, 
The sandition 

h r  every continuity point y of H ,  which we shall call the generalized 
Lindebrg condition (this condition is similar to the ane used by Loew in 
the ""bsuncied variances limit. theoreml"fcf. f3J)t 

Fttrther~~torq rhs: following facts hold (cf. C33, p. 293-295): 



II) where ,lpo5, denotes a normal r.v. with mean u and variar~ee b, and -+ denntes 
eopat..er&Ferere ilz distribution (weak cott~iergence); 

provided that (F) is satisfied. 
However, in the general ease, for sun% with random indices such results 

are not known, FoIlowiaxg the classical work [93, many authors (see, e.g., [8], 
L61, [7JI p- 471 -475, C11, PI, 1131, Elll, fl53, C101, C123. C14lf have 
investigated the Iinrit befiaviour of the distribution of random - sums, Among 
them [Is] introduces the random Lindeberg ~ o n d i t i ~ n  and proves its 
sufficiency for the asymptotic normality of (S, , ,8z- i , , , t ) /K,Nrt .  The necessity of 
that condition, as we know, was net yet proved. 

The aim of this paper is to extend the l-efults (A) and (B) to partial sums 
with randam indices. For th s  purpose we introduce new versions of the 
Lindeberg condition which albw us to strengtheu or generalize resuits given 
in PI, [913 E l  17, C13$ [I43 and C151. 

2, A generalzed random klmblrreg ccornditioa- 
Defini t ion.  A DfA (X,,) is said to satisfy the generalized rarrdom 

Lixadeberg condi tian (RL,,) if 

for every continuity point y of M, 
It is easy ta see Chat if we put H ( x ]  = b fx 2 01, then 

+ m  

f@) -- exp f g, (x )dH(x) j  = exp { - t2/2)., 
-05  

ik. j ( f l  is the ch. f. of a 110rrna1 distribution with zero m a n  and unit 
 ariane nee, and (RLH) gives she random tindeberg condition {RL) introduced 
in [15], i.8. 

far every e > 0. Hswever, we shaU use the foEbwing quivatent form of (RL) 

far every E 0, This v e r ~ i ~ ) ~  of (RL) was used in [Sb]. 
Fmrthermorc, if Mfx) = J(x  B cX where c 71; 0, then 
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i.e. f ( r )  is the ch. f. of a Paisson type dbtritrutiox~ wit11 zero mean and canit 
variance, and (RL,) takes the form 

for every E 2 0. Other inf i~te ly  divisible disrributia~ts may be obtained by 
suitable choice of the function M (see3 ee.g., f 4 3  

Mormver, In what follows, we shalE use the random Feller condition 

introduced in [12]. Of course, (RF) follows from (WLo) as for every E > 0 

(cf. [15], the proof of Lemma 2). Wawe~er~ in the genera! casq (WL,) docs 
nut imply QRF) (e.g. (RL,,) with Nix) - 1(x c), c F 08)- 

R e m a r k  I. Let us observe that if N ,  = 16, as .  for all jq where (k,) is a 
sequence of positive integers such that li,, -+ x ,  I I  4 ;C , then (Rt,) seducm to 
(C,), while @Lo) and (RF) reduce ts (L) and (F1, respectively. 

The Fullawing result- extends (B) to sums with random indices and at the 
same time generalizes the main result of El53 (Theorem 1). 

P~aws l~~or j  1 .  k t  ( X , k )  be a BJA 0fr .v '~  streh that for ul! y~, rke r-,v" XYJAl 
k - 1 ,  2, . . . , are indeplidenr, a~zd [ N,! he u seciueBce of psirive dtrrcg.ger- 
valued r.$s such shur N ,  is for each n irzclepe~1detzt of ofXRk k = 1, 2, . . . Stdppse 
titfar ( R F )  is  sa#i,\:/ied. Tktl  

where f ( r )  is give@ fiy {I), if and clitly if ( R E 4  holds. 

Proof. First we note: that 

1A,(01 -. p,,@xp (z ~ ~ P , , J ( ~ / ~ ~ ) I . - ~ x I z {  ( ~ j ( ~ / ~ ~ ] - l ) ) ] ]  
k- 1 j= 1 j= 1 

(a) 
G (t4/.%) exp jr2/2 t- r2f4] EbnN,,/F(i-, -=+ 0, ~ 1 - +  1 7 ~ 3 ,  



as brrbi,,f J(Afr g 1 a.~.  for all n. Moreover, we abserve that 
OW k JV , 

lbl C P N ~  ~ X P  ! 2 E v a J  ?i(tJK;lk)- 2.3; - E ~ X P  I C CP,,~, - f 1: 3 

k= l j =  L .f= 1 

where rpNiH,f0  is an r,v. taking values cpaj, (r) = cp,j(?/YnX)l k = 1, z3 , . . Hence, 
we see tisat the right ]rand side aE (bj is equal to 

I bvfz + m 

Js t (x l 'K~l )x~dP, (x+a,~3:  - ~ e x p ~ R , ( ~ ) ] ,  KN, j = 1  -a, 

Thus, taking into aecaunt (a), we get 

I and only if 

0$ Eexp [R,(t)j. -+ f ( t) ,  n 3 m 

Therefare, it is enough to show that 

C m  

(4 R , ~  ( r )  9, 1 y, (x) dH(x) ,  n -t o, 
- m  

if and only if (RL,) holds. 
Now, for arbitrary positive e l ,  .el and e,, choose an integer urt. sufficiently 

large and a sclbdivisioll x, r x ,  c: . . . K xx,, all continuity points of Hs so 
that 
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wbere M, = sup jdg, (x)/dxl < o ~ .  Moreover, we have 
x 

1 M I ,  +, 
an ( f )  7 C J Y, ( ~ K M , , ) x '  d ~ ~ k  Ix' + 

K ~ n ~ ~ ~ k - 1  -or 

Hence, by the estimates given above, we see that (d) holds if and only if 
(RL,) is satisfied. The proof is complete. 

The fallowing modific&tiotr of Proposition 1 is sometimes useful in 
arpplicatrons. 

PROPOSITION. 2. Let (X,) and JM,; be as in  Propr~sirior? 1 .  Swppose ~Aar 
there exists w sequence is,; ?I" positive real aumbers such rhar 

wfiere D is a srrictly p~s ir i~e  real rztr~~&er, 
Then 

f i r  every confinuity poinf y qf H (  =/,/b)' 
Noreoacr, if (4) is sctti.fied with D = 0, llasn 

Proof. Fir& we note that (3) is equivalent to (RF) and ( 5 )  is equivalent 

to ~ ~ ~ P ~ ~ ~ ~ ~ ~ ~ M ~ - L ~ , ~ , , ~ J C ; , ~ ~ , ~  -j(t), rr - w ,  as (4) h satisfied with D O. 
Thus, the first pwt of Propsition 2 will be proved if we show that {IR&,I i s  
equi4alent to (7). 



Asst~snei that (RL,) Es satisfiecI. Then 

1 Nn 
Ea) y z J xzdI;'&(x+n,k1 

Srn k = l  xc --Is, t 

where 

Un = l / J~$~/s t  -% 1/,/5 and Zn = V2Na/s:- D 5 0 

for I1 -+ m . 
Hmn the first term of (a) converges in probability to D H ( ~ / @ &  and 

the second one is less than /Xu/, where iZ,/ $4 n -. a, which gives (7). 
On the other kan4 if (7) holds, then in a sidlar way we can'pmve that 

(RL,) i s  satisfied. 
Thus, the proof of Reposition 2 will be wmpleted if we show that (8) 

P 
folEoiw~ from F&,/S: -P 0, n -+ a. But this is so, as 

e3 

~ < ~ H / s ~  -5 0, n --+ co, and we may assume that 

(9.1 T$,%,[S: 6 1 as. for all n. 
Of course, condition (9) bplies :so loss of generaljfy, &cause if (&) d m .  

not satisfjr (91, then IYG can set ZWk = Xk E(V$Js% < 11, k = I ,  2, . . . ; n - 1, 2, .. ,, and the BIA.(Z,) will satisfy (8). Furthermre, 

%lave the same limit. law. This eclmpIetes the ~sfoof: 
From Prngosition 2 we can dduce the follawing generafization of 

Theorem 2 in [15]. 
THEOREM 1. Lt.t (X,,). ~ P l r j f  (N, :  be as in Propsi t i~n 1. Suppse tltat (RF) i s  
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Ctl) d , = d d d n + d ,  pZ-+m, 

where e,=EV,$II, A ~ Z = D ~ L . ~ ~ ,  ~ ~ f ~ : = a , f ,  aid 0 6 d < I I  
Tllezn 

u21 E exy lit IS,,N3, - L , , N l ) / ~ ,  I - - h i  ,/ I - dZ), n -+ x , 

+ ar -- 
11 3) j'(t ,, r - tr" = -exp :(I - d 2 )  (' g E ( ~ ) d ~ ( ~ / , J ~  -dZ& 

- si 
i,f' and srdj~ if {WL,,) hal'cl's. 

Moreover, [f' El 1). is saristrn! with d .= 1, then (8) holds. 
Praof. It is easy to see iluit Y$JJo: 5 I-d', n-r x, as (10) and ( ( 1 )  

heid, i.e. (4) is satislied with s i  = rri for atl n and dther D = O if d - 1 or 
D > 0 if 0 G t1 I. Thus, the proof of Theorem I immediately fokbws from 
the proof of Proposition 2. 

We now give conditiorls, expressed in terms of statisties such that (5)  
holds. 

P ~ o m s ~ s r o ~  3. Lur /A",,] ard !N, , )  he as in Propsitio'ola 1, Suppose t-hat 
rhcw e.uisf.5 n seL1trclrw.u : s, j of posirit~e real nwtnbers S M G F Z  thnf (3) hnkls, ailad 
such rlror 

fur eusry continuity point y of N( -/@). 
M o ~ e o u e ~ ~  if (14) holds wirlt D I. 0, then (8) is satiqid. 
Proof. We shall verify the assumptions af Propsitions 2. Suppsc t%a&t 

(X,,) is  a D'EA satisbing assumptions (3) and E4-j of Proposition 2. Then we 
may assumc Ihar 



Condition (a) implies no loss of sa en era lily, because if (X,,,) does not 
satisfy (a), then we can set 2 ,  .- J(Y~JS,T: < LID I), El. = 1 ,  2, . . . ; M; 

= I ,  2, , . , , and the DlrA {Z,,) wi13 satisfy (31, (4) and (a). Hencs under (a), 
condition (7)  is equivalent to 

in a sense that if I&) satisfies (7) but does not [bS, then there exists an 
equivallelzt DL4 fe'g., (2,)) for which ("b) holds. 

Now, s i n ~ e  EV$~J'S: - Ert:,"NIF/si far all n, then (4) i s  satisfied as (14j 
holds, and for the praot of Proposition 3 we only need to show that (15) 
implies (4). Since 

for all FI, tbeax the proof will be completed if cve show that (15) illzplies (b). 
But 

r PI', 

which by, (14) i s  tiniformly integrable. This fact combined with (15) and (e) 
implies the resuit. 

R e m a r k  2. It is known that assumption ('14) is equivalent to 

(1 6') / is uniformly integrable. 

Pvloren~rer, it is easy tu see that (14) can be replaced by (15) and 

{ {  rnax x;//sli is  uniPocxsaly integrable, 
I %k%;Vn 

as for a DfA (X,) one caa find an ajuivalenl DM (e.g., 

k =. 1, 2, ... r I T  = 1, 2, ... 1 satisbing (14). 
Now wc givt: simple c-snsequel~ces wf Propositions 1, 2 and 3, whieh 

extend or. stsetrgthcn results given in [SJ, [14], and [I 51, 
THEOREM 2 (G%. [15], Theurcm 1). k t  (X,&) ar-td IN,)  l~ie as in Prupsition! I. 

7"/zePZ 
n I " ~ N , - ~ ~ N , I J I J ~ N , + - ~ + ~ o , ~ ~  -~-+a$ 

csnd (RF) fwld tf acrlrd only J'f (Rkob is sarished. 
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Proof. The ""only if" part was proved in Proposition 1. Knowing that 
(RLo) implies (RF) we see; by Proposition I, that the central limit theorem 
holds if (RLo) is satisfied. 

' ~ W E ~ R E ~ L I .  3 (cf. [14], Theorem 23. b! (X,& and f N,). be as in hgclsition 1, 
Suppse  ithat thme exists a squeme Is,,) elf' p ~ ~ ~ i t i ~ e  real numbers szscFa tlsslt. 
(4) is  satisfied with D > 0. Thcn 

and (3) hold i j  and only i$ 

THEOREM 4 (ef. [151, Theorem 29, Let (X,] and kN,j be as in Propsitiaas 1, 
Suppose thatlat (10) and (1 1) care slzfisjjsd with U 6 d c I. Tken 

and (RF) hold if and only ij' @La) is sari?fied. 
Psaof. The result immediately fellows from Thearem 1. 
THEOREM 5 (cf. [5],  Theorem 2.3). Let (X,) and (N,) be as in Progasition 1. 

Suppose that t h e ~ e  escist3 a sequence (s,) o$ pmifive real mmbm such rhar 
(16) and (17) are satisfied ~ ~ i t h  D 3 0. Then (18) and (3) hold a d  oa1y if 

[ man i&l)/s.50, n 4 m .  
I g k C N ,  

Prgofl It is enough to note thaf under the assumptions of Theorem 5, 
the condition (15) ststates. that for every E > 13 

which is equivalent to (19) hie for every & r- O 

P [  S Y2I(IKkI 3 as3 B s2s:] = P [  max 2 ~ s ~ j ,  
k =  1 l g b 4 U ,  

axad, xnoraover, lay (17) and (F9)$ 

Remark 3. it is klnewa (cf, [$I, TRmmm 2.3) that in the cwc PS, = ka 
a.s, fur all m, the "if'hut of Theorem 5 can bg: prnved r~ndes sae;iiker 



conditions, namely, it is enough to assume that (16) and (19) hold, and 

is uniformly bounded in L, norm, 
THEOREM 6.  Let EX&) and iNZlj be as in filapnositia?z I .  Suppolst. rlwr (W) Is 

satis f ig  d. Tl~en 

wCtew ,&c is a Poisson type r.0, w i ~ h  ckjl f ( E )  given by (2j7 L$ and' ondy $' (Rk) 
Plo lds . 

THEOREM 7. kt (X*) :IV,j be as in Proposition 1. Suppose that there 
exists a seqgerzce is,; qf positiue real rratmbeers such chat (3) alad (4) are snrisfied 
wirh 0 =. 0. Then 

w hme zPC% y is o Poisson type r.u. with ch$ f, f ( t  given by 

(211 
1 , ~ e x p  iirc ,/5) - I - i tc J.61i. 
C 

Pr a 0 f. Putting &(XI - I ( x  3 thc result immediately fulfows from 
Prepsition 2. 

THEOREM 8. Lef (X,& a d  jNnj he as in PrnpusWnn 1. Suppose that thew 
arxl9fs a sequence ;.s,E af'paitiue real ni~&m3"~ such f h a ~  (31, (16) and (27) are 
scrtisfieli with D, 0, Thee (20) horn& [f and oniy .if 

, fisr every E Q* 

3. Random ICmwlit ahwrems sf R~bbim t y p e  Hn this ge~tion we give 
necessary and sufE~ient conditions far the we& canvergen~t? of (S,,lylb - A4)/an. 
The results obtained are genzeralkatiom or txrcnsioxns of those in [gj, [I31 
and [IS]. 



Putting 

W" 

j;,(s) = E exp ;ir (S,,N,8 - A , I / ~ , ,  1 = P,& E ~ P  j if - A,)/g,: f;ak ff/qJ: 
C =  l 

we have the following generalisation of Theorem 3 of [IS]: 
P ~ o ~ o s r ~ r o ~  4. k t  (X,,) be u D I A  of r.tr7s sttch rlwr jbr ati fa, rhe r,~cs 

X,, le - 1, 2, . . . , are indepencEsn, Q?I.C/ 4 N,,)  be a sequence 01 posifiae ilateger - 
valucd r.v> ssuslEt rhat N ,  i s j &  each n irzdepevuEonr of X,, k = 1, 2, , . . Suppvse 
rkar {RF), (10) and (11) me snri,~tiad ~ ~ i r l r  0 G d 4 1 ,  Then 

- 
where; j(r J r  -d2)  is giuen By I13), @ ifnd onlv [f [RL,) holds. 

Moreoueu; [f (11) Is satistied wirh d = 1, then 

Proof. First we note that 

Then, if d -: 1, (25) immediately holds as 

6 
i,~. JiAr$,(t/cN) 4 l 2  n and J ( t  x J ' c d 2 )  = 1 for ail r. 

Moreover, if O C d <- 1, than Thcorcm E states that ((RZ,) holds if and 
only if 

d-- -- - , - n + =. 
Hence* by (a), (RLH) is quivalenz to (241, w h i ~ h  compbtes the proof. 

An equivalent modification of Propsifton 4 expressed in terms of 
stalistics runs M ffoll~ws: 

I 

P~omsorfow 5 .  Let (X,&) and :N , i  be us in Prui30.~itia~t 4. Suppose tkuf ( 1  I)  
is ssa~isfieiE wirlz C) f d r 1, laud drrrr 



--- 
j i r  euer'y continuity point y oj' H ( .  Jwil - JZ f .  

Proof, First we note that if (11) holds with 0 G d < 1,  then (271 is 
equivalent to 

(e;"Nn-@,)/u: 4 0 and CrZ  IF:&^/^: -9 a, n -;' 30. 

LI Heace, q;"Ntl/rr2 -. 1 -d2,  ir -+ m. Thus, the proof of Proposition 5 may be 
obtained by using *%praposition 3 and the coilsiderations analogous to those 
in the proof of Propsition 4. 

As Goasequences of Prowsitions 4 and 5 we get the followifig strengthen- 
i n g ~  of TI~eorem 3 in [ls]. 

THEOREM 9. &1 (K,,,) at?d {N,,j be as fa Proposirian 4, Suppose thar (10) 
and (11) as~t swrlsfied witit O g d c 3 .  Tlaer~ 

Ut) -+ hltd) exp 1 ;  --(I - st2) 

a~rd (RF) !xf~ir t  if and only if (RL,) is satisfied, 
THEOREM 10. Let (X,J and 1 N,] be as in P~opsitiotr 4. Sscpp~se  tl~nt ( 1  1 ) 

uouf (27) me sa1isfiE.d with O G d -r I, Them (29). n ~ r l  124) hokJ (f crrnd oizly if 

{ max 1 j/oR L O3 n --+ rn 
1 Gli  CM,, 

Mereovcr, using Proposition 4 ane can easily oMain she fsIIawing 
results: : 

THEOREM 11, k t  ( X n k )  a#d (N,,Q be as in Prolmsirion 4, Str~lpuse rhar (RF1, 
(lq n ~ d  (11) me satisbad wirk O G d < 1. 9'11en 

where f ( r  ,:EL D = I - d', is given hy (211, iJ. rmd only ij' (Rb-1 Itolds. 
Remark 4. $uppose ataakt (10) and (11) art sarnsfied with O 6 trif c- 1- Then 

P 
F " , ~ ~ ~ - - + C ~  if a d  only if sr i - tm   IT-+^), 

CORO~L,L,ARY I {Robbimq theorem [93), kr {la;,, k 8 1 1  be u sequence o j  
i~dep~rf1d~rat ait~l identically distributed r d s  with EX, =r ci, B2XE = b Z ,  and 
:Ra,,l he a sequence oJ positiu~ irnteger-vdalued r.14'3 ~ l ~ ~ b l  t E t ~ f  M, is -for each n 
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tukre cc, =. EN,, n! = 1, 2, 
TIzen 

where f l z  - D2 N,, ~ , ( a )  = E exp 1 it ( N  - a,)/P,j , n = 1, 2, . . . 
( 7 o a c r ~ t ~ n ~  2, Let (X,) ard lN,j be us ila Proposicirzra 4. Suppllse that" 

EX,, =a ,=O ( k =  1, 2,  .,.; n- 1, 2, ..., ), antar [hat (RF) a d  

fa) E ,  n - t m ,  

are satisfied. ThenfJ;(t) -. f (r), !*a -. m, where j"@) is g i u e ~  by ( I ) ,  and only if 
(RL,) holds. 

COROLLARY 3. Let (;Xnk) md [M,j be as in Propasition 4+ Suppose ahat 
(1BF"J3 ('10) a d  A: = o(a3 with n -+ m, are sat4fied. Tlaenf;,(t) 4 f (t), n -+ s, 
f and only (f [RL,) holds. 

C ~ ~ o t t a e u  4. Let (X,) ard IN,) be ras it2 P r o p J t i ~ ~ l t  4. Suppose titat 

and (1 0) a d  (1 1) are satisfied with O g d K 1, The8 

and (RF) hold if arid srdy (RL,) is suti![ied. 

COROI~IARY 3. Let [Xnk)  a d  {g\j,j be US in Prol~ositicln 4. S n g p s e  rEznt (WF) 
and (10) me satisfied, and that 

ij urd m I y  ij" (RL,,) hakds. 
Remark  5. If s = 0 (which holds if p, =old:) with n -+a), then 

f ( I )  -i- JrCt), 8% -P m. If s = rn (which holds if 8; = o(g,) with n -+ m), then . FI 
& (t) -+ f " (a) ,  JF -+ m (see CoroIlary 3). 

The results given above generalize results of f9], [lJ] and [b53. 






