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BY
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Abstract. The paper contains the proof of a theorem on the
continuity of a “stochastic process” taking its values in an algebra of
operators measurable in Nelson’s sense. If the algebra considered is
abelian, the theorem becomes the classical Kolmogoroff theorem on
the continuity of trajectories of a stochastic process.

Introduction. We present a generalization of the classical theorem of
Kolmogoroff on the continuity of stochastic processes. It may be thought of
as an improved version of paper [3]

Let ./ be a von Neumann algebra with a normal faithful semifinite trace
7 and .o/ the algebra of measurable operators in Nelson’s sense. Recall that
o consists of closed densely defined operators x affiliated with .« such that
7 (e ([0, A])) < + oo for some A > 0, where e,(-) is the spectral measure of z
(see [5]).

As an analogue of a stochastic process we consnder a mapplng
X: [a, b] > 7. There are various notions of convergence in 7 and,
correspondingly, various notions of the “continuity” of X. It would be
advantageous to choose those which guarantee the continuity of trajectories
in the commutative case.- The most appropriate seems to be the so-called
Segal convergence as defined in [4]. :

We say that x,—x in Segals sense if, for each &> 0, there is a
projection p in .o/ with 7(p*) < ¢, such that (x,—x)pe .« and ||(x,—x) p|| = 0.

This mode of convergence is stronger than other types of convergence:
almost uniform, nearly everywhere or metrically nearly everywhere, all of
them being equivalent when .o/ is finite and coincide with almost everywhere
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convergence in the classical case, i.e. for Jx’ L*(Q, F, P) and t(x) = | xdP
(see [1] and [6]).

Let us now introduce the announced notion of continuity. We say that
X is uniformly continuous in Segals sense if, for each & > 0, there are a
projection p in o/ with 7(p) <¢ and some & > 0, such that

(X —-X@O)pest and |(X©O-X@)p|<e

for [s—t| <. '

In a similar way we say that X satisfies the Holder condition in Segal's
sense with exponent y > 0 and constant C > 0 if, for each & > 0, there are a
projection p in o/ with 7(p') <& and some ¢ > 0, such that

(X@)-X@)ped and |[(X()—X()p| < Cls—e

for |s—1] < 4.

An important role in our consideration, as well as in the construction of
the algebra o7, is played by the notion of the measure topology, iec. the
topology given by the fundamental system of nelghbourhoods of 0 of the
form .

N(e, 6) = {xe o7: there exists pe Proj o/ such that xpe s/,
lIxpll < & and t(phH) < 6}

Accordingly, x, — x in measure if, for each ¢ > 0, there is a sequence {p,}
of projections in &/ such that

T(P,,) -0 and H(x,.—x) pn” <e.

Let us note that 7 endowed with the measure topology is a topological
s-algebra (see [5], Th. 1).
THEOREM. Let of be a semifinite von Neumann algebra with a normal.
faithful semifinite trace © and let X be a mapping of an interval [a, b] into the
algebra s7. Assume that there exist strictly positive constants M, o, f such that

(*) t(XE)-XOF) < Mls—4'*%, s, tela, bl

Then, for each y < a/P, X satisfies the Holder condition with exponent y.

Proof. Obviously, we can take [a, b] = [0, 1]. Fix an arbltrary 7,0<y
< a/B. Let n be such that 0 <# <1 and (1—-n)(a+1-— ﬁy) > 1+7. Put

a0

/\ /\ k €ijk>

k=n 0<igj<2
j—isa2kn

where

€ijk = e|xu-z-k;—x¢é-z-k;| ([0! ((.]—1)2_")?])
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By (),
'r(e.-ij) < ((.]-l) 2"k)-’571_-(lX(jZ"‘)_X(iz—k)l) < M((j___i)z—k)l +a—fy
Setting 4 = (1—n{a+1-py)—(1+n) >0, we get

T(p;lL) < i Z M2(kﬂ‘k)(1+az—ﬂy) =M f Z 2""(1 +n+u)

k=n ggigj<2k - k=n pgigj<2k
, i< 2kn j-ig2kn
<M Z 2k(2kq+1)2 k(1 +n+py =M Z 2= ky(1+2 kn)

<M21+"‘"“/(2"—1)—>0 as n— oo.
Thus, for k=2n>n"! j—i<2" and 0<i<j<2* we have
M IXG-279=XG279)p)| < X G-275=XG-279) el < ((—0)27¥).

Let D denote the set of the dyadic numbers from [0, 1[. For n> 5!
put 8, =2"""1 We assert that if s, teD, s <t and r—s < §,; then

(X&) =-X@)p| < Cls—t” for some C = C(y).
To this end, take k > n satisfying
2 D=1) 4 ¢ < Dkln=1)
and represent the numbers s and ¢ in the form
s=i27k—2™M_ oM k<n <...<h,
t=j-2k—27My 42 g <l <..<l,.
By (1), for w=1,...,u,
(X @-27%=27"— . —27Moy_x 2k 2T Mpli< 2T,
Therefore (X (i-2%— X (s)) p,e & and

IXG29-XE)pl< ¥ 2™ < § 27m=c,27%

w=1 w=k+1

where C; =(2"—1)"'. Similarly,
X O-XG-27")pd] < €27
Taking into account the last two inequalities and (1), we obtain
(X ()= X @) pof| < Is—1]7+2C, 277 < C|s—1]?
with C = 2C, +1 (observe that 2% < 26+ D01 < 54l for k > 5~ Y).

3
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That proves our assertion and, together with (pH) ~ 0, gives the
following condition:

(2)  for each &> 0, there are some peProj.o/ with 1(p') <& and § >0,
such that
(X —-X@)p|| < Cls—1)’

for s,teD, |s—t] <.

Let now D = {z,}. For & > 0 we choose a projection p, with 7(pg) < &/2
so that (2) holds. For every n we take g, Proj &/ satisfying X (t,)q,€ &/ and
t(gd) <e/2"*! (see [5], Th. 2 (ii)). Put

P=Po A [\1 Gn-
Then X (t,)pe s/, t(p*) <& and

(X () — X @) pl| < I(

Therefore we may and shall require that X(s)p, X (t)pe &/ in condi-
tion (2). ‘

Fix now an arbitrary ¢ > 0 and take p and ¢ as in (2). Let s, te[0, 1], 5
<t, t—s < 8. Choose sequences s,|s, t, 11, S, t,€D. By (2), the sequences
{X (s p} and {X(t,)p} are Cauchy in norm, hence X (s,)p—a, X(t,)p—b in
norm for some a, be of/. Observe that condition (%) implies X (s,) — X (),
X(t,) » X(t) in measure. Using the continuity of algebraic operations in
measure topology, we get

s, teD.

X(@p—X(s)p, X(t)p— X{t)p in measure,
so that
X($)p—>X()p, X(t)p—- X(t)p in norm.
Finally,
I X(S) X)p|| <X (s)p= X(S..)P||+|| X (sa)— X (1) PH+|IX(t..)P X () pll
and passing to the limit, we obtain

(X ) —X®)p|| < 11msup|| X(s,)— X(r,,) )| < Climsup ls,—t,]” = Cls—1l7,

which concludes our proof.

Let X be such as in the theorem. We list a number of consequences of
our result. .

CoroLLARrY 1. X is uniformly continuous in Segal's sense.
CoROLLARY 2. If o is a finite direct sum of type I factors, then o7 = o
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and X satisfies the Holder condition in norm; consequently, X is uniformly
continuous in norm topology. '

Proof. For the equality o/ = ./, see [2]. To obtain the second part of
the assertion, in the Holder condition just proved let us take & > 0 suffciently
small to get the implication:

if T(pY) <e, then p = 1.;

this is always possible since 7(Proj «/) is a discrete set of positive numbers.

COROLLARY 3. Suppose that X takes its values in <, is bounded in norm
on [a, b] and satisfies condition () with a > . Then X is globally Hdlder in
norm for each 1 <y <a/f, ie. there is some C >0 such that

(X ) —X @) < Cls—1", s, tela, b].

In particular, X is uniformly continuous in norm.

Proof. Choose a sequence (g,) of strictly. positive numbers satisfying
Y &, <oo and corresponding sequences (p,) and (5,) as in the Holder

a0 '
condition. Put r, = /\ p;. Then r,11 and
k=n

IX©@—X@)r| < Cls—t]' for |s—1] <6,

It is easily seen that this inequality is valid for arbitrary s, te[a, b].
Indeed, it suffices to take a partition s =s, <5, <... <s§ =t of diameter
less than 4, and observe that

1
Z (S —5Sx-1)" < |s—1".
E=1

o

Now, for £e () r,H (where H is a representation space of .«), ||&|| < 1,
n=1

we have

X (- X )¢ < Cls~1p".

Since G r, H is a dense subspace of H and X is uniformly bounded, the
result follonwsl. _

CoRroLLARY 4. Suppose that X takes its values in .o/ and it is bounded in
norm on [a, b). Then X is uniformly continuous in =-ultrastrong topology.

Proof. Taking r,, 4, as in the course of the proof of the preceeding
corollary, we obtain the inequality ||(X (s)—X(0)&|| < Cls—t” for éer,H,
1€l <1 and |s—1] < 6,. That gives the uniform ultrastrong continuity of X

a0 .
on |) r,H. Taking into account the uniform boundedness of X, we get the

n=1
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uniform ultrastrong continuity of X on H. The s-case is treated similarly.
Remark. In the commutative case our theorem reduces to the classical
Kolmogoroff theorem on the continuity of trajectories of a stochastic

process. The method for such a reduction is standard (cf. (6], Ex. 1.1).
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