SPACES OF S-COTYPE $p(0 \leqslant p \leqslant 2)$ AND p-STABLE MEASURES

BY
dang hung thang (Hanoi)

> Abstract. The aim of the paper is to give necessary and sufficient conditions for $\exp \left\{-\|T a\|^{p}\right\}$ to be the characteristic functional of a Radon measure on E, where E is a Banach space with topological dual E^{\prime}, T-linear continuous operator from E^{\prime} into L_{p}, and $0 \leqslant p \leqslant 2$.
I. Introduction. Let E be a real Banach space with dual E^{\prime}. For a real number $p(0<p \leqslant 2) X_{p}$ denotes a closed subspace of L_{p}. Let $T \in L\left(E^{\prime}, X_{p}\right)$, i.e. T is a linear continuous operator from E^{\prime} into X_{p}. Consider the functional $f: E^{\prime} \rightarrow R$ defined by

$$
f(a)=\exp \left\{-\|T a\|^{p}\right\}
$$

It is easy to see that $f(a)$ is the characteristic functional (ch. f.) of a cylindrical stable measure μ_{T} on E. The set of all operators $T \in L\left(E^{\prime}, X_{p}\right)$ such that μ_{T} can be extended into a Radon measure will be denoted by $\Lambda_{p}\left(E^{\prime}, X_{p}\right) . \Pi_{p}^{\text {dual }}\left(E^{\prime}, X_{p}\right)$ denotes the set of all operators $T \in L\left(E^{\prime}, X_{p}\right)$ such that $T^{*} \in \Pi_{p}\left(X_{p}^{\prime}, E\right)$, i.e. T^{*} is a p-summing operator from X_{p}^{\prime} into E. In general, neither $\Lambda_{p}\left(E^{\prime}, X_{p}\right) \subset \Pi_{p}^{\text {dual }}\left(E^{\prime}, X_{p}\right)$ nor the converse inclusion hold. Our problem consists in characterizing those Banach E for which one of the following inclusion is valid for each space X_{p} :

$$
\begin{equation*}
\Pi_{p}^{\text {dual }}\left(E^{\prime}, X_{p}\right) \subset \Lambda_{p}\left(E^{\prime}, X_{p}\right) \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
\Lambda_{p}\left(E^{\prime}, X_{p}\right) \subset \Pi_{p}^{\text {dual }}\left(E^{\prime}, X_{p}\right) . \tag{B}
\end{equation*}
$$

For the case $p=2$ the problems (A) and (B) have been solved by Chobanjan and Tarieladze [1]: (A) is always true for all Banach spaces E, (B) is true if and only if E is of cotype 2 .

For the case $1<p<2$ the problem (A) has been solved by Linde, Mandrekar, Weron [5]: (A) is true if and only if E is of stable type p. Note that
the authors of [5] also tried to solve the problem (B) but without complete success.

In this paper we shall try to solve the problem (B) for the case $0<p \leqslant 2$. In Section 3 we introduce a definition of a space of S-cotype $p(0<p \leqslant 2)$ and note that the notion of S-cotype 2 coincides with the notion of cotype 2. We shall show that the inclusion $\Lambda_{p}\left(E^{\prime}, X_{p}\right) \subset \Pi_{p}^{\text {dual }}\left(E^{\prime} ; X_{p}\right)$ holds for each space X_{p} if and only if E is of S-cotype p. We also extend a result of Garling [2] and Jain [3] on the structure of Gaussian measures on spaces of cotype 2 to the case of p-stable measures on spaces of S-cotype $p(1<p \leqslant 2)$. It is interesting to note that the problem (A) is highly discontinuous in $p \in[1,2]$ but the problem (B) is continuous in $p \in[1,2]$. Finally, in Section 4 we shall show some properties of spaces of S-cotype p.
2. Notation and definition. Let E be a real Banach space with dual E^{\prime}. If μ is a Radon measure or, more generally, a cylindrical measure on E, then

$$
\hat{\mu}(a)=\int_{E} \exp (i\langle x, a\rangle) d \mu(x), \quad a \in E^{\prime},
$$

denotes the characteristic functional (ch.f.) of μ. A symmetric Radon measure μ is said to be p-stable $(0<p \leqslant 2)$ if, for given $\alpha, \beta>0$,

$$
\hat{\mu}(\alpha a) \hat{\mu}(\beta a)=\hat{\mu}\left(\left(\alpha^{p}+\beta^{p}\right)^{1 / p} a\right) \quad \text { for all } a \in E^{\prime}
$$

$R_{p}(E)$ denotes the set of all p-stable measures on E. Throughout this paper, X_{p} denotes a closed subspace of $L_{p}(0<p \leqslant 2)$. If $T \in L\left(E^{\prime}, X_{p}\right)$, then functional $f(a)$ defined by

$$
f(a)=\exp \left\{-\|T a\|^{p}\right\}
$$

is the characteristic functional (ch.f.) of a cylindrical stable measure μ_{T} on E. The set of all operators T such that μ_{T} extends to a Radon measure on E is denoted by $\Lambda_{p}\left(E^{\prime}, X_{p}\right)$. Of course, $\mu_{T} \in R_{p}(E)$ if $T \in \Lambda_{p}\left(E^{\prime}, X_{p}\right)$. Conversely, each measure $\mu \in R_{p}(E)$ can be written in this way. Let $\theta_{1}^{(p)}, \theta_{2}^{(p)}, \ldots$ be a sequence of independent identically distributed random variables with the ch.f. $\exp \left(-|t|^{p}\right)$. Then we say that E is of stable type p if for each sequence $\left(x_{n}\right)$ in E with the property $\sum\left\|x_{n}\right\|^{p}<\infty$ the series $\sum x_{n} \theta_{n}^{(p)}$ converges a.s. A Banach space E is said to be of cotype 2 if for each sequence $\left(x_{n}\right)$ in E such that the series $\sum x_{n} \theta_{n}^{(2)}$ converges a.s. in E it follows that $\sum\left\|x_{n}\right\|^{2}<\infty$. If one replaces the sequence $\left(\theta_{n}^{(2)}\right)$ by $\left(\theta_{n}^{(p)}\right)$, then one obtains a definition of a space of a space of stable - cotype p. However, because of the tail behavior of $\left(\theta_{n}^{(p)}\right)$, each Banach space is of stable-cotype p if $0<p<2$. A linear operator T from a Banach space E into a Banach F is p-summing if there exists a positive constant $C>0$ such that

$$
\left(\sum\left\|T x_{n}\right\|^{p}\right)^{1 / p} \leqslant C \sup _{\|a\| \leqslant 1}\left\{\sum\left|\left\langle x_{n}, a\right\rangle\right|^{p}\right\}^{1 / p}
$$

for any finite sequence $x_{1}, x_{2}, \ldots, x_{n}$ in E. Alternatively, if $\left(x_{n}\right)$ is a sequence in E such that $\sum\left|\left\langle x_{n}, a\right\rangle\right|^{p}<\infty$ for each a in E^{\prime}, then $\sum\left\|T x_{n}\right\|^{p}<\infty$. The class of all p-summing from E into F is denoted by $\Pi_{p}(E, F)$. If $0<p<q$, then $\Pi_{p}(E, F) \subset \Pi_{p}(E, F)$. For more information about p-summing operators we refer the readers to [10].
3. Spaces of S-cotype $p(0 \leqslant p \leqslant 2)$ and p-stable measures.
3.1. Definition. A Banach space E is said to be of S-cotype p (0 $<p \leqslant 2$) if, for each sequence $\left(x_{n}\right)$ in E, such that

$$
1-\exp \left\{-\sum\left|\left\langle x_{n}, a\right\rangle\right|^{p}\right\} \leqslant 1-\hat{\mu}(a)
$$

for all $a \in E^{\prime}$ and some $\mu \in R_{p}(E)$, we have $\sum\left\|x_{n}\right\|^{p}<\infty$.
3.2. Proposition. The following are equivalent:
(1) E is of S-cotype 2 .
(2) E is of cotype 2 .

Proof. (1) \Rightarrow (2) Let $\left(x_{n}\right)$ be a sequence in E such that the series $\sum x_{n} \theta_{n}^{(2)}$ converges a.s. We have to show that $\sum\left\|x_{n}\right\|^{2}<\infty$. Let μ be the distribution of $\sum x_{n} \theta_{n}^{(2)}$. Then $\mu \in R_{2}(E)$ and

$$
\hat{\mu}(a)=\exp \left\{-\sum\left|\left\langle x_{n}, a\right\rangle\right|^{2}\right\} .
$$

From definition 3.1. it follows that $\sum\left\|x_{n}\right\|^{2}<\infty$.
(2) \Rightarrow (1) Let $\left(x_{n}\right)$ be a sequence in E such that

$$
1-\exp \left\{-\sum\left|\left\langle x_{n}, a\right\rangle\right|^{2}\right\} \leqslant 1-\hat{\mu}(a)
$$

for all $a \in E^{\prime}$ and some $\mu \in R_{2}(E)$. Let v be a Gaussian cylindrical measure with the covariance function R_{v} defined by

$$
\begin{equation*}
R_{v}(a, a)=\sum\left|\left\langle x_{n}, a\right\rangle\right|^{2} \tag{3.1}
\end{equation*}
$$

From (3.1) we have $R_{v}(a, a) \leqslant\left\langle R_{\mu} a, a\right\rangle$, where R_{μ} is the covariance operator of the Gaussian measure μ. By a known result in [14] we conclude that v is in fact a Radon Gaussian measure. From this it follows that the series $\sum x_{n} \theta_{n}^{(2)}$ converges a.s. Since E is of cotype 2 , we have $\sum\left\|x_{n}\right\|^{2}<x$.

Now we investigate operators T from E^{\prime} into a closed subspace X_{p} of L_{p} $(1 \leqslant p \leqslant 2)$ for which $\exp \left\{-\|T a\|^{p}\right\}$ is the ch.f. of a Radon measure on E. The set of all those operators is denoted by $\Lambda_{p}\left(E^{\prime}, X_{p}\right)$.
3.3. Theorem. Let $1 \leqslant p \leqslant 2$. Then the following are equivalent:
(1) E is of S-cotype p.
(2) For each space X_{p} we have

$$
\Lambda_{p}\left(E^{\prime}, X_{p}\right) \subset \Pi_{p}^{\text {dual }}\left(E^{\prime}, X_{p}\right)
$$

Proof. (1) \Rightarrow (2). Let $T \in \Lambda_{p}\left(E^{\prime}, X_{p}\right)$ and let $\left(g_{n}\right)$ be a sequence in X_{p}^{\prime} such that $\sum\left|\left\langle g_{n}, x\right\rangle\right|^{p}<\infty$ for each $x \in X_{p}$. We have to show that $\sum\left\|T^{*} g_{n}\right\|^{p}<\infty$.

Consider the operator $S: X_{p} \rightarrow l_{p}$ defined by $S x=\left(\left\langle g_{n}, x\right\rangle\right)_{n=1}^{\infty}$. Evidently, S is a linear continuous operator and we have $S^{*} e_{n}=g_{n}$, where $\left(e_{n}\right)$ is the sequence of unit vectors in $l_{q}\left(p^{-1}+q^{-1}=1\right)$. We have

$$
\begin{equation*}
\|S T a\|^{p} \leqslant\|S\|^{p}\|T a\|^{p} . \tag{3.2}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\|S T a\|^{p}=\sum\left|\left\langle S T a, e_{n}\right\rangle\right\rangle^{p}=\sum\left|\left\langle T^{*} S^{*} e_{n}, a\right\rangle\right|^{p} \tag{3.3}
\end{equation*}
$$

From (3.2) and (3.3) we have

$$
\begin{equation*}
1-\exp \left\{-\sum\left|\left\langle T^{*} S^{*} e_{n}, a\right\rangle\right|^{p}\right\} \leqslant 1-\hat{\mu}(a) \tag{3.4}
\end{equation*}
$$

where μ is the p-stable measure with the ch.f.

$$
\hat{\mu}(a)=\exp \left\{-\|S\|^{p}\|T a\|^{p}\right\}
$$

By assumption that E is of S-cotype p, from (3.4) it follows that

$$
\sum\left\|T^{*} S^{*} e_{n}\right\|^{p}=\sum\left\|T^{*} g_{n}\right\|^{p}<\infty
$$

$(2) \Rightarrow(1)$. Assume that E is not of S-cotype p. Then there exist $\mu \in R_{p}(E)$ and a sequence $\left(x_{n}\right)$ in E satisfying

$$
\begin{equation*}
1-\exp \left\{-\sum\left|\left\langle x_{n}, a\right\rangle\right|^{p}\right\} \leqslant 1-\hat{\mu}(a) \text { for all } a \in E^{\prime} \tag{3.5}
\end{equation*}
$$

but $\sum\left\|x_{n}\right\|^{p}=\infty$.
Suppose that $\hat{\mu}(a)=\exp \left\{-\|T a\|^{p}\right\}$ where T is a linear continuous operator from E^{\prime} into L_{p}. Put $X_{p}=\overline{T E^{\prime}}$; we have $T \in \Lambda_{p}\left(E^{\prime}, X_{p}\right)$. Now we shall show that $T \notin \Pi_{p}^{\text {dual }}\left(E^{\prime}, X_{p}\right)$ i.e. T^{*} is not p-summing. Define a linear operator $B: E^{\prime} \rightarrow l_{p}$ by $B a=\left(\left\langle x_{n}, a\right\rangle\right)_{n=1}^{\infty}$. We shall now construct a linear continuous operator $V: X_{p} \rightarrow l_{p}$ such that $B=V_{0} T$.

At first, we define an operator $V: T\left(E^{\prime}\right) \rightarrow l_{p}$ by $V(T a)=B a$.
V is well defined. Indeed, by inequality (3.5) we have

$$
\left\|B\left(a_{1}-a_{2}\right)\right\| \leqslant\left\|T\left(a_{1}-a_{2}\right)\right\|, \quad a_{1}, a_{2} \in E^{\prime} .
$$

Hence, $T a_{1}=T a_{2}$ implies $B a_{1}=B a_{2}$.
Evidently, V is linear and continuous. Since $T\left(E^{\prime}\right)$ is dense in X_{p}, V admits the unique extension to X_{p} and we have $B=V_{0} T$.

Suppose in contrary that $T^{*} \in \Pi_{p}\left(X_{p}^{\prime}, E\right)$. Then $B_{*}^{*}=T^{*} V^{*} \in \Pi_{p}\left(l_{q}, E\right)$. Therefore $\sum\left\|B^{*} e_{n}\right\|^{p}=\sum\left\|x_{n}\right\|^{p}<\infty$. A contradiction. Thus we have T^{*} is not p-summing as desired.

Remark. The above proof has some resemblance to the proof of Theorem 3.5 in [13].

Theorem 3.3 and Theorem 2 in [5] allow us to characterize spaces E where $T \in \Lambda_{p}\left(E^{\prime}, X_{p}\right)$ if and only if $T^{*} \in \Pi_{p}\left(X_{p}^{\prime}, E\right)$. In the case $p=2$ these are exactly spaces E of cotype 2 [1].
3.4. Corollary. Let $1 \leqslant p<2$. Then the following are equivalent:
(1) E is of stable type p and S-cotype p.
(2) For each space $X_{p}, \Lambda_{p}\left(E^{\prime}, X_{p}\right)=\Pi_{p}^{\text {dual }}\left(E^{\prime}, X_{p}\right)$.

Remark. (1) is equivalent to:
(1') E imbeds in $L_{q}(p<q \leqslant 2)$ (see Corollary 4.8 below).
Next, we shall prove the following Theorem which gives information on the structure of p-stable measures on spaces of S-cotype p.
3.5. Theorem. (1) Suppose that E is of S-cotype p, in addition X_{p} is of stable type $p(1<p \leqslant 2)$. Then each p-stable measure μ_{T} where $T \in \Lambda_{p}\left(E^{\prime}, X_{p}\right)$ is a continuous image of a p-stable measure v on some closed subspace of L_{p}.
(2) If each p-stable measure μ on a Banach space E is a continuous image of a p-stable measure v on some closed subspace of L_{p}, then E must be of S-cotype p.

Proof. (1) Let $\mu=\mu_{T}$ where $T \in \Lambda_{p}\left(E^{\prime}, X_{p}\right)$. Because E is of S-cotype p, by Theorem $3.3 T^{*} \in \Pi_{p}\left(X_{p}^{\prime}, E\right)$. By the factorization theorem [10]

$$
T^{*}: X_{p}^{\prime} \xrightarrow{U} S \xrightarrow{V} E,
$$

where S is a closed subspace of $L_{p}, V \in L(S, E)$ and $U \in \Pi_{p}\left(X_{p}^{\prime}, S\right)$. Let γ_{p} be the canonical cylindrical measure on X_{p}^{\prime} with the ch.f. $\exp \left\{-\|x\|_{x_{p}}^{p_{p}}\right\}$. We have $\mu_{T}=T^{*}\left(\gamma_{p}\right)=V\left[U\left(\gamma_{p}\right)\right]$. Since X_{p} is of stable type p by Maurey-Pisier's Theorem [6] the operator U which is p-summing is also r-summing for $1<r<p$. Because γ_{p} is a cylindrical measure of type r for $r<p$ then in view of Schwartz's Theorem [12] $v=U\left(\gamma_{p}\right)$ is a Radon measure on S. Evidently, v is p-stable and we have $\mu_{T}=V(v)$.
(2) Using the above Theorem 3.3 we shall show that $\Lambda_{p}\left(E^{\prime}, X_{p}\right)$ $\subset \Pi_{p}^{\text {dual }}\left(E^{\prime}, X_{p}\right)$ for each space X_{p}. Let $T \in \Lambda_{p}\left(E^{\prime}, X_{p}\right)$. By hypothesis, there exist a closed subspace S of L_{p}, a p-stable measure v on S and a continuous linear $V: S \rightarrow E$ such that $\mu_{T}=V(v)$. We may clearly suppose that V is 1-1 and thus $V^{*}\left(E^{\prime}\right)$ is dense in S^{\prime}. Suppose that $\hat{v}\left(s^{\prime}\right)=\exp \left\{-\left\|T_{v} s^{\prime}\right\|^{p}\right\}$ for $s^{\prime} \in S^{\prime}$. Then

$$
\begin{equation*}
\hat{\mu}_{T}(a)=\exp \left\{-\|T a\|^{p}\right\}=\exp \left\{-\left\|T_{v} V^{*} a\right\|^{p}\right\} \tag{3.6}
\end{equation*}
$$

We shall now construct a linear continuous operator $W^{\prime} S^{\prime} \rightarrow X_{p}$ such that $T=W_{0} V^{*}$. At first, we define an operator $W: V^{*}\left(E^{\prime}\right) \rightarrow X_{p}$ by $W\left(V^{*} a\right)=T a . W$ is well defined. Indeed, by equality (3.6) we have

$$
\left\|T\left(a_{1}-a_{2}\right)\right\|=\left\|T_{v}\left(V^{*} a_{1}-V^{*} a_{2}\right)\right\|, \quad a_{1}, a_{2} \in E^{\prime}
$$

Then $V^{*} a_{1}=V^{*} a_{2}$ implies $T a_{1}=T a_{2}$.
Evidently, W is linear and continuous. Since $V^{*}\left(E^{\prime}\right)$ is dense in S^{\prime}, W admits a unique extension to S and we have $T=W V^{*}$. It is easily seen that

$$
\hat{v}\left(s^{\prime}\right)=\exp \left\{-\left\|T_{v} s^{\prime}\right\|^{p}\right\}=\exp \left\{-\left\|W s^{\prime}\right\|^{p}\right\}
$$

Thus $W \in \Lambda_{p}\left(S^{\prime}, X_{p}\right)$. Since S is of S-cotype p (see Corollary 4.3 below), $W^{*} \in \Pi_{p}\left(X_{p}^{\prime}, S\right)$ by Theorem 3.3. Consequently, $T^{*}=V W^{*}$ is p-summing and the proof is finished.
3.6 Corollary [2]. E is of cotype 2 if and only if each Gaussian measure on E is a continuous image of some Gaussian measure on the Hilbert space H.
4. Some properties of spaces of S-cotype p.
4.1 Theorem. If a Banach space E is of S-cotype p, then it is also of S-cotype q for $0<p \leqslant q$.

Proof. Applying Theorem 3.1 we shall show that $\Lambda_{q}\left(E^{\prime}, X_{q}\right)$ $\subset \Pi_{q}^{\text {dual }}\left(E^{\prime}, X_{q}\right)$ for each space X_{q}. Let $T \in \Lambda_{q}\left(E^{\prime}, X_{q}\right)$. Then $\exp \left\{-\|T a\|^{q} ;\right.$ is ch.f. of a Radon measure on E. By Theorem 2 [8] $f(a)=\exp \left\{-\|T a\|^{p}\right\}$ is also the ch.f. of a Radon measure on E. Thus $T \in \Lambda_{p}\left(E^{\prime}, X_{q}\right)$ (since $L_{q} \leftrightarrow L_{p}$ if $p \leqslant q \leqslant 2, X_{q}$ is considered as a closed subspace of L_{p}). Since E is of S-cotype p by Theorem $3.3 T^{*}$ is p-summing. Because of the inclusion property of the ideals of p-summing operators [10] T^{*} is also q-summing.
4.2. Theorem. If E is an (S)-space, then it is of S-cotype p for $0<p \leqslant 2$.

Recall that E is an (S)-space if there exists a topology τ on E^{\prime} such that a functional $f: E^{\prime} \rightarrow C$ is positive definitive, τ-continuous with $f(0)=1$ if and only if f is the ch.f. of a probability measure μ on E. The topology τ is called S-topology. It is known that (see [9], [7]) a Banach space E with the approximation property is an S-space if and only if E can imbed in some L_{0}. Each closed subspace of $L_{p}(1 \leqslant p \leqslant 2)$ is an (S)-space. For more information about (S)-spaces we refer the reader to [9], [7].

Proof of Theorem 4.2. In view of Theorem 4.1 it remains for us to prove for $0<p<2$. Let $\left(x_{n}\right)$ be a sequence in E such that

$$
\begin{equation*}
1-\exp \left\{-\sum\left|\left\langle x_{n}, a\right\rangle\right|^{p}\right\} \leqslant 1-\hat{\mu}(a) \tag{4.1}
\end{equation*}
$$

for all $a \in E^{\prime}$ and some $\mu \in R_{p}(E)$.
Let v be the stable cylindrical measure with ch.f.

$$
\hat{v}(a)=\exp \left\{-\sum\left|\left\langle x_{n}, a\right\rangle\right|^{p}\right\}
$$

Since μ is a Radon measure, $\hat{\mu}(a)$ is τ-continuous where τ is S-topology on E^{\prime}. From (4.1) it follows that $\hat{v}(a)$ is τ-continuous and thus it is the ch.f. of a Radon measure on E. Then by Ito-Nisio's Theorem we conclude that the series $\sum x_{n} \theta_{n}^{(p)}$ converges a.s. Since $p<2$, we have $\sum\left\|x_{n}\right\|^{p}<\infty$.
4.3. Corollary. Each closed subspace of $L_{p}(1 \leqslant p \leqslant 2)$ is of S-cotype p for $0<p \leqslant 2$.

Theorem 4.1 and Theorem 4.2 lead us to introduce the following
4.4. Definition. An (S)-space is said to be of S-cotype 0 .
4.5 Theorem. If a Banach space is of stable type p and of S-cotype p $(0<p \leqslant 2)$ then it imbeds in L_{p}.

Proof. According to the Lindenstrauss - Pełczynski's criterion of imbedding a Banach in L_{p} [11] we shall show that if $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are two sequences in E such that

$$
\begin{equation*}
\sum\left|\left\langle x_{n}, a\right\rangle\right|^{p} \leqslant \sum\left|\left\langle y_{n}, a\right\rangle\right|^{p} \quad \text { for all } a \in E^{\prime} \text { and } \sum\left\|y_{n}\right\|^{p}<\infty \tag{4.2}
\end{equation*}
$$

then $\sum\left\|x_{n}\right\|^{p}<\infty$.
Indeed, let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two sequences in E satisfying (4.2). Since E is of stable type p we find that the series $\sum y_{n} \theta_{n}^{(p)}$ converges a.s. Let μ be the distribution of $\sum y_{n} \theta_{n}^{(p)}$. Then $\mu \in R_{p}(E)$ and $\hat{\mu}(a)=\exp \left\{-\sum\left|\left\langle y_{n}, a\right\rangle\right|^{p}\right\}$. From (4.2) we have

$$
1-\exp \left\{-\sum\left|\left\langle x_{n}, a\right\rangle\right|^{p}\right\} \leqslant 1-\hat{\mu}(a) .
$$

By the assumption that E is of S-cotype p we have $\sum\left\|x_{n}\right\|^{p}<\infty$.
4.6. Corollary. A Banach space of S-cotype $p<1$ can imbed in L_{p}.

Indeed, since every Banach space is of stable type p if $0<p<1$ [6]. In the case $p=0$ this is a known result about (S)-spaces (see [9]).
4.7. Corollary. If a Banach space with the approximation property is of S-cotype $p<1$ then it is of S-cotype 0 .

The following proposition gives the description of those spaces which are of stable type p and S-cotype p for $1 \leqslant p \leqslant 2$.
4.8. Proposition. Let $1 \leqslant p \leqslant 2$. Then the following are equivalent:
(1) E is of stable type p and S-cotype p.
(2) E imbeds in L_{q} where $q=2$ if $p=2, p<q<2$ if $p<2$.

In the case $p=1$ (1) is equivalent to
(1) E is isomorphic to a reflexive subspace of L_{1} (see [11]).

Proof. The inclusion (1) \rightarrow (2) follows from Theorem 4.5 and a Rosenthal's Theorem [11] which states that a closed subspace of L_{p} is of stable type $p(1 \leqslant p<2)$ if and only if it imbeds in $L_{a}(p<q)$. The inclusion (2) \rightarrow (1) follows from Corollary 4.3 and the fact that $L_{q}(p<q)$ is of stable type p.
4.9. Proposition. Each Banach space of M-cotype p in the sense of Mouchtari is of S-cotype p.

The notion of M-cotype p was introduced by Mouchtari in [8]. Let σ_{p} denote the coarest topology on E^{\prime} for which all the ch.f. of p-stable measures are continuous. A Banach space E is said to be of M-cotype $p(0<p \leqslant 2)$ if for a cylindrical measure v on E to be extended into a Radon measure it suffices that the ch.f. $\hat{v}(a)$ is σ_{p}-continuous.

Proof. In the case $p=2$ the notion of M-cotype 2 is identical with the notion of cotype 2 [8] and thus it is identical with the notion of S-cotype 2
by Proposition 3.2. It remains to prove the case $0<p<2$. Let $\left(x_{n}\right)$ be a sequence in E such that

$$
\begin{equation*}
1-\exp \left\{-\sum\left|\left\langle x_{n}, a\right\rangle\right|^{p}\right\} \leqslant 1-\hat{\mu}(a) \tag{4.3}
\end{equation*}
$$

for all $a \in E^{\prime}$ and some $\mu \in R_{p}(E)$.
Let v be the cylindrical measure with the ch.f.

$$
\hat{v}(a)=\exp \left\{-\sum\left|\left\langle x_{n}, a\right\rangle\right|^{p}\right\} .
$$

From (4.3) it follows that $\hat{v}(a)$ is σ_{p}-continuous. By the assumption that E is of M-cotype $p, \hat{v}(a)$ is a ch.f. of a Radon measure on E. From ItoNisio's Theorem it follows that the series $\sum x_{n} \theta_{n}^{(p)}$ converges a.s. Since $p<2$ we have $\sum\left\|x_{n}\right\|^{p}<\infty$.
4.10. Proposition. If $p<q, q>1$, then there exist spaces of S-cotype q which are not of S-cotype p.

Proof. Consider the space $l_{s}\left(l_{t}\right)$, where $q>s>t>p, t>1$. By Theorem 7 in [8] $l_{s}\left(l_{t}\right)$ is of M-cotype q hence it is of S-cotype q in view of Proposition 4.9. Assume that $l_{s}\left(l_{t}\right)$ is of S-cotype p. By Proposition 8 in [8] $l_{s}\left(l_{t}\right)$ is of stable type p. Therefore, by Theorem $4.5, l_{s}\left(l_{t}\right)$ imbeds in L_{p}. But this contradicts the Proposition 9 in [8].

Problem. Are spaces of S-cotype p exactly spaces of M-cotype $p(\mathrm{U}<p<2)$?

Acknowledgment. I am indebted to Dr. Nguyen Duy Tien for many valuable discussions in this work.

REFERENCES

[1] S. A. Chobanjan, V. I. Tarielaze, Gaussian characterization of certain Banach spaces, J. Multivar. Anal. 7, 1 (1977), p. 183-203.
[2] D. J. H. Garling, Functional central limit theorems, Ann. Prob. 4 (1970), p. 600-611.
[3] N. Jain, Central limit theorem and related questions in Banach space, Pro. Symposia in Pure Math. 31 (1976), p. 55-65.
[4] S. Kwapień, Isomorphic characterization of Hilbert spaces by orthogonal series with vector-valued coefficients, Sém. Maurey -Schwartz 1972/1973, Exp. VIII.
[5] W. Linde, V. Mandrekar, A. Weron, p-stabte measures and p-absolutely summing operators, Springer Verlag, Lecture Notes in Math. 828 (1980), p. 167-178.
[6] B. Maurey, G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58, 1 (1976), p. 45-90.
[7] D. Mouchtari, La topologie du type Sazonov pour les Banach et les supports Hilbertiens, Ann. Sci. Univ. Clermont 61 (1976), p. 77-87.
[8] - Spaces of cotype $p(0 \leqslant p \leqslant 2)$, Teor. Verojat. i Primen, 25 (1980), p. 105-117.
[9] - Sur lexistence d'une topologie du type Sazonov sur un espace de Banach, Sém. MaureySchwartz 1975/1976, Exp. XVII.
[10] A. Pietsch, Operator ideals, VEB Deutscher Verlag der Wissenschaften, Berlin 1978.
[11] H. P. Rosenthal, On subspaces of L_{p}, Ann. Math. 97 (1973), p. 344-373.
[12] L. Schwartz, Sem. Applications Radonifiantes, Paris 1969/1970.
[13] D. H. Thang, Ng. D. Tien, Mapping of stable cylindrical measures in Banach space, Teor. Verojat. i Primen. 27, 3 (1982).
[14] N. Vakhania, Probability distribution in linear spaces, Tbilisi 1971.
Department of Mathematics
University of Hanoi
Vietnam

Received on 23. 5. 1983

CONTENTS OF VOLUME 5

Page
W. Banys, Convergence of random measures and point processes on the plane 211-219
R. Bartoszyński and P.S. Puri, On the rate of convergence for the weak law of large numbers 91-97
L. Bielak, On recurrent differential representations for stationary stochastic processes. 45-58
L. Birgé, Non-asymptotic minimax risk for Hellinger balls 21-29
S. Csörgö and Z. Rychlik, Rate of convergence in the strong law of large numbers 99-111
H. Drygas, On the unified theory of least squares 177-186
L. Gajek, Limiting properties of difference between the successive k-th record values 221-224
Z. J. Jurek, Limit distributions in generalized convolutions algebras. 113-135
K. S. Kubacki and D. Szynal, On the limit behaviour of random sums of independent random variables 235-249
G. Michaletzky, A condition to avoid a pathological structure of sufficient σ-fields. 153-163
X. Milhaud, A short proof of a Chernoff inequality 173-175
P. S. Puri see R. Bartoszyński and P. S. Puri
Z. Rychlik see S. Csörgö and Z. Rychlik
R. M. Shortt, Uniqueness and extremality for a class of multiply- stochastic measures. 225-233
E. Siebert, Jumps of stochastic processes with values in a topo- logical group 197-209
M. Słaby, Strong convergence of vector-valued pramarts a sub- pramarts 187-196
H. Strasser, Scale invariance of statistical experiments 1-20
Z. Suchanecki, Some results on cylindrical measures and appli- cation 165-171
A. Szubarga and D. Szynal, Random limit theorems for random walks conditioned to stay positive 83-89
D. Szynal see K. S. Kubacki and D. SzynalD. Szynal see A. Szubarga and D. Szynal
D. H. Thang, Spaces of s-cotype $p(0 \leqslant p \leqslant 2)$ and p-stable measures 265-273
N. V. Thu, Multiply c-decomposable probability measures on Banach spaces 251-263
N. Z. Tien, On the convergence of stable measures in a Banach space. 137-151
M. Tomisaki, Harnack's inequalities for Dirichlet forms and their applications to diffusion processes 59-81
W. Wertz, On invariant curve estimators 31-44

