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Abstrucr. The paper contains the proof of a theorem on the 
continuity of a "stochastic process" taking its values in an algebra of 
operators measurable in Nelson's sense. If the algebra considered is 
abefian, the theorem becomes the classical Kolmogoroff theorem on 
the continuity of trajectories of a stochastic process. 

Introduction. We present a generalization of the classical theorem of 
KoIrnogoroff on the continuity of stochastic processes. It may be thought of 
as an improved version of paper [3]. 

Let d be a von Neumann algebra with a normal faithful semifinite trace 
r and d the algebra of measurable operators in Nelson's sense. Recall that 

consists of closed densely defined operators x affiliated with d such that 
r(eb,([O, A])) < + oo for some 2 > 0, where e,(.) is the spectral measure of z 
(see [jl). 

As an analogue of a stochastic process we consider a mapping 
X: [a, b] + d. There are various notions of convergence in d and, 
correspondingly, various notions of the "continuity" of X. It would be 
advantageous to choose those which guarantee the continuity of trajectories 
in the commutative case. The most appropriate seems to be the so-called 
Segal convergence as defined in 141. 

We say that x,,+ x in Segal's sense if, for each E > 0, there is a 
projection p in .d with T (pL) < E, such that (x,-x) p~ .d and /((xn- x) pll+ 0. 

This mode of convergence is stronger than other types of convergence: 
almost uniform, nearly everywhere or metrically nearly everywhere, all of 
them being equivalent when .d is finite and coincide with almost everywhere 
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convergence in the classical case, i.e. for d = Lm(Q, F ,  P) and r ( x )  = S xdP 
(see 111 and [B]) .  

Let us now introduce the announced notion of continuity. We say that 
X is uniformly contimtous in Segal's sense if, for each E > 0, there are a 
projection p in d with .r(pA-) < E and same 6 > 0, such that 

for 1s - t [  < 6. 
In a similar way we say that X satisfies the Hlflder condition in SegaPs 

sense with expoplent y > 0 and constant C > 0 if, for each E > 0, there are a 
projection p in d with z ( p L )  < E and some 6 > 0, such that 

for Is- E( < 6. 
An important rule in our consideration, as well as in the construction of 

the algebra d, is played by the notion of the nwasure topology, i.e. the 
topology given by the fundamental system of neighburhoods of 0 of the 
form 

N (E, S )  = {X E J: there exists p  E Proj d such that x p ~  d, 

((xpll < E and r ( p L )  < 6 ) .  

Accordingly, xn + x in measure if, for each E > 0, there is a sequence [p,) 
of projections in a2 such that 

Let us note that 2 endowed with the measure topology is a topological 
*-algebra (see [ S ] ,  Th. 1). 

THEOREM. Let d be a semifinite von Neumann algebra with a normal 
faithful semifinite trace z and let X be a mapping of an interval [a, b] into the 
algebra ,J. ilssume that there exist strictIy positive constants M ,  a, such that 

Then, for each y < alp, X satisfies the H3ider condition with exponent y. 
Proof. Obviously, we can take [a, b] = 10, I]. Fix an arbitrary y, 0 < y 

< c c / f i  Let q be such that O < q < 1  and (1-ty)(or+l-/3~j> 1+q. Put 

where 

eijk = el~U.2-k,-~(i,~-krl ( [Q ,  ( ( j  - il2 -kP])m 
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BY (*), 

r(e$ 6 (( j - i j  2 - k ) - B Y t ( 1 X ( j 2 - k ) - ~ ( i 2 - k ) l )  < M ( ( j - i ) 2 - k ) 1 + K - b y .  

Setting p = ( I - q ) ( ~ + l - P y ) - ( l + q )  > 0, we get 

< M ~ ~ + P - " P  
l /(2"-l)+O as n +  co. 

Thus, for k 3 n 2 ?-I, j-i < 2kq and O 6 i < j < 2k, we have 

Let D denote the set of the dyadic numbers from [0, I[. For n > q - I ,  
put 6, = 2"("-". We assert that if s, tell, s  < t and t - s  < 6,; then 

J ( ( X ( S ) - X ( I ) ) ~ ~ I J < C ] S - ~ ~ ~  for some c = c ( ~ ) .  

To this end, take k 2 n satisfying 

and represent the numbers s  and t in the form 
h s = i - 2 - ' - 2 -  '- ... -2 -hu,  k < h, (: ... i h,, 

t = j .2 -k-2- '1+  ... +2-", k < 1 1  < ... < 1,. 

By (l), for w = 2 ,..., u, 

( / ( ~ ( i . 2 - ~ - 2 - ~ ~ -  = - .  - 2 - b - 1 ) - ~ ( i - 2 - k - 2 - h 1 -  ... -2-h7)pnll  < 2 - y h ~ .  

Therefore ( X ( i  - 2 -k )  - ~ ( s ) )  p , ~  d and 

where C 1  = (2'- 1)- Siwlarly, 

( J ( X ( ~ ) - X ( ~ . ~ - ~ ) ) P , ( I  6 C, 2-yk 

Taking into account the last two inequalities and (11, we obtain 

1 1 ( x i s ) - ~ ( t ) ) ~ " l l  < 1s-tlY+2C1 2-yk < CIS-f jY  

with C = 2C1 + I  (observe that 2 - k  < 2(k+1NS-1)  s Is-tl for k q - l ) .  
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That proves our assertion and, together with T ( ~ A +  0, gives the 
following condition: 

(2) for each E > 0, there are some p ~ P r o j  .d with . t (pL) < E and 6 > 0, 
such that . 

( ( (xIs ) -x{ t ) )~( (  d cb-tl '  

for s, LED, )s-tj < 6. 

Let now D = it,). For E > 0 we choose a projection p, with z(p,l) < &/2 
so that (2) holds. For every n we take q , ~ P r o j  *.d satisfying X ( t , ) q , ~ d  and 
t (4:) -=z &/2"' (see [ 5 ] ,  Th. 2 (ii)). Put 

Then X(t , )  p~ ,d, T r(') < E and 

Therefore we may and shall require that: X(s)p ,  X ( t ) p ~ d  in condi- 
tion (2). 

Fix now an arbitrary t. > 0 and take p and 6 as in (2). Let s, t tz LO, 1 J, s 
< r, r - s < 8. Choose sequences s,  1 s, t ,  7 t, s,, t, E D. By (2), the sequences 
[ X  js,) p )  and (X(t,) p )  are Cauchy in norm, hence X(s,) p -+ a, X(t,)  p -+ b in 
norm for some a, 6~ d. Observe that condition (*) implies X(s,) + X (s), 
X(tJ -+ X ( t )  in measure. Using the continuity of algebraic operations in 
measure topology, we get 

so that 

XIS,) p - X (s) p, X (t,) p -+ X ( t )  p in norm. 

Finally, 

and, passing to the limit, we obtain 

which concludes our proof. 

Let X be such as in the theorem. We list a number of consequences of 
our result. 

COROLLARY 1. X is unformly continuous in Segars sense. 
COROLLARY 2. If .d is a ,finite direct sum of type I factors, rhen d = .a? 
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and X satisfies the Halder condition in norm; consequently, X is uni$ormly 
continuous in norm topology. 

Proof,  For the equality d = d, see C23. To obtain the second part of 
the assertion, in the Holder condition just proved let us take E > 0 suffciently 
small to get the implication: 

if z(pL) < E ,  then p = 1; 

this is always possible since T (Proj d) is a discrete set of positive numbers. 
COROLLARY 3. Suppose that X takes its values in d, is bounded in norm 

on [a, b) and satisfies condition (*) with GI > 8. Then X is gbbrally H8lder in 
norm for each 1 ,< y < a/B, i.e. there is some C > 0 such that 

In particular, X is uniformly continuous in norm. 
Proof.  Choose a sequence (E,) of strictly positive numbers satisfying 

I E, < m and corresponding sequences (p , )  and (6,) as in the Holder 
m 

I condition. Put r,, = /2 pk,  Then r , t  1 and 
i k =  n 

i I ~ ( X ( S ) - ~ ( t j ) r , l ]  a CIS-tiY for IS-tl < 6,. 

I It is easily seen that this inequality is valid for arbitrary s ,  t E [a,  bJ. 

j Indeed, it suffices to take a partition s = so < s, < . .. <a, = t of diameter 
less than 6, and observe that 

[O 

Now, for 5~ U r , H  (where H is a representation space of .4, 1 1 < 1 1  < 1,  
n =  1 

we have 

m 

Since U r ,H is a dense subspace of H and X is uniformly bounded, the 
n= 1 

result follows. 
CQROLLARY 4. Suppose that X takes its values in ,d and it is bounded in 

mrnz on [a, b]. Then X is uniforrnIy continuous in *-ultrastrong topology. 
Proof .  Taking r,, S, as in the course of the proof of the preceding 

corollary, we obtain the inequality / I ( x  ( s )  - X(t)) < C I S  - tlY for t E r,  H,  
11511 < 1 and Js-tl < 6,. That gives the uniform ultrastrong continuity of X 

m 

on u r , H .  Taking into account the uniform boundedness of X, we get the 
n= 1 
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uniform ultrastrong continuity of X on H. The *-case is treated similarly 
Remark. In the commutative case our theorem reduces to the classical 

Rolmogoroff theorem on the continuity of trajectories of a stochastic 
process. The method for such a reduction is standard (cf. [6j, Ex. 1,l). 

REFERENCES 

[I] C.  I. K. 3a'tty, The stray law of Iorge rlumbers for states and traces of a W*-algebra, 
Z. Wahrsch. verw. Gebiete 48 (1979). p. 177-191. 

[2] S. K. B erberia n, Von Neuman#z ulgehras qdmitting no unbounded measurable operutor, 
Math. Japon. 25 (1980), p. 61-64. 

131 R. Jajte, On curves in w n  Neumonn rrfgebrus, Bull. Acad. Polon. Sci, Ser. Sci. Math. 30 
(19&2), p. 251-254. 

[4] E. C. Lance, Murtingale convergence in voe Neumann crlyebras, Math. Proc. Cambridge 
Philos. Soc. 84 (19783, p. 47-56. 

[5] E. Nelson,  Notes on mn-conutartative integration, J .  .Funct. Anal. 15 (19741, p. 103-116. 
[6] I. E. Segal, A mn-commutative extension of ds&uct integration, Ann. Math. 57 (19531, p. 

401 -457. 

Institute of Mathematics 
university of Udi 
ul. Banacha 22 
90-238 4hdi, Poland 

Received on 15. 11 .  1982 


