
Abstract, The aim of tht! paper i s  to give n w s w  and sufkieat 
coa&fions br exp ( - ljTajjPj to be the chssacteristic fun~tiona1 of a 
Radon measure on E, where E EB a EZ;arr%cich space with topological 
dual E: T-hear eantintraus operatar from B into L,, and 
0 G p d 2. 

1. laX~od~cg.lion. Let E be: a real B a n a ~ h  space with dual E'$ For a seal 
number p (0 < p 4 2) %, denotes a  lased subpaca: of L,. Let TE L(E, X,), 
i.e. T is a laneas cootinwus aperator from iE" into Xp. Goasider the 
functional: f: E ' t  R defined by 

It is easy to see that J'(u) is the sharacteristic functional (ch. f.) of a 
cylindrical stable measure on E. The set af all oper;ltors TE LIE, X,) such 
that pl. can be extended into a Radon meaare will bc denoted by 
A,(E", X,). PIy:al{Er, X,J den4tes tfhe sel of aEI oprators TEL(E", X,) such 
that T* E n,(XL, E), i.e. T* is a p-sum~ng operator from Xb into Ed In 
general, neither A,,(E: X,). c ~ Y ( F ,  A',) nor the conyerse inclusion, hold, 
Our prablern consists in cbra~erizing those Banrt~h F for wkich one .of the 
following inclusion is vdid far each space X,: 

For the ,ease p = 2 the proMernu (A) and (33) have been soived by 
Chobanjan and " F a i e h b  [I]: (A) is always true far all Banach spaces $ (B) 
is true if and only if E is af cotype 2, 

For the gcasa I < p a 2 the problem (A) has been solved by Lindq 
Mandrekar, Weson [SJ: (A) i s  true if and only if E is af stable type: p. Note rbsll 
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the authors aE [5f also fried to SOIV~ the problem (B) but without c-olmplcte 
success. 

In this paper we shall try ro solve the problem (B) far tfie case 0 < p G 2. 
in Section 3 we ir-itroduce a definiiiozl of a space of S -co typ  p (0 .c p G 2) 
and note that the notion of S-catype 2 coincides with the notion of cl~type 
2. We shall show that the inelusion A,(E6, X,) c ny(E'; X,) holds for each 
space X, If and only if E iis of S-cotyyw: p. We also extend a resuit of Garling 
[23 and dain C3J on the structure of Gaussian meaures :so spaces of cotypr: 
2 to the ease of p -  stable measures on spaces s f  S -cotype p (1 r p g 2). It is 
interesting to note that the problem (A) is highly discontinuous in PE  91, 2) 
but the problem (B) is continuous in p ~ C 1 ~ 2 - j .  Finally, in Section 4 we shall 
show some properties of spaces of S-wtype p. 

2. Not;al.isan and rhefiiliilran. Let E be a real Ba11ael-m space with dual E". If , ~ r  
is a Radon naeasute or, more generally, a cylindrical memure on E, then 

de13oles the characteristic functional (chi.) of fi, A symmetric Radan measure 
p is said to be p-stebie (0 -r p d 2) iit; for given r, /3 >. 0, 

f i (aa) f i ( f la )=f i ( (cx~- t .~~) ' "a)  for all ~ E E .  

R,(E] denotes the set of all p-stabb measures an E. Throughout this 
paper, X ,  denotes a closed subspace of L, /O < p d 2). If TtzLIE1, Xp), rhen 
fiimtioraa3 f (a) defined by 

f (4 = exp { - I! 7'4Epf 
is thc ckaaracteristic f'unaionrzl (chf)  of a cylindrical, stablc measure pr on E. 
Thf; xel of all operafors T s w h  that pr extends to a Radon measure an E is 
dcnoted by A, fE: X,). Of course, p, E R,(EJ i f  s"f A, {El, X,), Conversely, 
each measure / ~ E R ~ ( E )  can be written in Lhis way. Let @(P', Op3, ... be a 
squence of independent idcnti~ally distributed randarn variables with tkzs: 
ch,f. exg(-lrl". Then we say that E is of stable type p if for each squcmcs 
Ex,,) in E with t k  property Cljx,JlP f= ;r: the series xx,#(,P1 converges a.s. A 
Banach space B is said t s  be of cotyp~ 2 if For each sequence (x,) in E such 
that the series C .Y,DI?~ ~ ~ n v e r g a  as .  in E it foll~ws that C 10.2-,11' -.;: la. If one 
repitaces the sequellce (f3","" by (Offk), then one obtains a definition af a space 
of a space of stable - cotype p, Muwcves, because of the tail khilvior sf (BfqV each 
Banach space is of stabh -cotype p if O ..I p c 2 A linear sperator Tf~arn a 
Banach apace E into a Wanach F is p-summrng if fhae exists a positive 
constant C ;. O such t h a  



far any finite sequence x,, x,, . . ., x, in E,  Alteraatitrely, if (.Y~~) is a sequence 
in E such tkat C:j(x,, a ) f p  .c: eo far each a in EI, then x1(7kN1[p .= a. The 
class of all p-summing from E into F is denoted by n,(t?", F). If 0 p .: q7 
then H,(E,  FI c I I P f , ( E ,  E;"). FOF more inhrwation about p-summintg opcr- 
arors WE refer the readers to [ t O ] .  

3, Sparm of sslf = coQp p (0 6 p d 2) a d  p - stable fnteasqrm. 
3.1, Defitzitian. A Eranaeh space 12: is said to be of S-oofyge p jlf 

< p +si 2) if, far each squence (x,) in E, such that 

l-exp{-Z [(x., a)lPI) G 1 ---(a) 

h r  all a E E' and some E R,(E), we llave IIxn{lF . 
3.2, P~o~os ra ro~ ,  The followir~~ csrg equivaierlr: 
(1) E is of S-corypcr 2, 
(2) E is qf cafyye 2, 
Pro  of, (1) (2) Let (x,) be a sequence in E such that the series x, 8$;2' 

canverges as. We have eo show that 2 llxlljl" a. Let p be the distribution 
of x, e,", . Then ~1 E R2 (E) and 

From defiruition 3,1. it follows that llxlllE% m 
(2)  =. (1) ket (x,,) be a sequellce in E such that 

for all E El and some p E R, (E) .  k t  Y be a Gaussian cylindfical measure 
with the covzlriance function R, defined by 

Elr0114 (3.1)- we I p v s  R , @ ,  a) $ CR, a,  a ) ,  wllere R, is the covariane~ 
operatior of the Gaussian maslare y. By a known result in If41 we coacltlde 
that v is in fact a Radon Gaussian measure. From this it fatlows that the 
series C x,,O~,Lb~~ltlvergm .ass, Since E is of' corype 2, we have 1 f/x,,[12 " ac 

Now we investigate operators TFram E' into a dosed subsgdce %, of L, 
(1 d p < 23 for which exp: -1lTallPj is the ch.f* of H Radora measure on EE. 
The set of all r I~ose operators is denoted by A,,(E", X,), 

3.3. THEOREM. k r  1 g p g 2 Then the following are egut'esalms: 
( 1 )  e is s-~~targ$pc p. 
(2) For each space X ,  we haw 

Proof. (1) *(2). Let TEA,(E', X,) and let (gJ be a. sequetrce in XI, such 
that x,t(gn, x ) i F  < m for each XE X,. We have to show that C ~ I ? " I ! ~ , ~ J ~  4 a, 



Consider the operator S: X ,  --+ I ,  defind by Sx - ( {g , ,  x)),", , . Eede~~tly,  5' 
is a linear continuous operator m d  we have S* e, = gB, where (t?,J is the 
sequence of unit ve~tors in I,, ( p - ' + q - l  =. I), We h a s  

On the sther hand 

From (3.2) and (3-3) we have 

where y is the p-stable measure with the ch.f. 

By assumption that E is of S-calyv p, ff'r'om (3.4) it follows that 

(2) =+ (1). Assume that E is not of S - covpe p. Then there exist p E Rp [E) 
and a sequence [x,J in E satisbing 

(3.5) I-exp [-x{{x,, a>lP) G 1-Fla)  for all ~ E E :  

but: ZIIx,IIP --- m. 

Suppose that j2 (a) = exp l, - I [ S $ [ [ P ]  where T is a linear ccontinuous stper- - 
ator from PC' into L,. But X, = T E  ; we have TE A, (E", X,). Now we shall 
show that T+n9,""'(E", X,) i.e. T* is not p-summing. mfine a finear owrator 
B: E' 4 lP by Ba = ((x,, We shall now canstruct a linear continuom 
sprator 1C": X, -, I, such that B = Fo /,T. 

At first, WL: define an operatar I/: T(E3 -+ I ,  by Y (Ta) = Ba. 
V is well defrnd, Indeed, by inqu&ty (3.5) we have 

Rencq Ta, = 32, Imlplim Ba, = Ba,. 
EvidentEy, k'is linmr and cantiauous. Since T(E7 is denst: in X,, Ffa&ts 

the unique extefcsioa to X, and we have B - Vo T. 
Suppose in contrary that T* ~fl,{x~, El. Then B: = T* If* E n,(!e, El* 

Theriefore /IS%" e,ljP = //x,1lP .: ~ 1 3 ,  A contradiction. Thus we have F is 
not p - s u m i n g  as desircd. 

Remark .  The above proof has some resemMa~ce ts 6be pmaf of Theo- 
rem 3,s in C233, 

Theorem 3.3 and Tlreurcm 2 in L5-J allow us to ~harizcrerize spaca E 
where TE Ap(EI, Xp) if and only if T*EI ;T , (X~,  El. En thc ease p = 2 thase are 
exactly spaces E of cotyge 2 [I]. 
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Tlaus WE APES1, X,). Since S is of S -mtygr: p {see Corollary 4.3 belo~r), 
W*E~,(X;, 5) by Thmrem 3.3. Consequently, J'* = VW* is  p-summing 
and tlze proof is linished. 

3.6 G o w o ~ c ~ ~ r  [ZJ. E is gf eorype 2 (f and o ~ l y  $each Gnrrssia~t meustire 
or? E is: a cor?iir.rtlous in rug^ qf ~ 1 7 ~ 1 2 ~  G ~ U $ S I * I Z  8mas~lf"e OFT the Hillaer-r S ~ ~ C I I ' C ~  ff. 

4. Same prowties of spaces of S-cotyw p. 
4.1 THEOREM, IJr a Banack space E is  o j  S - eotype p, then it is also of 

S-coryj~e q Sin" 0 c= p G 4. 

ProaF. AppIying Theorem 3.1 we shall show nhar A, (E', X,) 
r flyi (E', X,)  for each space X,f. Let TE A,I (E', Xy). Then exp ,l --]I :is 

ch.f. of a Radon measme an E. By Theorem 2 [81 f ( a )  - exp : - l l T ~ i / ~ )  
is also (Ire c'Er.F. of a Radon tneasure on E.  Thus TE Ap(EI, Xq)  (~itlce Eq -Lp 
if p G q G 2, Xq is considered as n closed swbspace of L,). Since E is of 
S-catype p by TX~eorem 3.3 T* is p-summing. Because af the Eaclmiesn 
property of the ideals of p-summing operators [lC)a T* is also q -summing. 

4.2. THEOREM. If' E is [JET (3); -space, ?her? if i s  qj" $ -cotype p j ~ r  O < p 6 2. 
Recall that E is anr ( S )  - space if there exists a topology T rrn E' such that a 

functional ,f: E -+ -3 C psit ive definitive, T -continuous with f (0) = 1 i f  and 
only i f f  is the ch.f. sf a pro'babiGty measure 114 on E. The topology z is called 
S-tnpobgy.  It i s  known that (see [9], [TI) a Banaek space E with the 
approximation property ir; an S - space if and only if E can imbed in some 
L,. Each clascd subspace of L, ( I  G p < 2) is an ($)-space. For mare 
idarmation about (3)-spaces we refer the reader to C91, C?]. 

Proof of 'libearem 4.2. In view of Theorem 4.1 it remains for us to 
pravc for 0 p 4 2. Let [xlJ be a sequcwe ia E such that 

for all ~ E E '  and some peR,(E], 

k t  v be the stable cylindriml mcast~re with eh,f. 

Since p iis a Radon measure, f i ( c t )  is a - continuaus where r is S - topology 
orr E', From (4.1) it follows that, <(a) is .c -csntiauou~ and thus it, is the ch.1. 
of a fC&don masure? on IE, Then by Jlo- pJlsi~% Theorem we corlcltnde thcak 
the series x,, Gr!P%eopaverges a.s. Since p < 2, we have jlxtfe,,tlP m - 

43. COROLLARY. Each eio~ed subspace I$ LP (1 g p 6 21 is qf S - C D I " Y ~ ~  p 
"fat Q c p G 2. 4 

Theorem 41 and Theorem 4.2 lead us aa iatroducc the foIlowing 
4.4. Definition. An IS);-spaw is mid to br: of S-eotyge 0. 



4.5 THEOREM. If u Banach space is of sstable t ype  p a~zd qf S-coryye p 
(0 .c: p G 22) rherz it imhed,~ iin L,. 

Proof': According to the Lindenstraltlrss- Pelczynski"~ miterion of imbed- 
ding a Banach in &, Ell] we shall show chat if (x,,) and (y,J are cws 
sequences in E such that 

(4.2) I Cx,, @ ) l a  G 11(j$,, a>la far all a E E' and I I Y , I / ~  < m 

then EIIxnllp < m. 
Indeed, kt {x,) and (y,) be two squerrces in E satisfying (4.2). Since E is 

of stable type p we find that the series y,@iphcanverges a.s. Let be the 
distribution of x y ,  gP< Then PE R,(E) and P(a) - exp { --z I{ya., a)[Pj. From 
(4.2) we have 

r -e~p{-El<x,#~ a>IP! G I-FCaf. 

By the assumption chat E is of S - cotype g we have flx,,lfP 4 m , 
4,6, C a ~ a ~ u x r .  A Bn~tack space of S-cofyye p c I can irtlbed in L,. 
Indeed, since every Sanach space is of stable type p if' O < p < 1 1611, In the 

case p =. 8 this is a known result about (5)-spaces (see C9-J). 
4.7. C o ~ s l + t a ~ u .  1f.o Bnrnach spcdce with thg uppoxirnaticl~~ properry is of 

S - cery pe p i i rhetz ic is  of S - catype 0. 
The fallawing proposition gives the description of those spaces which are 

of stable type p and S - cotyy g for 1 & p G 2, 
4.8, Pno~osr-rran. PRr I g p ,< 2. T hefa the jbtbwing are equivalent: 
( 1 )  E is of stable type p and S-cs fype  p. 
(2) E i d e d s  in i_, where q = 2 if p = 2, p < g < 2 if p < 2. 
In r l w  case ~7 = b (I)  is ~quiuaiefrr ro 
(1') E i s u ~ ~ ~ r p h i ~  t0 @ ~L,PCXE'DE S Z I & S ~ # C ~  of LJ (see 11). 
Proof. The Inclusion (I) +(2) foltesm from Theorem 4.5 and a 

Rosentbal's Theorem [Ill whicl~ states that a closed subspace of L, is of 
stable type p (1 4 p < 21 if and only if it imbeds in L,[p c y). Thc inclusion 
(2) -+(I), fa1lows from Gorollary 4 3  and the fact that L, (p i .sj) 

is of stable type p. 
4.9. P~u~uslnorj. Each Balnnch space ~f M-sotype p in the l e 2 ~ ~ ~ e  of 

MotacJzrari is  u~ S - catype p. 
The notion of M -cetype p was i~nlroduced by FdsoucE~tabri in [X], Let o, 

denote the eoaeest topology on E' for which all the ch.f. of p-slable measures 
are continuous. A Banach spaice E is said to be 01 M -cozype p (0 r: p % 2) 
i f  for a ~ylindricaj measure v on E ta be extended into a Radon measure 
i t  suffaca that the ~ c h - f .  <(a) i s  a,-ssntinuuus. 

Proof, In the case p = 2 the notion of M-cotygl: 2 is id~ntfcal with the 
notion of eotype 2 [8J and thus it is identical with the notion sf S - cstype 2 
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by Proposition 3.2. St remains to prove the case O < p r 2, Let (x,) be a 
sequence in E: such, that 

far all a E E h n d  some y E R,[E),  

Ltt v be the cyfindrimE measur*e with Ibe eh.f. 

?(a) =. exp i -z/(x,, a>jp). 

From (43) it: follows that is a,-continuous. By the afsumpioa ahat 
E is of M-cotype p, $(a) is a eh-f. of a Radon mmuret on E. Fram Ito- 
Nisio" Theorem it folbws that the series z~,flf,~~ ccrnvergm as. Since p < 2 
we have ~ ~ { x , l ] P  < oo. 

4.10, PROPOSITION. if p c= ~ d ,  q > I, then rtjrhe~e exist xpcaces of 5 - caiuype q 
' 

which arg mt of S-cotype p, 
Proof. Consider the space 1, (I,), where q , s: > 1 > p, t > 1. By Tlilmrem 

7 In L8-j 1, ( J t )  is OF M -wtype q henee it is of S -cotype q in view sf 
Propi t ion  4.9. Assume that f, (1,) i s  of S - cotype p. By Proposition 8 in 181 
is (1,) is sf stable type pp. Therefore, by Theorem 4.5, I, (I,) imbeds in Lp. But 
this contrdicts the Proposition 9 in [8]. 

PrabSem. Are spaces of S-cotype p exatly spaces of M-catype 
p t U < p < 2 ) ?  
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