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sllishaut. ln  the present paper we define cz -times c-de- 
compsable (0 < s .;z 1, a =. 0) prrrobbility measures an a Banad1 
spare X in e u ~ h  ;I way that they form a continwus subclassification 
af infinitely divisible measures into decreastng classes &,a(Xj each af 
which is cIolied under convolution, shifts, c h a o g e ~  :sf scales and 
paages  to weak limits. Moreaver, every L,-,(X) admits n vuiversal 
eIcment fin a gmeraLr~d Doeblin's sense), 

1. IntradmGee a d  aomaiao. Throughout the paper we skal'f denote by 
X a real separabk Banaeh space with the norm /I - 11. We shall consider only 
Borel 0-additive measure on X. Given a bounded linear operator A and s 
measure ji an X let A41 denote the image of p under A, In particuIar, if Ax 
= ax for some a d ? '  and far all SF X, then Ay will be denoted by the usual 
symbol ?j, p, Let 8, denote the unit mass at x (XE X). For r > O let B, denote 
fbe baX1 ex E- X :  glx[l < I.1, and it-3; its complemeat. 

The s~ncept  of c -decampasable probability measwes (p.m.%) was first 
introduced by LoBva ([67, Exercise 16, page 334) and s td ied  further by 
Miszejkis. [819 Rajba [lO]p Urbanill [l8], Zakusilo [20], among others. A 
gencraliaatiun of stlch a conGegt to the multiple case is given in & f  2J7 r133. 
Namely, for a given sequence s ,  , . . . , ct, of nurnbe-f.3 from the interval /0,1) 
and a p,m, ,u an X w s a y  tbat y is (s,, ..., c,S-atmanopasable if there 
cxist p.m.'s pi ,  . . . , on the space s u ~ h  thsll 

(1.1) / t ~ T ~ t j i * ~ k J  j i 1 ~ T ~ 2 ~ i l * ~ ~ ~ r  ..-+ A- I 1 Tdiltd--l *Pd~11, 

where the asterisk + denotes the convolution of measbtses. In particulart h r  
= . . . - cd = c', r d ,  a c d )  -dewmposable p,m."a will be called d -  timm c - 

decomposaREc, 
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By (1.1) it fa'olIows that y is d - times e - deeomp-asablc Id = 1, 2, , . .) if and 
only if there exists au p.m. V on X such that 

where the power is taken in the csnvolution sense a d  G~~ is the numbr  nf 
solutions DE the quation x, + ., . -c- xd = k in nonnegative integers. It is easy 
to check that 

Furtb~more, in (1.2) and in the sequel the csnvergeme of p.m.\ swill bs 
uaderstaod in the weak sense. 

The formubs (11.23 and (1.3) suggest us to generalhe the concept of d - 
times c -decomposable p.m.% tto the non-integer case, Namely, h r  evelry 
a > O we put 

and 

Let L , ( X J  denote the class sf all infinitely divisiMe (id.) p.rn,'s on X. A 
pnr. p on X is said to be a -times G -decomposable (0 < c -c 1, a r 0) if there 
exists a p.m. V in L,(X) such that  

k t  Le6;,,(X) denote the subclass of L,(X) consisting of p,rn,'s p such that 
the qualion (1.6) holds for some VEL, (X) .  

Xn the sequel we shall fix nun~bers O K c c f and ra > 0. Further, we shdl 
identify a p.m. y in L,(X) with the triple [x,, R, Ma in the Tartrat -Levy- 
Chinczyn representation af p, wfsere x, is at vector in X, R a cavitrian~e 
operalor eonespianding to the Gaussian comwncnt of p asand M a Lev's 
mcasblre is, s generaked Poisson elspornent (cf. [la]$. In particular, we shall 
write 10, 8, M] simply by [MI. 

The paper is srgsnked as fblbws. In S ~ t i s n  1 we intraduce a new 
concept of sr -times c -dwornpsabtc: p.m.'s, Ta Sa;ctise 2 we k v a  a gen- 
erali~xd logarithmic criterion which guarantees the existenm sf multiply c - 
decomposable p-m,'s on X. Xa Section 3 am quivallent definition of a -times 
e -dmampasabic p,m,'s is given. Moreover, we show that the chsses (XI 



constitute a continuous menotone system of subsemigroup oof L,(X). 
Further, in $ 4  we prove that for every symmetric p.m. p in &,,{.X) its 
support denoted by S,, is a closed subspace of X ,  Finally, in 8 S wt; give a 
further example of d -universal p.m.% for a subclass K of L0(X),  namely for 
K =-. Jdct,(X)e This stands for an analope of our results in Ll6-j. 

Remark,  It is the same as in El21 and [17] p.rn.3 in & ( X I :  
= 0 Lc.,(X) are called or- times se1f"clecompssable. The study an such 

ce40,1! 
measures will be communicated elsewhere. 

1 A gewrrilized Iwarit criterioe. In [203 Zakusifo proved that for d 
.= I and X - RQhe infinite convolution (1.2) is convergent 2' and only if 

Such a result was generalized to the multiple ease in 6f3Q. Namely, we 
proved that (1.2) i s  canvergent if and only if 

The same is true for every d > 0. Namly, we get the foilowing 
2.1, THEOREM. Lea V -  Ex,, R ,  M J be an i . d , p , ~ ~ .  OIT X. Then rke f i l i ~w ing  

conditions are ~quioale~~r: 
(i) rhc ififinire cs~vo?urion (1.6) is  c ~ ~ ~ w r g e l ~ t ,  

[ii) t k  jodcl.llawitw i~finire con~zt*o6clriorz is conueqena : 

(iii) V has a ,finire log" - mwtat, i.e. 

We pre>r%c;ede the pgrsef of t h ~  Theorem by proving the foilawing 
22.  LEMMA. For euwy rx > 0 t k rc  exist pvsitive comtants, say A,  (a) a d  

A? (cI), such i"hc61 fur 1.1 .= 1 ,  2, . . . 

ProoL Re~all  [43 that for OGaG 1, x 3 y 1 and k = 1, 2, ..., the 
fallawing inequalities hold: 

and 
(2.51 x~-"y)y"- ee" G rtx)/SC~) d x x- 112 f l y $ - I l Z e " .  



254 Nguyen Van T h u  

On the other hand; far every a 0 there exist positive constants, say 
B ,  (a) and B, (cr), such thzt for t3 = 1, 2, . . . 

which together with (1.5) arrd (2.41 implies (2.3) for the case O r: cs e 1 .  
Next suppose that ar > 2 ,  Putting x -. k+a and y = k+ 1 in (2.5) we infer 

that 

far some positive constants C, (a) and G,(or). Finally, combining (2.6) and 
(2.7) we get (2.3) for r3! 2 1 which completes the proof of the Lernlna. 

Proaf of T h e o r e m  2.1. Recall (C171, Lemma 75) that For every i.d.p.an. 
V =  ExO, R ,  M 3  the condition (2.21 is equivalent to the bllawing: 

Hence to prove the Theorem it suffices ta show that (i) and (ii) are 
equivalent to (2.8), respectively. 

Suppose first that (1.6) is convergent. Then 

is a Levyis measui-e. Therefore, 

where [a] denotes the integer part of a, which by Lemma 2.2 implies that 
(2.9) J-tolds if and crniy if the andition (2.8) is satisfied. 

Goazversely, suppose that the condition (2.8) i s  satisfed. Define C", 
= ex,, R., MIgi] and V, .I= [MI,,], where Mj, is the restrictzon of M to- a 
subset E  of X .  By Lemma 2 2  it FoIEows that the measure 

is finilc and, consequently, the foilawing infirritr: convolution is convergent: 

Fhrthermore, since the Levy's inerrsure correspondir~g to e/, is concentra- 
ted otz 8, , it fol10w~ by [Sj  that all positive nlaments of Y2 eelst. iR.t r, z,, 
zl  . . . be B squence of Independent: X - valtlud random variabla with 



distributions 5, v;"@, ~ i ' * ~ ~  . . . , respectively. Then it is easy to chmk that, 
for every k -;= 0, 1 ,  2, . .., 

whiett, together with the faet that 

implies 

(2.1 3) 

m 

C ( I " ~ . ~ - I -  1 ) ~ ~  c ;-, 
k - a  

Cons;r;quently, the power random series 

i s  convergent in L, -norm and hen= the canvolvtion 

is convergent. Finally, since V =  Vt u 1/2, we conclude that the convolution 
(1.6) is convergent. Thus the eqwivaEence (i) -12.8) i s  proved, The proof of 
(ii) -12.8) is similar and will be omitted. The Thearem is thus f d l y  proved, 

3. Am q l r a k M  defiitiarn of malt-iply c - d w o m ~ a b k  p.m."s on X. Let 
C, (X)  [a lx 0) denote the subdass of L,(X] consisting af all p.m.'s !/ for 
which the condition (2.23 is satisfied, By virtue of Theorem 2-1, one can 
define ~n operator I , ,  from G,(X) onto L,,,(Mf as fallows: 

Further, far every 0 ..r a 6 1 we define an operator T,, ola the whoti of 
LGFXl 

/ (k  =. 0, 1, 2 ,  ...). It should be noted that 

and I~ctlce Ibe infinite cernlsoilutian (3.2) is mnverBent far every p~ tO(X). Thc 
aperzttjltot. T"a can be regarded as an analogue of In the study of multiply e - 
decomposable p.rn:s, Namely, we get the foibwing 
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3.1. THEOREM. A p,m* p an X is a - rimes c - d i e c ~ m p a b  whws 0 a K 1, 
if and onSy if there exists art i.d.p,nz, L" on X l ~ l l ~ h  thai 

13.3) P " T x s ~ * v -  
Proof. Supwse first that PE LCT,(X) i.e. p = I,,, Vfor some VE C, (X). By 

(3-2) and by the fact tbat 

we get the equation 
ilS 

(3.5) S,@ p = * 7 .  VU-- 
nt= 1 

whi~h,  by (3.1a implies f3,3). 
ConverseIIy, suppose that (3.3) holds with ,u = Ex,, R ,  1142 and 

and 

it follows, by (3.6), that 

which sl~ows that ye Lc,,,{;ri). Thus the Theorem is fuljy proved. 
From the above Theorem we get the following Corollaries: 

3-2. COROLLARY. The aoperatw L. r's one-ta -one, M'a,eavcra for afjy a,, 
ix, > O and VEG,,+,,(X) 

(3.10) I r ,a  + s~ lip= 'c,al 'caZ '< 
Proof. Let p = I,,, t: By Theorem 3,l the p.m. V i s  uniquely jldrJtcrmlned 

by p, wwhh shows that Ips is orre-to-one. Further; the equation (3.103 
follows immediately frem the definition sf I,,. The Corollary is thus proved, 

3.3, COROLLARY. Sappose that a,, azt .. is: a sequence of c~i~~dn&ersfirr~t tb 
a'uatlerval (0, l] such that a =. 6 ak .r: oo, Thela, PE .LC,, ( X )  if a d  olaIy $ thme 



exists a sequeme pC1,,  fill . .. ~j p .mmP~ in Lo@) such rhat 

Proleb Suppose first that ;u~l;, , ,(X),  where a = and a p ~ ( a i ,  I ]  (Ei 
t= 1, 2, . . ,), Thcn p = I,,, V for some p.m. VG C,(X), Putting 

If 

and taking iara account 1(3,1Q) md Theorem 3.1, we get a sequem p, , p2, . . . 
of p.m.'s safisiyiag (3,14), 

To prove the "ifiT"" p a t  of the Corollary one may stssume, without loss of 
generality, that 0 < a .i 1, Then, it is easy to check that if pi, y,, . . . satisfy 
(3.61), then for every n = 1, 2, '.. 

Letting n -+ ix we infer, by the above equation, thak pa converga to same 
k,, and Tnsn p eonverges to 7",, flFe. Thus p~ I.+*, (XI, whjC;h complets "the proof 
of the Corollary. 

The follov6ing theorem is concerned with the: continuity and tbe mitnoto- 
alcily of the cfasses L,,,(X). 

3.4. THEOREM. f f  EbG -c IS, then 

M~4loreove~, we. gef rlae Jformulas 

where the closure is tuhien in the weak rsp logy .  

F" r o o f. The formulai; (3,l3) and (3.1 4) can be easily deduced from 
Corollary 3.2, We shall prove (13.15). 

Accordingly, let p be a p.m. from &,, [X) and 1 @,#:,,1 a scquencs of numbers 
such that la. Our aim is io show that there exists a sequence :p.j sf 
p.m.% such that L L , E & , ~ , ~ ( J Y - )  ( n  = 1, 29 ...I and y, cartverges to  p. 

Wft first csnsider tikc case cs ;3r 0. Let Y be a p.m. in &EX) such that y 
;.. I , ,  K Without lass OF generality s w  may assume that 

lEBetl~e k" belongs to G O , ( X )  (a .= 1, 2, . . .). 

6 - Pro& Math. SIrrt~st 9 (2) 
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Putting p,, - V (n  .= 1, 2, ,..I and taking into a m u n t  Ihe fact r h a  
rk.# z rksPZ > . . . br every k = 1, 2, . . . , we get the d ~ a m p o s i t i o n  

which implies, by Theorem 2.2 [93, that the sequence :y,f is convergetat. 
Moreover, since #j,Jx?. it Tolfows that p, converges to p, Thus the case a r 8 
is proved. 

Next we consider she case a = 0. Let p be a p.m, in L,(X). Without loss 
of generality one may assume that the Iirst moment of exists, Thus one 
may ddene pis = J ,  p   IF^ = 1, 2, ..,I. By a similar Eugtzment as above, we 
infer that ~ , E L , , ~ ~ ~ ( X )  and / I ,  converges to ilr, wbick proves the case a = 0 
and completes the proof aF the Theorem. 

4. The ssugwt (DO measare in 1;,, (X), Bn El41 we proved that the supp r t  
of a symmetric c-decompasabk i.d.p.m. on a HtiusdorGf LCTVS is a closed 
subspace. Z B ~ ,  parti~ulm, if. f~l jows that the support of symmetric stable and 
semistable p.m,"s on X are closed subspace of X (cf. 1-91 [Ill). The same is 
true for symmetric p.m.'s in I&,(X). Namely, we get the ffalBcrwing 

4.1. THEOREM. For euery $j*~mamerrie p.m. y in (X) its suppurr SF is a 
closeci subspce r j  X, 

Pr a o f, By Theorem 3,4 it  suffices to prove the Theorem for O c < 1. 
Let p be a. symrnetfie measure in LC,(X), Then, by Theorem 3-1 it follows 
that there exists a symmetri~ pm. V in L,(X) such t b a  the equation (3-3) 
haids, Hence we get the equation 

Since> by [ll]> 3, i~ group, we get the inclusion 

ntld consequently, by definition of 7;,, we have 

dbr any n, It = 1 ,  2, . .., which implies that for every a 2 8 

Hence and by the fact that S,, is a group, we sclnr1u.de that SS, is a 
stabspace af X, which completes the proof sf the Theorem. 

5. G~lemerslized D@eblls"w9s olr~iversal pm."s far &,(PI). Let A be a bounded 
linear operator on X", and K a suhclmiss s f  I . o { X t  Recall [I63 that a p.m. P 
on X is A - universr91 for K if PI  K and for every 44 E K there exist squenms 
j q )  and {mkl of natural nunnbcrs such that the sequence (A"' P'") is skUft- 



convergent to p, In  other wo~ds, every element of K is a shii"t. -clrrsler pnoint 
of the douMe sequence :A"P"). It should be noted that such a concept is a 
generalization of the concept of universal g.m."s Ibr i.d.p.mfs introduced by 
Doeblin [I]. The e;riistcnt;e of A -universal p.m,'s For L,(X) and 

~vas discussed in [I51 and 1163% respe;ctiucly. Our present aim is tLa give a 
firrt her example of A - universal p.m.'ss, namely far K - LC, (X), The general 
problem what subcIass X of L, (X)  admits an A -universal element remains 
to be unsolved. We sfart the study with the following kmmas: 

5-1. LEMMA* S ~ r p g ~ s e  rhat M is finite - divrendonnl and P is A - erniv@~s&lfor 
&",(%). Thctl P is a $dl nreasure on X, d is invertible and 

Proof* F,$t is evidellt- that A is invertible because in the, opwsite case a11 
cluster points of the squence I A ~ P " " : ,  where P denrjtes the syrazmetrizaliora 
of P, should be concentrated on the proper hypwplarae A (X) in X, Further, 
if P is not full, then sa arc B and all cSuster p i n t s  of (A"Pm>whieh is 
impossible since %F is A -universal for symmetric y,rn.'s in &',(X). and among 
them there are full ones, Thus P must be full. 

On the other hand, since 6, is  a cluster point of !AnP"'f it follows that 
the sequense {A":  is bounded. Let B be a cluster point of {tank), where 
A''~P% conveges to 8, for an ap~opriate sequence (Q!. F h  we get the 
quation BP = b, wI~ich, by the fact that P is full, implies that B =: O: Thus O 
b a cluster point of (14"; which is equivalent to (3.1). The Lemma is thus 
proved. 

5.2. LEMMA. POT euery m = 0, 1 ,  2, . . , we hasre the inequalify 

Proof, Eel us denote the: Iefe -hand side of (3.2) by R,[c) and note that 
it is the m-sest in the Maclaurin expansion of the function .f (e) := ( 1 - ~ ] - ~ .  
By the well -known integral formula 

Hence, and by t s l ~  Ftct t h a  fr-t ) / ( l  - r ]  G c with O G r I c c 11, we g ~ t  
the inequality (S.Z), which esmplietes t k  proof of the Lemma, 



5 3 .  LEMMA, Suppose t k r  N a d  N me measures on X s~lcit that 

Then rhere exisfs u psitiue csnsraal A(c,  X) d e p e ~ d j t ~ g  a ~ f i ~ l  U P O R  c ansl a 
s ~ c h  that 

15.6) [ llxltH(dx) G A(c, x ) { N ( X 3 +  1 IsgxE/x/lN(dx);.  
$1 B'l 

Proof. From the equation (5.5) it follows that 

- 1 tlxll(1 ----c)-" N ( ~ x ]  -+ f R, [c) fjxll N(d.4, 
$1 i., 

where BE = [logd tlxl/], d - c- l, and R,(c) is the same as in the proof of 
Lemma 5.2, Further, by Lenuna 5 2  we get 

Hence and by (2.71 it fallows that 

where: K ( c ,  a) is a positive csrrstant dawnding upon c and ca only. 
Fil~aIIy, wmbinl~zg (9.7) and (5.9) we get the irleqtaaiity (5.6) with AEc, a). 
= max ((1 - c.1-", 2" K (e, or]). Thus tile? Lemma i s  fully proved. 

Tkc blltlwing theorems grand far a discmtt: analogue of Theorem 3.3 and 
3.4 in [163. 

5.4. THEOREM. Suppose that X is prnite-$imt1si~~aI a d  A is a I ~ E P ~ P  
opraror un if. 7'knt.r~ rhwe exisl's an A-scniuersul p.m.@ L,,,(X) if a d  only f 
A is invertible ard fbze cantlition (5.1) is sntisped. 

Pr oaf. The nec~s i ty  follows from brama 5.6: The suffcieney fsllsws 
from Theorem 5.5 below. 

5.5, TNEOREM. &r A be ata inosrfibie h~ut~ded linear ~ p e ~ ? i " ~ f ~ r  on ixn 
arbirmry ,yeparable B~nncdcla space X su,c11 t k r  rhe condiriun (5.1) is sarisfied, 
Then for any 0 o c c 1 and a s B there g-xtsrs an A - uniaer3ol p.m. far &,, [X). 

Proof. It i s  easy to check thtlt condition (5.1) is equivalent to ihe 
a~stemce of canstants b > O and a > 1 S U C ~  that? for every %I = 1, 2, , .., 



Let {P,j. be a countable dense subsat of .&, (X) with the property that P, 
[xB7 0. M k j r  

where 6, i s  a finite measure eoncentrated s n  SE,, E,(: 0; ) -- 0 and G, (X) g k 
( k  = I ,  2, 9 -  .). 

Put 

where a is the same as in (5.101. Then G is a finite measure on X vanishing 
at O. Moreover, since for k = 1, 2, . . ., 

where p = max (e, ]\A- it follows that 

(5.14) [ log" llx/f G (dx) < m, 
r;;l 

which, together with TRearem 2.1, implies that the measure M, defined by 
the Eormuaa 

is a Levy" measure. Put P -- [Mi]. We shall prove that P is A - universal for 
&,a I"Q' 

Aecordingiy, it is clear that f belong t s  L,,@(X). LcL q be an arbitr~ry 
ebrnent of &,(X) and { f i k f  be a squcnce nf natural numbem swh that the 

sequence {Pa , :  cunvcrges to q. Further, we put r ,  = [a$] and 

Our dirrlhct aim is to prove tllat converges to q which should finish 
the praof' of the Thearem. 

For evsrjr k = 1, 2,  . . . , we put 

and 
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(For a similar setting of N: (i = 1, 2)  see formulas (3.6) and (3.7) in Cl6]j. 
It b evident that 1Wk and Hi ( i  = 1, 2) we  LET^^? measures and 

Et is the same as in the proof of Theorem 3.4 [lfi] the following h ~ t s  
hold : 

and 

lim W: ( X )  -;= 0 
k -*m4 

Moreover, far e a h  s > 0 we have 

Furtherg by (5.14) and Lemma 2.2 it follows that 

where the constant A, (3) is the same as in Lemma 2.2, which by virtue sf 
(5.18) implies Ekat 

By the same mlilntler we get the equation 

For every r =. 0. 
Roceczding successively by (5,13), Ee~nma 52, (SV2f), (5.2%) and (5.25) it 

iisllows that 

(5.27) lim ( IlxEl l f k ( d x )  = O (i = I ,  21. 
k - - a >  k l  

Similarly, we get ti le equation 

far each r =. Q. 
Since every Bana~h space X is Rademacher type I, the equaiissns 

(5,26) and (5.28) together imply, by CorerlEary 1-8 123, that [ H i ]  eotlvergs lo 



5, (i = 1, 21, He~lce and by (320) it falEaws that k;, converges to q, The 
Tlaeorern i s  thus fully proved, 
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