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Abstract. When testing simple hypotheses ® P;, ® Q; in a

i=1 i=1
robust framework one usually considers neighbourhoods of P; and
Q; in terms of e-contamination or total variation, which are
describable in terms of capacities. In the present paper we consider
neighbourhoods which allow any departure from independence, but
retain the marginals P;,, Q, of the test problem, i.e. we consider the
‘extreme case, where exact measurement of the components is
possible but no assumptions can be made about the independence.

1. Introduction. Let (X;, %) be measure spaces, let M!(X;, %) denote

the set of all probability measures on (X,-,'QI,-), 1 <i<n, and define
X, M= @ (X, %).

Furthermore, for P;, QieM'(X,, W), 1 <i<n, define

. My =M(P,,...,P) = {Pe M'(X, W; m;(P) =P, 1 <i<n)
and v .

M, =M(Qy,...,0) = {PeM' (X, W; m(P) = Q;, 1 Si<n),

where ; dénotefs the i-th projection on X and =;(P) denotes the image
measure. M,, M, are _neighbourhoods of l_ébl P, i=él Q‘ containing all

probability measures with i-th marginals P;, Q; and arbitrary dependence
structure. '

The robust test-model M,, M, cannot be described in terms of
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capacities as the usual e-contamination or total variation models and there
do not exist least favourable pairs in the sens¢ of Huber and Strassen [5].
We shall instead determine least favourable pairs as introduced by Baumann
[1] which depend-on the level & and on n. It turns out that there is a large
number of least favourable pairs and that for the determination of a robust
test it is helpful to choose a suitable pair. To do this we develop in Section 2
some tools which seem to be of some independent interest.

It seems possible that similar methods as presented for our model will
also be applicable to robust test models which are caused by dependence and
which are less extreme as M,;, M, are (f.i. considering only positive (negative)
dependence or intersections with total variation neighbourhoods, but the
author did not succeed in this point so far).

2. Measures with given marginals. Let M(X, 2) be the set of finite
measures on (X, A). For PeM(X, A) define |P|=P(X) and for
RieM(X;, M), 1 <i<n, with |Ry|=... =|R,] define M(R,,...,R,) as in
Section 1. Clearly, M(R,,...,R,) # Q. .

Let for measures P, Qe M(X, A), P < Q, be defined as P(4) < Q(A),
Ae W Then the following lemma is trivial:

LemMma L. If Ree M(X;, W), 1 <i<n, 'and'
IRy| = min|RJ,

- then there exists an Re M(X, W with n,(R) =R, and m;(R) < R; (2 <i < n).

For P, Qe M(X, ) define P A Qe M(X, N by

' P A Q(A) =inf{P(AB)+Q(AB); Be )
(B° denoting the complement of B) and
- d,(P, Q) =sup{P(B)—Q(B); Be .
By a simple. calculation d,(P, Q) = |P|—|P A Q.
Define for <« M(X, W), i=1, 2,
d, (P, Py) =inf{d,(Py, P,); Pie #,,i=1,2).

The following proposition will be important for finding least favourable
pairs for the testproblem M,, M,.

Prorosition 2. Let P;, ;e M(X;, W), 1 <i<n, with |P|=...=|P,,
Qi = ... =[Q,. Then
dl)(M(P].!"'ﬁ P"), M(Ql""’Qn)) = lns.liaz{"dl’(Pi’ Qi)‘ !

Proof. The statement of Proposition 2 is equivalent to

sup {|P A Ql; PEM(Py, .., P), Qe M(Q;,..., @)} = min [P; A Q.
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Define S; =P; A Q;, 1 <i<n, and assume that
S,/ = smin IS,.
By Lemma 1 there exists an ReM(X, % with =,(R)=S, and

n(R)<S;, 2<i<n Now defining P;=P,—m(R), Qi=0;,—mn(R),
1 £i< n we obtain

IP| = Py(X) —(m(R)}(X) = Py (X;)—R(X)
=Py} —(m; (R)(Xy) = [P|—IPy A Q4]
and, similarly,
Q] =1Q:| =Py AQyl, 1<isn

Let RieM(Py,...,P), RoeM(Q7,...,Q;) and define R, = R+ R}, R,
=R+Rj;. Clearly, R<R; (i=1,2), RgeM(P,,...,P,), R,eM(Q,,....Q,)
and )

[Ry ARyl 2 |R| = min |P; A Q4.

1<i<n
On the other hand, for Pe M(P,,..., P,), Qe M(Q,,...,Q,) the bound
~ IPAQI< min [P A Q
is obvious by definitien. Therefore

IRy ARyl =|R| = 1‘2}2,,“”" A Qi

(and any pair R}, Rj is orthogonal!), which implies Proposition 2.

- Remark 1. (a) The proof of Proposition 2 shows that there are many
pairs (R;, R,) minimizing the distance d, between M(P,,...,P,) and
M(Q;,...,0,) and how to construct them.

(b) Assume that |P;| =|Q) =1, 1 <i<n For the product measures we
get the (probably well known) bounds:

n

(1) d,(®P,, ®Q) < 1-[] (1—4d,(P,, Q).

i=1
V) d,(®P;, ®0) = [ Pi(4)-T] C:t4), AN,
. i=1 X i=1

For the proof of relation (1) observe that by Fubini’s theorem and
induction on n one obtains

1®P; ~ ®Q1 > [] IP: A Q.
i=1
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From relation (2) we see that the independent case does not typically
correspond to a least favourable situation. To be more precise let

d (Pls Ql) = max d ( Q_])’

1<jsn .
let A, = {dPl/dQl 1} be a Jordan—Hahn set and assume that Q, (4,) > 0.
If there exists an i, 2<i<n, such that Q;(4;) >0, where A4
= {dQ;/dP; > P, (A,)/Q1 (A1)}, the" ‘
, d,(®P;, ®Q;) > maxd,(P;, Q).
Proof. Since '

1-Qi(4) _ Qi(4) _ Py(4)
I=P,(4) " Pi(4) ~ Qi(4)’

- we obtain. , _ _
d,(®P;, ®Q;) = P1(Ay) Pi(4)— 01 (A;) Q; (4)
> P, (A,)—Q,(4,) = maxd,(P;, Q).

© If n=2 X, (i=1,2) are Polish spaces, |P|=1Q; =1, |P; A Qi
|P2 A Qzl and Qe M(Q,, Q,) such that = :

Q(AxB) =P, A QI(A)+P2 A Qz(B)“‘|Pz A Q,
Jor all AcW,, Be¥,, then '
(M(PD PZ) Q) (M(Ply P2)s M(Qla QZ))

i.e. one can find a Pe M(P,, P,) such that the pair P, Q is a “least favourable”
pair in M,, M,.

Proof. By Theorem 4 of Hansel and Troallic [4] our assumptlon
implies the existence of an ReM(X, W with =n (R)=P; AnQ;,
n,(R)< P, AQ; and R< Q. Therefore, the proof of Proposition 2 implies
our statement. '

A ‘similar but more comphcated sufficient condition can be given for n

> 2 using Theorem 1 of Gaffke and Riischendorf [3].
Let now (X, W) =... =(X,, A,) and define, for Be A,

4,(B) = {(x,...,x)e X; xeB).

Assume that A4,(B) is measurable. In the following proposition we
construct a measure with given marginals which is maximally concentrated
on the diagonal 4,. ‘

ProPOSITION 3. Let P, eM(Xl, AW,), 1<i<n, with [Py =...=|P,.
Then: . :
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(a) sup {P(4,(B)); PeM(Py,...,P)} = P, A... A P,(B), where Be %,.
(b) There exists an Rye M(P,,..., P,) such that
R, (4,(B) =P, A ... AP,(B), BeY,.

Proof. Let (M, B, u) be a measure space, let f: (M, B)—»(Xl; A,) be
such that f(u) = P; A ... A P, and define Re M(X, ) by R=(f,....)(w
— the image of u under (f,...,f). Then,

R(4,(B)=f()(B)=P; A ... A P,(B)

for all Be %,. By Lemma 1 there exists an R,e M(P,,..., P,) with R <R,
and, therefore, R, (4,(B)) = P, A ... A P,(B). On the other hand, let

B=Y B
i=1

be a measurable disjoint partition of B and let Pe M(Py,..., P,). Then
P(4,(B) = T Pllx....9eXi xeB) < 3. PB),
which iinplies
P(A},(B))ginf{i P,(B); B = 2 B} =P1 A ... A P,(B).
. i=1 Ci=1

"Remark 2. (@) If n=2 and B=X,, Proposition 3 yields for
PieMl(X].! 9‘[1)’ i= 19 27

A(Py, Po) = inf {P{(x, y); x # 3} PeM(Py, Py)} = dy(Py, P).

This result on the Wasserstein-distance d is due to Ddbrushin [21.
(b) Some further optimization problems concerning M(P,,..., P,) are
considered in Riischendorf [6].

LemMmA 4. If P.e M(X,, ), 1<i<n, and
~ |Py|'= min |P,
1<sisn .
then there exist P,eM(X,, %)), 1<i<n, with P,<P, |P)=|P, and
P,-/\P!=P,5/\P1,2€i€n. ) : -
Proof. Define 4; = P,—P; A P; and gy=P;—P, AP, 2<i<n Then

_/L-, u; are orthogonal and |y < |4,]. With

P; =P, /\P,-+:%"%l,-, 2<i<n,

the assertion of Lemma 4 holds.
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COROLLARY 5. Let P;, Q;e M (X, W), 1 <i<n,
[Py A Q4l = min |P; A Qj

1<i€n

and assume that P, A ... AP, <Q; A ... AQ,.
Then there exists an ReM(X, W with =n;(R)=P; AQy,
n(RYS P AQ;, 2<i<n, and '

R(4,(A4)) = sup {P(4,(4)); PeM(P,,.. 2 P,)}

for all Ae¥,.
Proof. Let P; < P; A Q; be measures with |P]| =|P; A Q4] and

PAP AQ =P AQiAP AQy, 2<i<n,

as in Lemma 4.
Then by Proposition 3 there exists an Re M(Py A @y, P3,..., P) with

R(4,(A)) = sup {P(4,(A)); Pe M(Py A Qy, Py,.... P))}
=P, AQ APy A ... AP(A) = 4\1 P, A 4\1 0:(A)

= Z\l P;(A) = sup {P(A,,(A)); Pe M(Pl,...,P,)},
where

: /"\’P,-~=P1 Ao AP,

3. Determination of robust tests. Consider now the test problem M,, M,
from Section 1. For subsets #, «c M'(X, %), i =1, 2, and ae[0, 1] let

Bla, 2y, #;) = sup inf Eq

P, (P1) QePy

denote the maximin-power at level a, where @,(#,) are the tests of level a
Let RieM;, i = 1, 2; then (Ry, R,) is called least favourable of level a if

B(a’ 4M19 MZ) = ﬁ(a7 Rl& RZ)

(cf. ‘Baumann [(1pn.
Define, for k = 0,

_ ‘L(Mz’le)"‘{[Rl’Rz) ReM.,l—l 2,d (Mz, kM) = d,(R;, kR,)}.

The proof of Proposition 2 shows that L(M,, kM,) # @ and how to
find elements of L(M,, kM;). Finally, for k > 0, ac[0, 1], define

h, (k) = ak + max d,(Q;, kP,)

1<i<n
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Tueorem 6. Let ac[0, 1].

(8 B(a, My, My) = min {h, (k); k > 0}. -

(b) Let k* > 0 be a minimum point of h, and let (R, R;)e L(Mz, k* Ml),
then

() (R,.Ry) is the least favourable at level o for M,, M 2.

(2) There exists an LQ-test @* for Ry, R, with critical value k* at level a
which is a maximin test at level a for M;, M,.

Proof. (a) Let M; denote the closure of M; in ba(X, M) — the set of
finitely additive set functions — w.r.t. weak*-topology, i =1, 2. By Satz 5.3
of Baumann [1]

Bla, My, My) = inf {ak-+d, (M, kM), k> 0}

(where d, is defined in ba(X, 2) as in M (X, ). Clearly, for Pe M, we have
n;(P)=P; (1<i<n) and, for Qe M,, nl(Q) = Q; (1 <i < n). Therefore,

d,(Q, kP) = sup {Q(B)—kP(B); Be ) > maxd,(Q;, kP)

isn

which implies, using Proposition 2,
d,(M,, le) =d,(M,, kM,) = maxd,(Q;, kP;)

1€n

and, therefore,
B(a, My, M,) = min h, (k).
k=20

(b) If (Ry, Ry)e L(M,, kM,), then
. dv(RZa k* Rl) = m_ax dv(Qin k* PI)

and, therefore, ‘ _
B(a, My, M) =h, (k*) = ak*+maxd,(Q;, k* P))

= ak*+d,(R;, k* R,)
> inf {ak +d,(R,, kR,); k > 0} = B(a, Ry, R;).
Since trivially B(a, M;, M,) < B(a, Ry, Ry}, (R, Ry) is least favourable

at level a. Point (b) of (2) is well-known from the duality treatment of test
problems (cf. fi. Baumann [1]).

Remark 3. (a) As is clear from Theorem 6, there are many least !
favourable pairs at level a and the least favourable pairs generally depend on
a (cf. the following example). Therefore, there are no least favourable pairs in
the sense of Huber and Strassen [5].

(b) If there is a component, say i = 1, such that

- d,(Qy, kP;) = maxd,(Q;, kPj) for all k>0,
y ’
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then there is a least favourable pair independent of @ and a maximin-test can
be chosen depending only on the first component of the observation. This is

especially true if P, =... =P, and Q; = ... = Q,. But in the other case the
" ‘maximin-power is stnctly larger (for some a) than the maximum power of the
" tests concerning the individual components only.

-(¢) For the determination of a maximin-test it is useful to choose a
suitable least favourable pair (R, R;) in order to have a randomization
region as small as -possible. The following example shows how to choose
(R,, R,) in certain cases and how to manage the necessary optnmzatlon
problems concerning the randomization region.

4. An example. Consider the case n = 2 and measures P;, Q; on [0, 1]
determined by P; = f;A' (i = 1, 2), f, (x) = 2x (xe[0, 1]), /(x) = 1 (xe[O0, 1])
and @, =P, O, = P,; ie. we cons1der M, =M(P,, P;), My = M(P,, P,).
Then

) 1-(1—a)k, i k<%,
fl(k)='0tk+du(Q1,kP1)=. 1 1
' ak-i-a, k>§a
and
. k2
I-(=~9k+,, k<2,
Fo(k) = ak+d,(Q,, kP,) -{ ok, k>
Furthermore,
) 1
| inf 7, (k) = f' (2\ /&)— Ja
and | _ ,
il:ff;(k) =201-w)= 1_~(1—'a)2-
Finally,
L), k<1,
hlh) = {fl(k) k1,
and :
1 1 1
f;(Z(l—d)), o 2—9 j'l( )’ a<—,
inf 7,4 = IR B A
= ), x<y AL 2>
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Therefore, ‘ - .
(7()=va e
| 1 2\/& Rt , 4a

. ) ‘ 1 1
inf h, (k) = fl(l)_=f_z(1)=a+z, 2

Hl2-a)=1—(1-a)?, a>:.

Therefore, for o <7 the maximin-test is based only on the first
component of the observation (x;, x,) while for « > { it is based only on the
second component. For ae[4, 4] the maximin-power is strictly larger than
the power of the marginal tests and we can choose k* = 1 independent of
ae (5. 3] _

Since we have P, A @, = P, A Q,, there exists, by Proposition 3(a),
ReM(P, A Py, P, A Q) which is concentrated on the diagonal 4,. Since
P, A Q, =g, with
2x, 0L

g

g(x)={1 %

we have |P; A Q] =|R| = 2. To determine a least favourable pair, define g,

_ =f1—9, 9: = f,—g; then g,(x) = g;(1—x) and [g,di, = [g,di, =1

Define:
1 1
4(2x—1)(1-2y), x?z,yﬁsz-,
hl(xa Y)=4gl(x)gz(.1’)=%0 else.‘ .
) 1 1
. (4(1-2x)(2y—-1), _xSE, y 25,
'h?.(xs Y) =49,(x)g,(y) = {0 else. ‘

Then R =hA, (i=1,2) define elements of M(P,~P, A Q,, P,

—P3 AQj), resp. M(Q;—P; AQy, Q,—P;5 AQ,), A, denoting Lebesgue

measure on [0, 112, Our choice yields measures R}, R, with maximal
support. Now defin€, as in the proof of Proposition 2, R; = R+Rj, R, =R
+ R’ and define the LQ-test

1, x<i, _
co(x,y)_={v,' xz2hy=h
0 else,

with y = 4(x—3%). Then

‘ 1
1) sup {Epp; Pe M(Py, P))} = En, 9 = ;47 =2,
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. 1 1
@ | inf{Ege; QeM(Q:, 0} = Ex, 0 = 5+; =aty.

To prove (1) and (2) observe that, for Pe M(Py, P,),

1 1 1 1
S, V<3< Sz =~
P{x 3 y 2} P{x 2} r
and, therefore, .

1 11 1 11
Plx<sy25027 Plx>5,y>-4 <.
{x_ i } and {x 27 2} s

The sup in (1) is, therefore, bounded by %-1+7y-%, which is attained for
P = R,. The inf in (2) is attained for a QeM(Ql, Q) such that Q x<3,y
>3} =1 and, therefore, Q{x <3, y<4 =00{x>4,y=234 =4 Q=R;is
an element with these properties. (1) and (2) imply that ¢ is a maximin-test at
level a.

Using Corollary 5, this example could be discussed in greater generality.
Generally, the measures R, R} should be chosen as the product measure in
order to obtain the smallest possible randomization region.
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