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SKOkOKHOD PROBLEM - ELEMENTARY PROOF
OF THE AZEMA-YOR FORMULA

BY

PIOTR ZAREMBA (Warszawa)

Abstract. Let u be a centered probability measure with the
finite ' second moment. Let the stopping time T for the Brownian
motion W be defined as '

T=inf{t>0; P(W) < Sup AN
<ast

where ¥ is a barycenter function of measure yu. Azema and Yor [1]
have shown that W has then the distribution u and ET = jx* ud (x).
- This paper contains an elementary proof of this result.

In¢roduction. Skorokhod [8] has shown that for the centered probability
measure ¢ with a continuous distribution function there exists the Brownian
motion W and the stopping time T so that the distribution of Wy is pu.
Moreover, if 4 has the finite second moment, then

+ @
ET= [ x?p(dx).
—a .

That construction was improved by Monroe [5]. However, the stopping
time 7, given by the Skorokhod’s construction is regarded with respect to the.
filtration essentially bigger that the natural filtration of Brownian motion.
Dubins [4], Rost [7], Chacon—-Walsh [3] and Azema-Yor [1] gave new
constructions of stopping times with the desired property but which are
stopping times with respect to the natural filtration of Brownian motion. -

-Construction given by Azema—Yor is the best one in some respects. It is an

explicit formula and not a result of a limit. proépdure. Pierre [6] gave a new

~ proof of the Azema-Yor formula but with assumptions of regularity of a -
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measure u. The proof of this formula given in our paper is based on the
following
PropertTy. Let W be the Brownian motion. If W =0, a <0 <b,

7, =inf{t > 0: W, =x}, xeR,

then

b
P(T‘, <T.'b) =B—:d

Definition 1. If x4 is a probability distribution such that

§ Ix p(dx) < oo,

- oo
then the barycenter function ¥ of the measure p is defined as

1

o ST I xu(dx) if u(la, ©)> 0,
o Jutia,

[a, ) )
a . otherwise.
Notation. We write
S, = sup W..
. 0<s<y
THEOREM. If T =inf{t > 0; ¥(W) < S,}, then Wr has a distribution p.
Moreover, if ‘

+ o '
x2 p(dx) < oo, .

- a0
then

+ a0 ’

ET= | x*u(dx).

‘Remark 1. T is a stopping time with respect to the natural filtration of
Brownian motion. ' '

Remark 2. To show that W; has a distribution y it is enough to prove
the following implication: o '

#l(a, 0)) > 0= p({a, ) = P({Wy > a}).

Indeed, if #((a, ) = 0 and a, / Ia (n=1,2, ), then either there exists
an N such -that p{[a,, 00)) =0 for n > N and then, for b= 0, ¥(ay+b) =



Skorokhod problem 13

ay+b so that Wy <ay and P({W;, >'a}) =0 or, for every n=1, 2,...,
¢((a,, 00)) > 0 and then

p(la, o)) = lim p([a,, ©)) = lim P{W; > a,}) = P((W; > a}).
Notation. We write

P,=P({W>a), ¢@=if {¥®-x}, o()=inf{y: ¥(y)>xl,

x<a

Kj=i2"¥(@ 0<i<2), K=K;

2

@ =v(K) (0<i<2), ay=a; ——=

‘ Remark 3. Since the set where function ¥ is not continuous is at least
B denumerable, we can make an assumption that a is such that ¥(af) = K} for
j ogig2n :
Remark 4. If ¥(a) > a, then ¢(a) > 0. , _
Proof. Suppose that ¢@(a)=0. Since ¢(a)=inf!¥(x)—x; ¢(a)
—a < x < af, there exists an (x,);%o€[@(a)—a, a] such that '
@(a) = lim ( 'I"-‘(x,,)—x,,) and x,— X,.

If we can find a subsequencé X, /' Xo, then — by the left dontinuity of

the function ¢ — we have ¥(xo) = x,. Also, if there exist subsequences
x,,k N X, then . )

Xo < ¥ (%) < lim ¥ (x,) = Xo.

k—aw

Since x, < a, we obtain a contradiction: ¥ (a) < a.
" Remark 5. Let

I'=1) yx[P(y), lim ¥(z)]

yeR zZNYy .

- and let Z, = (W, S,) be the process with values in R2. Then, by the definition
‘ - of the stopping time T, we infer that T is a first entrance time of process Z to
the closed set I

LeMMA 1. If v(x) < y < x, then

y=o(x)
x—v(x)

. y—v(y)

ZPSr=2x|Sr=y) =
x—v(y)

A\
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Proof. We have
P(Sy = x|Sr 2 y)
= P({after exit from(y, y) Z achleves (x, x) before it enters ry),
y=v(y)

x=v(y) .
= P({after exit from (y, y) Z achieves (x, x) before it enters {v(y) xR} D
—v(x)
x—v(x)
= P({after exit from (y, y) Z achieves (x, x) before it enters {v(x) x R}}).
LemMma 2. If !I’(a) > a, then
' K:' 1 a4 f 1 —af

lim n =P, > lim n

- .
n-wi=1 Ki—daj-y nowiz1 Ki—aj

Proof. Let n be so large that 27" ¥(a) < ¢(a). From the definition,
{Wr = a} = {S1 = ¥(a)}, whence
an
P({W; > a}) = P({S; > ¥(@}) = [] P(Sr > KISy > KIy).
. i=1
Since
Ki—-a!>¥(@)-a > @>2"¥Y@@=K-K_, ((0<i<2),

we have af < K!_; <K} and from Lemma 1 it follows that

ﬁ i-1— a1 SP > lz—'i -1
i=1 Ki—ai-; g a/i=1 Ki—al
LemMMa 3. We have
lim ﬁ —:'3—'1 lim ﬁ i
nowi=1 Ki— a; —n—voo, 1 Kn_a

Proof. We can write

1> ﬁ i1 ﬁ a7t
“\ioi K- J\ixy Ki-adl-,
2t (KY_y —af) (KTy s —af) K}o_, —al, K=t

=11 2n—1

o K—apy? Ky, —di, Ki—db

l:[ (K"—a 27" P (@) (Kr—af+2" T(a))
i (Kn n)2
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¥ (a)— (¥ (@)— 27" ¥(a) 27" ¥ (a)—(0)

¥ (a)—-v(¥(a) —v(0)
_Z'ﬁl 1v—( Yia) \2|P(@)—o(P(@)—2""¥(a) 27" ¥ (a)—0(0)
=i 2"(K!—af) ¥ (a)— v (¥ (a)) —1(0)

> '1_(&)2 T W(@)~0(¥(a)~2" ¥ (@) 2P (@=0(0)
g 2"¢(a) ¥(a)—v(¥(a)) 0 (0)
when n — oo.

Lemma 4. If 27"¥(a) < @(a), then

1

2an n‘ n 2n n n
i-1— %1 Ki_i—a

———— 2 ul[a, o)} = —
.-1=—[1 Ki—a, = ( ) .-1=_[1 Ki—af

Proof. Since ’
2n n
.u'([ai! w))
La, o)) = || ———— -
”([ )) il;Il ‘u([ai—_la 00))
it is enough to show that

-!'—1—51?—12 u([a{', 00)) > i-1—af
Ki—al_, H([a?~1, 00)) Ki—af

for 0 <ig 2
From the definition of function ¥ and from Remark 3 we.get

[ (x—aly)pdx)

Kiy—ar, _ p(la, ) W= o _#([a}, 0))
Ki—a;_, P([a?—la 00)) y[f (x—ar_ ) u(dx) ﬂ([a?—la 00))
[ai,uu) E
and
~ (x—a7) u(dx)
Kbamd_ e o) whe' 0 o)
Ki—at  u(la}-,, o)) [ (x—a})p(dx) p#(Laf-y, )
a}, o)

Lemmas 2, 3, and 4 now easily i,mply that Wy has the distribution pu.

Remark 6. If T is a stopping time such that ET < oo, then EW; =0
and EW}? =ET. ‘

To complete the proof of the theorem it must be shown that if

+ o :
[ x*u(dx) < o,

— @
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then
+ oo
= j x? p(dx).

" From Remark 6 it follows that it is enough to show that ET < oo. Let
¥, and T, (n=1, 2,..) be defined as follows:

0 if x< —n,
_ ) ¥(x) if —n<x<n,
)= wim it n<x< )
X if ¥(n <x;

From the definifion, T,—~ T and ET, < 0 (ET, < means exit time of
Brownian motion from [—n, ¥(x)]). So ET, = EW7.
To obtain from Fatou Lemma that ET < oo it is enough to show that

T, =inf{t >0; ¥,(W)< S

limsup EW? < 0.,

Let A = {Wre[n, ¥(n)}. Then
EW?, =E, W +E, Wi <E, Wi+E, W}
=EWF +E, (Wi, —W7) < EWF +2¥ (W E,,(Wr — Wry)

=EWF+2¥(m) | (P (m)—x)u(dx)
[, Fin) .

=EWZ+29%(n) | (x—¥(n)udx)

[¥(n), )

SEWA+2 [ x*u(dx) <EWF+e  for n>n,
(¥, 0) _

which completes the proof.
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