PROBABILITY AND MATHEMATICAL STATISTICS Vol. 5, Fasc. 2 (1985), p. 265-273

SPACES OF *S***-COTYPE** p ($0 \le p \le 2$) **AND** p**-STABLE MEASURES**

BY

DANG HUNG THANG (HANOI)

Abstract. The aim of the paper is to give necessary and sufficient conditions for $\exp\{-||Ta||^p\}$ to be the characteristic functional of a Radon measure on E, where E is a Banach space with topological dual E', T-linear continuous operator from E' into L_p , and $0 \le p \le 2$.

I. Introduction. Let E be a real Banach space with dual E'. For a real number $p (0 denotes a closed subspace of <math>L_p$. Let $T \in L(E', X_p)$, i.e. T is a linear continuous operator from E' into X_p . Consider the functional $f: E' \to R$ defined by

$$f(a) = \exp\{-\|Ta\|^p\}.$$

It is easy to see that f(a) is the characteristic functional (ch. f.) of a cylindrical stable measure μ_T on E. The set of all operators $T \in L(E', X_p)$ such that μ_T can be extended into a Radon measure will be denoted by $\Lambda_p(E', X_p)$. $\Pi_p^{\text{dual}}(E', X_p)$ denotes the set of all operators $T \in L(E', X_p)$ such that $T^* \in \Pi_p(X'_p, E)$, i.e. T^* is a p-summing operator from X'_p into E. In general, neither $\Lambda_p(E', X_p) \subset \Pi_p^{\text{dual}}(E', X_p)$ nor the converse inclusion hold. Our problem consists in characterizing those Banach E for which one of the following inclusion is valid for each space X_p :

(A)
$$\Pi_p^{\text{dual}}(E', X_p) \subset \Lambda_p(E', X_p),$$

(B)
$$A_p(E', X_p) \subset \Pi_p^{\text{dual}}(E', X_p).$$

For the case p = 2 the problems (A) and (B) have been solved by Chobanjan and Tarieladze [1]: (A) is always true for all Banach spaces E, (B) is true if and only if E is of cotype 2.

For the case 1 the problem (A) has been solved by Linde,Mandrekar, Weron [5]: (A) is true if and only if E is of stable type p. Note that

Dang Hung Thang

the authors of [5] also tried to solve the problem (B) but without complete success.

In this paper we shall try to solve the problem (B) for the case 0 .In Section 3 we introduce a definition of a space of S-cotype <math>p (0)and note that the notion of S-cotype 2 coincides with the notion of cotype $2. We shall show that the inclusion <math>\Lambda_p(E', X_p) \subset \Pi_p^{\text{dual}}(E'; X_p)$ holds for each space X_p if and only if E is of S-cotype p. We also extend a result of Garling [2] and Jain [3] on the structure of Gaussian measures on spaces of cotype 2 to the case of p-stable measures on spaces of S-cotype p (1). It is $interesting to note that the problem (A) is highly discontinuous in <math>p \in [1, 2]$ but the problem (B) is continuous in $p \in [1, 2]$. Finally, in Section 4 we shall show some properties of spaces of S-cotype p.

2. Notation and definition. Let E be a real Banach space with dual E'. If μ is a Radon measure or, more generally, a cylindrical measure on E, then

$$\hat{\mu}(a) = \int_{E} \exp(i \langle x, a \rangle) d\mu(x), \quad a \in E',$$

denotes the characteristic functional (ch.f.) of μ . A symmetric Radon measure μ is said to be *p*-stable (0 < $p \le 2$) if, for given α , $\beta > 0$,

 $\hat{\mu}(\alpha a)\,\hat{\mu}(\beta a) = \hat{\mu}((\alpha^p + \beta^p)^{1/p} a)$ for all $a \in E'$.

 $R_p(E)$ denotes the set of all *p*-stable measures on *E*. Throughout this paper, X_p denotes a closed subspace of L_p ($0). If <math>T \in L(E', X_p)$, then functional f(a) defined by

$$f(a) = \exp\{-\|Ta\|^p\}$$

is the characteristic functional (ch.f.) of a cylindrical stable measure μ_T on E. The set of all operators T such that μ_T extends to a Radon measure on E is denoted by $\Lambda_p(E', X_p)$. Of course, $\mu_T \in R_p(E)$ if $T \in \Lambda_p(E', X_p)$. Conversely, each measure $\mu \in R_p(E)$ can be written in this way. Let $\theta_1^{(p)}$, $\theta_2^{(p)}$, ... be a sequence of independent identically distributed random variables with the ch.f. $\exp(-|t|^p)$. Then we say that E is of stable type p if for each sequence (x_n) in E with the property $\sum ||x_n||^p < \infty$ the series $\sum x_n \theta_n^{(p)}$ converges a.s. A Banach space E is said to be of cotype 2 if for each sequence (x_n) in E such that the series $\sum x_n \theta_n^{(2)}$ converges a.s. in E it follows that $\sum ||x_n||^2 < \infty$. If one replaces the sequence $(\theta_n^{(2)})$ by $(\theta_n^{(p)})$, then one obtains a definition of a space of a space of stable -cotype p if 0 . A linear operator <math>T from a Banach space E into a Banach F is p-summing if there exists a positive constant C > 0 such that

$$\left(\sum \|Tx_n\|^p\right)^{1/p} \leq C \sup_{\|a\| \leq 1} \left\{\sum |\langle x_n, a \rangle|^p\right\}^{1/p}$$

266

for any finite sequence $x_1, x_2, ..., x_n$ in *E*. Alternatively, if (x_n) is a sequence in *E* such that $\sum |\langle x_n, a \rangle|^p < \infty$ for each *a* in *E'*, then $\sum ||Tx_n||^p < \infty$. The class of all *p*-summing from *E* into *F* is denoted by $\prod_p(E, F)$. If 0 , $then <math>\prod_p(E, F) \subset \prod_p(E, F)$. For more information about *p*-summing operators we refer the readers to [10].

3. Spaces of S-cotype p ($0 \le p \le 2$) and p-stable measures.

3.1. Definition. A Banach space E is said to be of S-cotype p (0 < $p \le 2$) if, for each sequence (x_n) in E, such that

$$1 - \exp\left\{-\sum |\langle x_n, a \rangle|^p\right\} \leq 1 - \hat{\mu}(a)$$

for all $a \in E'$ and some $\mu \in R_p(E)$, we have $\sum ||x_n||^p < \infty$.

3.2. PROPOSITION. The following are equivalent:

(1) E is of S-cotype 2.

(2) E is of cotype 2.

Proof. (1) \Rightarrow (2) Let (x_n) be a sequence in *E* such that the series $\sum x_n \theta_n^{(2)}$ converges a.s. We have to show that $\sum ||x_n||^2 < \infty$. Let μ be the distribution of $\sum x_n \theta_n^{(2)}$. Then $\mu \in R_2(E)$ and

$$\hat{\mu}(a) = \exp\{-\sum |\langle x_n, a \rangle|^2\}.$$

From definition 3.1. it follows that $\sum ||x_n||^2 < \infty$. (2) \Rightarrow (1) Let (x_n) be a sequence in E such that

$$1 - \exp\left\{-\sum |\langle x_n, a \rangle|^2\right\} \leq 1 - \hat{\mu}(a)$$

for all $a \in E'$ and some $\mu \in R_2(E)$. Let v be a Gaussian cylindrical measure with the covariance function R_v defined by

$$(3.1) R_v(a, a) = \sum |\langle x_n, a \rangle|^2.$$

From (3.1) we have $R_v(a, a) \leq \langle R_\mu a, a \rangle$, where R_μ is the covariance operator of the Gaussian measure μ . By a known result in [14] we conclude that v is in fact a Radon Gaussian measure. From this it follows that the series $\sum x_n \theta_n^{(2)}$ converges a.s. Since E is of cotype 2, we have $\sum ||x_n||^2 < \infty$.

Now we investigate operators T from E' into a closed subspace X_p of L_p $(1 \le p \le 2)$ for which $\exp \{-\|Ta\|^p\}$ is the ch.f. of a Radon measure on E. The set of all those operators is denoted by $\Lambda_p(E', X_p)$.

3.3. THEOREM. Let $1 \le p \le 2$. Then the following are equivalent:

(1) E is of S-cotype p.

(2) For each space X_p we have

$$A_p(E', X_p) \subset \Pi_p^{\text{dual}}(E', X_p).$$

Proof. (1) \Rightarrow (2). Let $T \in \Lambda_p(E', X_p)$ and let (g_n) be a sequence in X'_p such that $\sum |\langle g_n, x \rangle|^p < \infty$ for each $x \in X_p$. We have to show that $\sum ||T^*g_n||^p < \infty$.

Dang Hung Thang

Consider the operator S: $X_p \to l_p$ defined by $Sx = (\langle g_n, x \rangle)_{n=1}^{\infty}$. Evidently, S is a linear continuous operator and we have $S^* e_n = g_n$, where (e_n) is the sequence of unit vectors in l_q $(p^{-1} + q^{-1} = 1)$. We have

$$||STa||^{p} \leq ||S||^{p} ||Ta||^{p}.$$

On the other hand

(3.3)
$$||STa||^{p} = \sum |\langle STa, e_{n} \rangle|^{p} = \sum |\langle T^{*}S^{*}e_{n}, a \rangle|^{p}.$$

From (3.2) and (3.3) we have

(3.4)
$$1 - \exp\left\{-\sum |\langle T^* S^* e_n, a \rangle|^p\right\} \leq 1 - \hat{\mu}(a),$$

where μ is the *p*-stable measure with the ch.f.

$$\hat{\mu}(a) = \exp\{-\|S\|^p \|Ta\|^p\}.$$

By assumption that E is of S-cotype p, from (3.4) it follows that

$$\sum ||T^* S^* e_n||^p = \sum ||T^* g_n||^p < \infty.$$

(2) \Rightarrow (1). Assume that E is not of S-cotype p. Then there exist $\mu \in R_p(E)$ and a sequence (x_n) in E satisfying

(3.5)
$$1 - \exp\left\{-\sum |\langle x_n, a \rangle|^p\right\} \leq 1 - \hat{\mu}(a) \text{ for all } a \in E',$$

but $\sum ||x_n||^p = \infty$.

Suppose that $\hat{\mu}(a) = \exp\{-||\underline{T}a||^p\}$ where T is a linear continuous operator from E' into L_p . Put $X_p = \overline{TE'}$; we have $T \in \Lambda_p(E', X_p)$. Now we shall show that $T \notin \Pi_p^{\text{dual}}(E', X_p)$ i.e. T^* is not p-summing. Define a linear operator B: $E' \to l_p$ by $Ba = (\langle x_n, a \rangle)_{n=1}^{\infty}$. We shall now construct a linear continuous operator V: $X_p \to l_p$ such that $B = V_0 T$.

At first, we define an operator V: $T(E') \rightarrow l_p$ by V(Ta) = Ba. V is well defined. Indeed, by inequality (3.5) we have

$$||B(a_1-a_2)|| \le ||T(a_1-a_2)||, \quad a_1, a_2 \in E'.$$

Hence, $Ta_1 = Ta_2$ implies $Ba_1 = Ba_2$.

Evidently, V is linear and continuous. Since T(E') is dense in X_p , V admits the unique extension to X_p and we have $B = V_0 T$.

Suppose in contrary that $T^* \in \Pi_p(X'_p, E)$. Then $B^*_p = T^* V^* \in \Pi_p(l_q, E)$. Therefore $\sum ||B^*e_n||^p = \sum ||x_n||^p < \infty$. A contradiction. Thus we have T^* is not *p*-summing as desired.

Remark. The above proof has some resemblance to the proof of Theorem 3.5 in [13].

Theorem 3.3 and Theorem 2 in [5] allow us to characterize spaces E where $T \in \Lambda_p(E', X_p)$ if and only if $T^* \in \Pi_p(X'_p, E)$. In the case p = 2 these are exactly spaces E of cotype 2 [1].

3.4. COROLLARY. Let $1 \le p < 2$. Then the following are equivalent:

(1) E is of stable type p and S-cotype p.

(2) For each space X_p , $\Lambda_p(E', X_p) = \prod_p^{\text{dual}}(E', X_p)$.

Remark. (1) is equivalent to:

(1) E imbeds in L_q ($p < q \leq 2$) (see Corollary 4.8 below).

Next, we shall prove the following Theorem which gives information on the structure of p-stable measures on spaces of S-cotype p.

3.5. THEOREM. (1) Suppose that E is of S-cotype p, in addition X_p is of stable type p (1 \leq 2). Then each p-stable measure μ_T where $T \in \Lambda_p(E', X_p)$ is a continuous image of a p-stable measure v on some closed subspace of L_p .

(2) If each p-stable measure μ on a Banach space E is a continuous image of a p-stable measure ν on some closed subspace of L_p , then E must be of S-cotype p.

Proof. (1) Let $\mu = \mu_T$ where $T \in \Lambda_p(E', X_p)$. Because E is of S-cotype p, by Theorem 3.3 $T^* \in \Pi_p(X'_p, E)$. By the factorization theorem [10]

$$T^*: X'_n \xrightarrow{U} S \xrightarrow{V} E,$$

where S is a closed subspace of L_p , $V \in L(S, E)$ and $U \in \Pi_p(X'_p, S)$. Let γ_p be the canonical cylindrical measure on X'_p with the ch.f. $\exp\{-||x||_{X_p}^p\}$. We have $\mu_T = T^*(\gamma_p) = V[U(\gamma_p)]$. Since X_p is of stable type p by Maurey-Pisier's Theorem [6] the operator U which is p-summing is also r-summing for 1 < r < p. Because γ_p is a cylindrical measure of type r for r < p then in view of Schwartz's Theorem [12] $v = U(\gamma_p)$ is a Radon measure on S. Evidently, v is p-stable and we have $\mu_T = V(v)$.

(2) Using the above Theorem 3.3 we shall show that $\Lambda_p(E', X_p) \subset \Pi_p^{\text{dual}}(E', X_p)$ for each space X_p . Let $T \in \Lambda_p(E', X_p)$. By hypothesis, there exist a closed subspace S of L_p , a p-stable measure v on S and a continuous linear V: $S \to E$ such that $\mu_T = V(v)$. We may clearly suppose that V is 1-1 and thus $V^*(E')$ is dense in S'. Suppose that $\hat{v}(s') = \exp\{-||T_v s'||^p\}$ for $s' \in S'$. Then

(3.6)
$$\hat{\mu}_T(a) = \exp\{-\|Ta\|^p\} = \exp\{-\|T_v V^* a\|^p\}.$$

We shall now construct a linear continuous operator $W: S' \to X_p$ such that $T = W_0 V^*$. At first, we define an operator $W: V^*(E') \to X_p$ by $W(V^*a) = Ta$. W is well defined. Indeed, by equality (3.6) we have

$$||T(a_1 - a_2)|| = ||T_v(V^*a_1 - V^*a_2)||, \quad a_1, a_2 \in E'.$$

Then $V^*a_1 = V^*a_2$ implies $Ta_1 = Ta_2$.

Evidently, W is linear and continuous. Since $V^*(E')$ is dense in S', W admits a unique extension to S and we have $T = WV^*$. It is easily seen that

$$\hat{v}(s') = \exp\{-\|T_v s'\|^p\} = \exp\{-\|Ws'\|^p\}.$$

Dang Hung Thang

Thus $W \in \Lambda_p(S', X_p)$. Since S is of S-cotype p (see Corollary 4.3 below), $W^* \in \Pi_p(X'_p, S)$ by Theorem 3.3. Consequently, $T^* = VW^*$ is p-summing and the proof is finished.

3.6 COROLLARY [2]. E is of cotype 2 if and only if each Gaussian measure on E is a continuous image of some Gaussian measure on the Hilbert space H.

4. Some properties of spaces of S-cotype p.

4.1 THEOREM. If a Banach space E is of S-cotype p, then it is also of S-cotype q for 0 .

Proof. Applying Theorem 3.1 we shall show that $\Lambda_q(E', X_q) \subset \Pi_q^{\text{dual}}(E', X_q)$ for each space X_q . Let $T \in \Lambda_q(E', X_q)$. Then $\exp\{-||Ta||^q\}$ is ch.f. of a Radon measure on E. By Theorem 2 [8] $f(a) = \exp\{-||Ta||^p\}$ is also the ch.f. of a Radon measure on E. Thus $T \in \Lambda_p(E', X_q)$ (since $L_q \leftrightarrow L_p$ if $p \leq q \leq 2$, X_q is considered as a closed subspace of L_p). Since E is of S-cotype p by Theorem 3.3 T^* is p-summing. Because of the inclusion property of the ideals of p-summing operators [10] T^* is also q-summing.

4.2. THEOREM. If E is an (S)-space, then it is of S-cotype p for 0 .

Recall that E is an (S)-space if there exists a topology τ on E' such that a functional $f: E' \to C$ is positive definitive, τ -continuous with f(0) = 1 if and only if f is the ch.f. of a probability measure μ on E. The topology τ is called S-topology. It is known that (see [9], [7]) a Banach space E with the approximation property is an S-space if and only if E can imbed in some L_0 . Each closed subspace of L_p $(1 \le p \le 2)$ is an (S)-space. For more information about (S)-spaces we refer the reader to [9], [7].

Proof of Theorem 4.2. In view of Theorem 4.1 it remains for us to prove for $0 . Let <math>(x_p)$ be a sequence in E such that

(4.1)
$$1 - \exp\{-\sum |\langle x_n, a \rangle|^p\} \leq 1 - \hat{\mu}(a)$$

for all $a \in E'$ and some $\mu \in R_p(E)$.

Let v be the stable cylindrical measure with ch.f.

$$\hat{v}(a) = \exp\left\{-\sum |\langle x_n, a \rangle|^p\right\}.$$

Since μ is a Radon measure, $\hat{\mu}(a)$ is τ -continuous where τ is S-topology on E'. From (4.1) it follows that $\hat{\nu}(a)$ is τ -continuous and thus it is the ch.f. of a Radon measure on E. Then by Ito-Nisio's Theorem we conclude that the series $\sum x_n \theta_n^{(p)}$ converges a.s. Since p < 2, we have $\sum ||x_n||^p < \infty$.

4.3. COROLLARY. Each closed subspace of L_p $(1 \le p \le 2)$ is of S-cotype p for 0 .

Theorem 4.1 and Theorem 4.2 lead us to introduce the following 4.4. Definition. An (S)-space is said to be of S-cotype 0.

Spaces of s-cotype p

4.5 THEOREM. If a Banach space is of stable type p and of S-cotype p $(0 then it imbeds in <math>L_p$.

Proof. According to the Lindenstrauss-Pełczynski's criterion of imbedding a Banach in L_p [11] we shall show that if (x_n) and (y_n) are two sequences in E such that

(4.2)
$$\sum |\langle x_n, a \rangle|^p \leq \sum |\langle y_n, a \rangle|^p$$
 for all $a \in E'$ and $\sum ||y_n||^p < \infty$,
then $\sum ||x_n||^p < \infty$.

Indeed, let (x_n) and (y_n) be two sequences in E satisfying (4.2). Since E is of stable type p we find that the series $\sum y_n \theta_n^{(p)}$ converges a.s. Let μ be the distribution of $\sum y_n \theta_n^{(p)}$. Then $\mu \in R_p(E)$ and $\hat{\mu}(a) = \exp\{-\sum |\langle y_n, a \rangle|^p\}$. From (4.2) we have

 $1 - \exp\left\{-\sum |\langle x_n, a \rangle|^p\right\} \leq 1 - \hat{\mu}(a).$

By the assumption that E is of S-cotype p we have $\sum ||x_n||^p < \infty$.

4.6. COROLLARY. A Banach space of S-cotype p < 1 can imbed in L_p .

Indeed, since every Banach space is of stable type p if 0 [6]. In the case <math>p = 0 this is a known result about (S)-spaces (see [9]).

4.7. COROLLARY. If a Banach space with the approximation property is of S-cotype p < 1 then it is of S-cotype 0.

The following proposition gives the description of those spaces which are of stable type p and S-cotype p for $1 \le p \le 2$.

4.8. PROPOSITION. Let $1 \le p \le 2$. Then the following are equivalent:

(1) E is of stable type p and S-cotype p.

(2) E imbeds in L_q where q = 2 if p = 2, p < q < 2 if p < 2.

In the case p = 1 (1) is equivalent to

(1) E is isomorphic to a reflexive subspace of L_1 (see [11]).

Proof. The inclusion $(1) \rightarrow (2)$ follows from Theorem 4.5 and a Rosenthal's Theorem [11] which states that a closed subspace of L_p is of stable type p ($1 \le p < 2$) if and only if it imbeds in L_q (p < q). The inclusion $(2) \rightarrow (1)$ follows from Corollary 4.3 and the fact that L_q (p < q) is of stable type p.

4.9. PROPOSITION. Each Banach space of M-cotype p in the sense of Mouchtari is of S-cotype p.

The notion of M-cotype p was introduced by Mouchtari in [8]. Let σ_p denote the coarest topology on E' for which all the ch.f. of p-stable measures are continuous. A Banach space E is said to be of M-cotype p (0) if for a cylindrical measure <math>v on E to be extended into a Radon measure it suffices that the ch.f. $\hat{v}(a)$ is σ_p -continuous.

Proof. In the case p = 2 the notion of *M*-cotype 2 is identical with the notion of cotype 2 [8] and thus it is identical with the notion of *S*-cotype 2

by Proposition 3.2. It remains to prove the case $0 . Let <math>(x_n)$ be a sequence in E such that

(4.3)
$$1 - \exp\left\{-\sum |\langle x_n, a \rangle|^p\right\} \leq 1 - \hat{\mu}(a)$$

for all $a \in E'$ and some $\mu \in R_p(E)$.

Let v be the cylindrical measure with the ch.f.

 $\hat{\mathbf{v}}(a) = \exp\{-\sum |\langle \mathbf{x}_n, a \rangle|^p\}.$

From (4.3) it follows that $\hat{v}(a)$ is σ_p -continuous. By the assumption that E is of M-cotype p, $\hat{v}(a)$ is a ch.f. of a Radon measure on E. From Ito-Nisio's Theorem it follows that the series $\sum x_n \theta_n^{(p)}$ converges a.s. Since p < 2 we have $\sum ||x_n||^p < \infty$.

4.10. PROPOSITION. If p < q, q > 1, then there exist spaces of S-cotype q which are not of S-cotype p.

Proof. Consider the space $l_s(l_t)$, where q > s > t > p, t > 1. By Theorem 7 in [8] $l_s(l_t)$ is of *M*-cotype *q* hence it is of *S*-cotype *q* in view of Proposition 4.9. Assume that $l_s(l_t)$ is of *S*-cotype *p*. By Proposition 8 in [8] $l_s(l_t)$ is of stable type *p*. Therefore, by Theorem 4.5, $l_s(l_t)$ imbeds in L_p . But this contradicts the Proposition 9 in [8].

Problem. Are spaces of S-cotype p exactly spaces of M-cotype p (0 ?

Acknowledgment. I am indebted to Dr. Nguyen Duy Tien for many valuable discussions in this work.

REFERENCES

- S. A. Chobanjan, V. I. Tarielaze, Gaussian characterization of certain Banach spaces, J. Multivar. Anal. 7, 1 (1977), p. 183-203.
- [2] D. J. H. Garling, Functional central limit theorems, Ann. Prob. 4 (1970), p. 600-611.
- [3] N. Jain, Central limit theorem and related questions in Banach space, Pro. Symposia in Pure Math. 31 (1976), p. 55-65.
- [4] S. Kwapień, Isomorphic characterization of Hilbert spaces by orthogonal series with vector-valued coefficients, Sém. Maurey-Schwartz 1972/1973, Exp. VIII.
- [5] W. Linde, V. Mandrekar, A. Weron, p-stable measures and p-absolutely summing operators, Springer Verlag, Lecture Notes in Math. 828 (1980), p. 167-178.
- [6] B. Maurey, G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58, 1 (1976), p. 45-90.
- [7] D. Mouchtari, La topologie du type Sazonov pour les Banach et les supports Hilbertiens, Ann. Sci. Univ. Clermont 61 (1976), p. 77-87.
- [8] Spaces of cotype $p (0 \le p \le 2)$, Teor. Verojat. i Primen, 25 (1980), p. 105-117.
- [9] Sur l'existence d'une topologie du type Sazonov sur un espace de Banach, Sém. Maurey-Schwartz 1975/1976, Exp. XVII.
- [10] A. Pietsch, Operator ideals, VEB Deutscher Verlag der Wissenschaften, Berlin 1978.
- [11] H. P. Rosenthal, On subspaces of L_p, Ann. Math. 97 (1973), p. 344-373.

Spaces of s-cotype p

[12] L. Schwartz, Sém. Applications Radonifiantes, Paris 1969/1970.

[13] D. H. Thang, Ng. D. Tien, Mapping of stable cylindrical measures in Banach space, Teor. Verojat. i Primen. 27, 3 (1982).

[14] N. Vakhania, Probability distribution in linear spaces, Tbilisi 1971.

Department of Mathematics University of Hanoi Vietnam

Received on 23. 5. 1983

CONTENTS OF VOLUME 5

Page

W.	Banys, Convergence of random measures and point processes	
	on the plane	211-219
R.	Bartoszyński and P.S. Puri, On the rate of convergence for	
	the weak law of large numbers	91-97
L.	Bielak, On recurrent differential representations for stationary	
	stochastic processes.	45-58
L.	Birgé, Non-asymptotic minimax risk for Hellinger balls	21-29
S.	Csörgö and Z. Rychlik, Rate of convergence in the strong	
	law of large numbers	99-111
H.	Drygas, On the unified theory of least squares	177-186
L.	Gajek, Limiting properties of difference between the successive	
2.	k-th record values	221-224
Z.	J. Jurek, Limit distributions in generalized convolutions	
	algebras	113-135
K.		110 100
	random sums of independent random variables	235-249
G.		
О.	of sufficient σ -fields.	153-163
X.	Milhaud, A short proof of a Chernoff inequality	173-175
л. Р.	S. Puri see R. Bartoszyński and P. S. Puri	175-175
	Rychlik see S. Csörgö and Z. Rychlik	
Z.	M. Shortt, Uniqueness and extremality for a class of multiply-	
R.		225 222
-	stochastic measures.	225-233
E.	Siebert, Jumps of stochastic processes with values in a topo-	107 000
	logical group	197-209
M.	Słaby, Strong convergence of vector-valued pramarts a sub-	407 404
	pramarts	187-196
	Strasser, Scale invariance of statistical experiments	1-20
Z.	Suchanecki, Some results on cylindrical measures and appli-	
	cation	165-171
A.	Szubarga and D. Szynal, Random limit theorems for	
	random walks conditioned to stay positive	83-89
D.	Szynal see K. S. Kubacki and D. Szynal	
D	Szynal see A Szuharga and D Szynal	

D. Szynal see A. Szubarga and D. Szynal

Contents of volume 5

D.	H. Thang, Spaces of s-cotype p ($0 \le p \le 2$) and p-stable	
	measures	265-273
N.	V. Thu, Multiply c-decomposable probability measures on	
	Banach spaces	251-263
N.	Z. Tien, On the convergence of stable measures in a Banach	
	space	137-151
M.	Tomisaki, Harnack's inequalities for Dirichlet forms and their	
	applications to diffusion processes	59-81
W.	Wertz, On invariant curve estimators	31-44

276

Ľ,