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Abstrcr. The aim of this note is to investigate the limiting 
hehaviour of the random function YNn conditioned on IT > NJ,  
where {N,, n 3 0) is a sequence of positive integer-valued random 
variabb. The results obtained are extensions of results [7] under the 
additional assuinption that ~ 1 ~ ~ 1 ~  < + m ,  and XI is nan-lattice or 
integer-valued with span 1. 

1. Iuntrodwtion. Let {X,, k 2 1) be a sequence of independent, identically 
distributed random variables (i. i. d. r. v.) with 

EX,  =0, EX;=a2, O < a Z < o o .  

Define the random function Y, by 

t = ,  o < t < 1 ,  

where So = 0, S, = X, + . . . + X,, n 2 1. Next, let T be the hitting time of 
the set (- a, O j  by the random walk {S,, n 2 I], 

where the infimum of the empty set is taken to be +a. 
We assume that {X,, k 2 1) are the coordinate functions defined on the 

product space (Q, d, P). Let A, stand for [T > n], D r D [0, 11 stand for 
the space of real-valued right continuous functions on [0, I] having left 
limits and 9 stand for the a-field of Borel sets generated by the open sets of 
the Skorokhod f,-topology. For g, f E D  let 

elf, 9) = SUP If (4-s(x)l and K(B, $1 = (f E D :  ~ ( 0 ,  f )  < $1, 
OCxdl 

where 8 (x) G 0 for X E  [O, 1 J and E > 0. 
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Put D ,  = (f E D: f 2 0) and 24, = D+ n 9. The measurable mapping 
Y,+ : (A,, An n d) + ID+, 9+) is defined by 

In [33 it is given a complete proof of the functional conditioned central 
limit theorem, i. e, it is shown that Y: t W+, n 4 a, if E IX,13 < m, and XI 
is nonlattice or integer-valued with span 1, where W +  is Brownian meander. 

THEOREM 1. k t  {Xk, k 2- 1 )  be a sequence of i.i.d.r.v. with E X ,  = 0, 
E X: = G2 < +a, E I x , I '  < + my XI being mnlattiee or integer-valued with 
span 1. 

Bf (N , ,  st 3 O), No = 0 a.s, is a sequence of positive integer-uaIrred random 
variables independent of {Xk, k 3 1) and {a,, n 2 1 )  is 4 sequence of positive 
real numbers such that, for any given e > 0, 

(1) p CINJ.. - I S  61 = 0 ( ~ ( l / f l ) )  

with or, + oo as n + a, and 1 b a random variable such that 

(2) B [;la a] = 1. for a constant a > 0, 

then 
(3) 

Remark. Note that if 1 is a degenerate random variable at a, then (2) is 
satisfied. In this case we can use instead of (1) the condition 

(13 P[IN,Ja,-a1 2 E ]  = o(l/&). 

In general (1') cannot be replaced by the weaker condition 
P 

N,Ja,+a, n + a ,  

(P - in probability), which is shown by the following example. 
Let P [ N , , = I ] = l / J q  P [ N . = [ a n ] ] = l - I / &  ( n = l ,  2 ,... ), a z O ,  

where [ x ]  denotes the integral part of x. Then, for any given E > 0, 

Let {X,, k 2 1 )  ,be a sequence of i.i.d.r.v. of Theorem 1, independent of 
N,, n 2- I. In this case we have 

E Nn = I/& + [an] ( I  - I/&), 

and, for sufficiently large n, 

PLS, > 0, ..., S,, > 01 - P[S, > O ] / J ; ; + C ( I - I / J ; ~ / J Z ~  
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Therefore, taking into account that in this case (3) reduces to 

we have 

A - PCS, 4 ox, S1 > 0 y J i  + 
PCS, >OJ/J;;+PIS, > o ,  ..., SIa", >O]Z 

where T. = I - I/J&. Obviously, in this case (2) is trivially satisfied. 
We now show that, in general, assumption (2) cannot be omitted in 

proving (3) when A is a nondegenerate random variable. Assume that 
((0, I), B((0, I)), P) is a probability space, where P is the Lebesgue 
measure and 3 ((0, 1)) is the u-field of Bore1 subsets of {O, 1 ) .  Assume that 
{X,, k 2 1) is a sequence of random variables satisfying the assumptions of 
Theorem 1, independent of {N,, n 2 l), where {N,, n 3 1) is defined by 

if W E  (0, I/&), 
l if w E (I/&, l /n  -(I/& -- [$]/n)) .  

if o E ((k - l)/n, k/n}, k = [An) + 2, . . . , n . 
It is not difficult to see that for any E > O there exists an no ,such that 

PCJNJn-AJ 2.~1 = O  ' for n2 no >[1/&]+1, 

where l, is uniformly distributed on (0, 1). Thus (1) is satisfied but (2) does 
not hold. 
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Next we have 

Hence, using (33, we get 

xPIS1 > 0 ,..., S[,,;;]+, > 01- -- 
, K i n  i& ril)) n 

We have seen that, in general, (2) cannot be omitted in proving (3). 
However, we are able to give more general conditions than (1) and (2), under 
which (3) holds. 

THEOREM 2. Let (X,, n 2 1) be a sequence of i.id.r.v. of Theorem 1. 
Suppose that {N, ,  n 2 1) is a sequence of positive integer-uaiued random 
variables independent of {X,, k 2 1) and {a,, n 2 1 )  is a sequence of positive 
real numbers suck that lim an = oo. 

n+m 
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If A is u positive ranbm variable such that 

I where { E , ,  n 3 1) is a sequence of positive real numbers such that 0 < E, -+ 4 
a, en+ m QS n 4 a, then (3) holds. 

Note that assumptions similar to (5) and (6) were used in [4] to give the 
! 
i rate of convergence in the functional central limit theorem. 

. \ A functional random central limit theorem for random waks condi-.. 
tioned to stay positive without the assumption of independence [Xk, k 2 1)  

I and n 3 1 j is given in the following 
THEOREM 3. Let (Xk, k 3 I] be a seqwnce of i.i.d.r.u. of Theorem I. 

I .  If (M,, n 2 1)  is a sequence of positive integer-valued random variables 

I and {a,, n 3 1) is a seqtiewe of positive real numbers such that, for any given 
1 . a > @  

I 

t with a, + m as n 4 m, where a is a positive constant, then (3) holds. 

3. of the ramlts. > 

1 f roof of Theorem 1. Let E, 0 < E  < 1, be fixed, aid a,, = [(a-&)ad. 
I By (I), (2) and the assumption or, + oo we can choose an n such that 

I and, at the same time, by (4), 
1 .  

But t 

1 3 - Rob. Math. Statis. 61 
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I Hence 
I 
I 
I la) PISl zO ,..., S, > 01 a c ~ ( l / & )  
i 
i Rlt now 

m 

i We see that C,& = 1 an4 for fixed k, by (I) and (8). 
k=  1 

! which proves that LC,] is a Tosplitz matrix. Therefore, by [5], p. 472, and 

I ! (39, we have 

\ 

Now we need the notations 

where 

and 

It is known [3] that for x 2 0 

X 



whence 

112) P[YNH(r)  c XIS, > o,...,s~~ > 01 

n+ m as (11) holds and [Cn,,] is a ToepliD matrix. Moreover, since 

(13) lim PIY.(tl) < x,, x(t,) i x ,,..., %(tJ < xk( T > n] 
n-m 

= Xk 

= J j ~ ( 0 ,  0, t i ,  Y , ) P ( ~ ,  Y l ,  f,, ~,).-.p(tk-l> Yk-1, tk, ~ k ) d ~ l  . . . d ~  k 
0 0 

for all k d 1, x I , . . . ,  x, > 0 and 0 < r, < t ,  < ... i t , * <  1, we have 

(141 PL-YN~(~ , )<~ ,? . . . ,  YN,,(~J<*,JS, >O,...,SNn >01 
4 

m 
I 

= C & j P [ l ; ( t l )  e x  ,,..., l;(t& <xklS, > O  ,..., S, > O] 
j= 1 

for all kal, x1 ,..., x,rO and O < t , < t 2 < . . . < t k < l .  
We now prove that {Y;) is tight. 
Taking into account that for .E > 0 

(15) lim limsup PCw,(S,O, 1)3slS,  >O ,..., S,, >O]=O, 
810 n-m 

where 

a x ( &  a? b) 

=su~( lx(~)-x( tJ :  0 4 o < b d 1 , 0 < 6 < 1 , a g s ~ t g b , ~ t - s (  <6), 
SPt 

we obtain, by the above arguments, I 

which, by theorems 15.1 and 15.5 of [I], proves that {YG)  is tight. Therefore, 
by (14) and (15), we have proved (3). 

Proof of Theorem 2. By (4) and (5) we have, for sufficiently l i g e  n, 
["&3 

(16) PISl > O ,  ..., S N n > O ] =  2 P[S, > O y . . . , S ~ > O I P C N ~ = k J +  
k= 1 
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Now we note that, for n 3 ' 1  and j 2 1, 

I 
I 
I is a Toeplitz matrix. Indeed, we have 

o? 

C,, 2 0, 
j=  1 

n -, so, by (51, (6) and (161, since j < crn.cn for sdicieutly large n. 
Following the considerations of the proof of Theorem 1 we get (3). 

I Proof of Theorem 3. Let E, O < E < U ,  be fixed and gut a,= 
Ha -&A, b, = [(a +e)aJ,  c. = bn- am, un = (aJb,,)'", A. = (k: an 6 k 4 bnJ 

1 and A', is the complement of A,. 
I Set 

r,=P[S,>O ,..., S k > 0 ] ,  i . = P [ S , > O  ,..., S N n > O ] .  I 

From (4) and (7) we get 

We see that 

(18) PIYNn(l) < x 1 Sl > 0, -. - 9  SnR > QI 
= P [YNn(l) c X, S1 > 0,. . Snv > Q]/ fn  

But, by (7) and (17) we have 

PIYNfl(l) i x, S, z 0 ,..., SNB > 0, Nm~ACJFA-+O, n-+ a. 

I Therefore, to prove that for x 2 0 

/ it is enough to consider 
t 

PIYNn(l) < x, S, > 0 ,..., SNn > 0, N.EAJ/?~ .  
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Put now, for 0 < t < 1, 
I 

I zn(t) = max S~~~ -'[(d+~dl, Z: = srkt~ - st(u- a 

I 
i I d .  0~ r Q, 

i 
i Then we have 
I 

(20) p[Y~-(l) ~ x ,  S, > O  ,..., SNH >O, N,EA,] 
2B[YNn(l)<x,Sl > O  ,..., S b n > O , N , ~ A , ]  

B P[&A(l)+Zn(l) < xun, Sl > O,. . - ,SB,  > 0, N,€An] 
I 
1 PC&~(I)+Z.(I) ~ x H , , ,  S, z 0, ...,sbn z 0, z.(1) < $]-P[N.E.$,~ 

L P[k(1)  < x u n - < h ~ s l  > 0, ..., Shn > O]a-PIZn(l) 2 $]r,+-- 

- P [ N , E A ~ ,  - 

as Zn(l) does not depend on S,, S,, .. .,Sun. 
The similar evaluations Iead US to 

i 
(21) P~YN, , (~)  <x, SI > Q ,..., S N ~  > 0, Nn~,An] 

I 

I PCY,(l) <x/u.-$lsl > 0 ,..., s,,~ > o]~,+P[z,,(I) p $]ran. 
I 

I Note now that, by ~ o l m o ~ o r o v ~  inequality, 

and 
I I 
i [(a+s)amt]-[(a-&)ant] 2t& 
i (23) P [z: (t) 2 $1 r - +- as n - + c c .  

a 6% a-E 

Therefore, by (1 8), (20) -(23), we obtain 
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I 

I But by (3') we have 

(25) P[$(l) <xu.-$Is, > O  ,..., Sbn >O] 

and 

Moreover, by (4) and (17) we get 

and 

(28) 

Therefore, for any given E, 0 < E < a, by (20)-(28) we get, for x 2 0, 
\ 

- 2  p( ( (xF-sy a+s -- - -exp - 
a+& a-E d a + ~  2 

Letting now E + 0 for x 2 0, we obtain (19), 
Note that Z,(t] does not depend on S1, . . ., SI(,-,H,l. This fact and the 

same arguments as above show that, for x 2 0, 



Letting now n 4 a;, next E -+ 0 for x 2 0 and t ~ ( 0 ,  1) we obtain 
x 

(30) limPIYNa(t) < X I S ,  > 0 ,...,SET, > 01 = Jp(O,  0, t ,  y ) d y .  
n-oo 0 

In the same way for all k 3 1, .r ,,..., x, > 0 and O < t ,  < ... < tk G 1 , 
we have 

(31) P C ~ ( t l ) < * , u . - $ , . . . , Y , ~ t t k ~  1 

* / ; I S ,  zO, ..., Sbn z O](r,Ji&-PCZ.(t,) 2 321 x < X k U n - \  

x P [S, > 0 , .  . . , S[ ,-,,+ ] > O]/?"-- . . . - P [Z.(t,) > $1 x 

x P {S, > 0,. . . , S[ ,,-,,, dl > O]/& - P [N,E Ail/Fn 

< P I G , , t t l )  < X ~ y - . . >  Y ~ ~ ( t k )  <xkIS1 >O,..m,s~,,  >0] 
I 

Hence, putting n + oo and using (13), (4), (17X (22), (23), and next letting I 
I 

E + 0, we obtain i 

(32) lim P [Y,,(t,) < x1,. . . , YN,(tk) < xk IS1 > 0, . . ., SNn > 01 I 

n-'m 

=l xk 
i 
i 

= j J P(Q, 0, t,, y l ) ~ ( t r ?  Y I Y  tz ,  ~ z ) . - . ~ ( t k - ~ ,  ~ k - 1 9  tk, Y ~ ~ Y I  - * . ~ I ' L  
I 

0 0 I 
I 

for,all k>, 1, x ,,..., x,>O and O c t ,  < t 2  <... < t k  < I. 
To complete the proof of the weaker convergence of (Y;) to W +  it 

suffices (cf. Theorems 15.1 and 15.3 of [I]) to show that for every t > 0 
i 
I 

(33) lim lim sup I? [qNn (6, 0, 1) > v 1 S, > 0,. . . , S,,, > 01 = 0. 
0 n-rm 
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We can see that ~ ~ ( 6 ,  0, 1) < 2$ whenever f E K ( d ,  ~ ) . ' ~ e n c e ,  for a 
fixed a > 0 such that 2 vi v ,  we have 

Knowing that 
% 

(35) l i r n l i r n ~ u p P [ ~  ( 6 , 0 , 1 ) 2 v - 2 $ 1 ~ , > 0 ,  ..., S,>O](raJiJ=O 
a h 0  n+m an 

and 

(3 6) lim P [N,E AE,]/Fn = 0 
n+m 

and taking into account that 
- 

we conclude, by (37), (22), (35) and (361, that (33) holds. This completes the 
proof af Theorem 3. 
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