PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 6, Fasc. 1 (1985), p. 29-41

FUNCTIONAL RANDOM CENTRAL LIMIT THEOREMS
FOR RANDOM WALKS CONDITIONED TO STAY POSITIVE

BY
+ A. SZUBARGA anND D. SZYNAL (LuBLIN)

Abstract. The aim of this note is to investigate the limiting
behaviour of the random function Yy conditioned on [T > N,],

where {N,,n=0} is a sequence of positive integer-valued random
variables. The results obtained are extensions of results {7] under the
additional assumption that E|X,}? < + 00, and X, is non-lattice or
integer-valued with span 1.

1. Introduction. Let {X,, k > 1} be a sequence of independent, identically
distributed random variables (i. i. d. r. v.) with »

EX, =0, EX}=0% 0<o¢?<om.

Define the random function Y, by

Y,(0) = Spmfo /n,  0<t<],

where S5 =0, S, =X+ ... +X,, n>= 1. Next, let T be the hitting time of
the set (—oo, 0] by the random walk {S,, n>1},

T=inf{n>0:8§, <0},

where the infimum of the empty set is taken to be + oo.

We assume that {X;, k > 1} are the coordinate functions defined on the
product space (2, &7, P). Let A, stand for [T > n], D =D[0, 1] stand for
the space of real-valued right continuous functions on [0, 1] having left
limits and Z stand for the o-field of Borel sets generated by the open sets of
the Skorokhod _#,-topology. For g, feD let

o(f,g)= sup [f(x)—g(x) and K8, ¥e)={feD: o0, f) < e},

0sxx1

where 0(x) =0 for xe[0, 1] and &> 0.
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Put D, ={feD:f >0} and 2, = D, n 9. The measurable mapping
Y,t: (A, Ay )= (D, 2,) is defined by

Y, (-, @) = Sy (@)fo /0,  weA,.

In [3] it is given a complete proof of the functional conditioned central
limit theorem, i. e. it is shown that Y, < W™*, n— oo, if E|X|* < o, and X,
is nonlattice or integer-valued with span 1, where W™ is Brownian meander.

2. Results.

THEOREM 1. Let {X,, k> 1} be a sequence of iidrv. with EX, =0,
EX? =a¢% < + o0, E|X 1I® < + 00, X, being nonlattice or integer-valued with
span 1. ;

If {N,, n = 0}, Ny = 0 as,, is a sequence of positive integer-valued random
variables independent of {X,, k > 1} and {a,, n > 1} is a sequence of positive
real numbers such that, for any given & > 0,

1) P[|N,Ja,—4 = &] = o(E(1//N,))

with o, — 00 as n— 0, and A is a random variable such that

(2) P[A=d]l=1 for aconstanta >0,
then _
3 Yy, <W*, n-oo.

Remark. Note that if 4 is a degenerate random variable at g, then (2) is
satisfied. In this case we can use instead of (1) the condition

(1) - P[IN,/a,—al > ] = 0(1//a,).

In general, (1’) cannot be replaced by the weaker condition

P
Nja, 5>a, n-o

(P ~ in probability), which is shown by the following example. . .
Let P[N,=1]1=1//n, P[N,=[an]] =1-1/\/n (n=1,2,..), a>0,
where [x] denotes the integral part of x. Then, for any given & >0,
P{INJ/n—a| > €] =1//n—>0, n- o.

Let {X,, k > 1} be a sequence of iidr.v. of Theorem 1, independent of
N,, n> 1. In this case we have ‘

= 1//n+[anl(1-1//n),

and, for sufficiently large n,
P[S, >0,...,Sy > 0] ~ P[S; > 01/\/n+c(1—1//ny/[an]
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as (see [6])
@) P[S,>0,...,5,>0] ~¢/\/n, n—- .

Therefore, taking into account that in this case (3) reduces to

n—an

2
3" limP[S,,/a\/;:<x|S1>0,...,S,,>O]=1—exp( zx), x=0,
we have

P[Sx/o /N, <x|5; >0,...,Sy, > 0]

3 P[S, <ox, S, > 0]/ /n
P[S, > 0)/\/n+P[S5; >0, ..., Sy > 01T,

PI: S[an] < x|81 > 0, ---s.S[an] > OJP[SI > 0, - S[an] > 0]7:!
o ./[an]

P[S, > 01//n+P[5; 10, ..., Sy > 017,

c —x?
P[X, <ox, X{ > 0]+——= (1—-exp( ))

\/Z 2 (—xz)
R 1— ,
P[X, > 0]+c//a #lmexp{

where T, = 1—1/\/7:. Obviously, in this case (2) is trivially satisfied.
We now show that, in general, assumption (2) cannot be omitted in
proving (3) when 4 is a nondegenerate random variable. Assume that
(€0, 1), #(<0, 1)), P) is a probability space, where P is the Lebesgue
measure and # (<0, 1)) is the o-field of Borel subsets of (0, 1>. Assume that
{X,, k> 1} is a sequence of random variables satisfying the assumptions of
Theorem 1, independent of {N,, n > 1}, where {N,, n> 1} is defined by

1 if we <0, 1/./n,
N,(w) = {n+1 if we(1//n, 1n—(1//n—[/nl/n,
k if we((k—1)/n, k/nd, k = [/n]+2,...,n.

It is not difficult to see that for any & > 0 there exists an n, such that
P[INJ/n—2=¢€]=0 for n>ny>[1//s]1+1,

where 4 is uniformly distributed on <0, 1). Thus (1) is satisfied but (2) does
not hold.
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Next we have

P[S;>0,...,8y, > 0] =P[S, >0}/\/n+ Y P[5, >0,....8>0)n+
k=[Vn]+2

1
+P[S1 > 0,...,S[‘/;]+1 > O] (%_(%_[\é;l]))

G e ()

([vnl+ 2)/n

=T,=0(//n) as n—co.
Hence, using (3"), we get

P[X, <ox, X;> O]
nT,

P[Yy (1) <x|S;>0,...,Sy, > 0] ~

PLY%(D) <x[8;>0,...,8, > 0]P[§; >0,....8 > 0] |
nT,

+

LM’

=[+/nl+1

+P[Y[ﬁ]+1(l) <?C|Sl> 0,..., S m+1 > 01 x

xP[S; >0,...,8.m+1 > 0]%(1_(i_[\£ﬁ]))

"\

)
P[X, <ox, X, >0]+(1—exp<—2x—))2c 2
- 1—exp{—2).
P[X, > 0]+2¢ 4 e"p( 7 )

We have seen that, in general, (2) cannot be omitted in proving (3).
However, we are able to give more general conditions than (1) and (2), under
which (3) holds.

Tueorem 2. Let {X,, n> 1} be a sequence of iidr.v. of Theorem 1.
Suppose that {N,,n>1} is a sequence of positive integer-valued random
variables independent of {X;, k 2 1} and {a,,n>1} is a sequence of positive
real numbers such that lim o, = co.

n—aw

-



() P[INJo,— 2 > &,] = o(E(1/</N,),
G ‘\ P[A—2a,] = o(E(1/\/N,),

rate of convergence in the functional central limit theorem.

and {N,, n>1} is given in the following

-£>0,
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If 2 is a positive random variable such that

where {g,, n > 1} is a sequence of positive real numbers such that 0 <&, - 0,
Oy — 00 as n— o, then (3) holds.

Note that assumptions similar to (5) and (6) were used in [4] to give the

A functional random central limit theorem for random walks condi-.
tioned to stay positive without the assumption of independence - Xk, k=1

Tueorem 3. Let {X,, k > 1} be a sequence of iidro. of Theorem 1.
If {Ny,n>21}is a sequence of positive integer-valued random variables
and {a,, n > 1} is a sequence of positive real numbers such that, for any given

1= 0(1//a)

with a,— 00 as n— oo, where a is a pos"itii;e constant, then (3) holds.
‘3. Proofs of the resuls.

Proof of Theorem 1. Let g 0 <& < 1, be fixed, and a, = [(a—¢),].
By (1), (2) and the assumption @, — 00 we can choose an n such that
0< Y P[s, >0,
. k=1

U] |  PONJoy-dl>

z" P[N, = k]

P[IN../a.—AI > = o(E(l/\/— )
and, at the same tlme, by ),

S,‘>0]P[N =K<

Z P[s1>o, .S, > 0]P[N, = k] Z (c/\/—)P[N —k]

k=ap+1 k=a,+

= c(Eu/\/RE))— S (c//HPIN, =K1
' k=1

But
0<c§——!——P[N =k}l < CE P[N, =k]<cPU—— A}e]
k=1 k=1 . o,
= o(E(1/,/N,))- ‘

3 — Prob. Math, Statis. 6.1
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. Hence
)  P[S; >0,...,8y, > 0]~ cE(1/\/N,)
Put now
P[S; >0,...,5 > 0]P[N, =] -
Cpy = k=1,n=1).
®). wk P[5, >0,....8y > 0] ( n>1)

. ° . _ A
We see that Y C,; =1 and, for fixed k, by (1) and (8),
. =1 :

P[N,=k]
vic. < Bl e /M)
| “E=PLS, >0,n., 8y, >0] cE(1//N,)
which proves that [C,,] is a Toeplitz matrix. Therefore, by [5), p. 472, and
(3"), we have
(10) P[YNn(1)<X|SI >09""SN,.>0]

n— oo,

@ . "
= z C: PLY, (1) < x|S; >0,...,S,‘>_O]-—->1-.—exp(—2i R
n-o, x=0.

Now we need the notations

g(t, X1, X2) = (2nt)” 1z [CXP(“(xz - X1) 2/2‘)"37‘1’( — (%, +x204(2)],
X, X, >0, 0<t<gl,

p(0,0, t, x)= =32 xexp(—x3/20 |N| (xA1 —ni2),

“where

- INJ(x) = (2/75)1’2 ] CXP( z)du,
and _
p(ts, 15 t2, X3) = g(tz“in xy, %2) INT(xA1 "'tz)uz)lNI (3'51/(1""1)”2)

xl,x-v>0 0<t1<t2 1.

It is known [3] that for x>0

1) im P[Y, () < x| T > ;1] = [ p(0, 0,1, y)dy,
B Sad- ] _ 0
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whence

(12) - P[Y () <x|8; >0,...,Sy >0]
=Y CuP[L(®)<x]S >0,...,5>0]- [ p(0,0, t, yydy,
- k=1 : 0 -

n— oo as (11) holds and [C,,] is a Toeplitz matrix. Moreover, since

(13) lim PY,(4;) < X;, Y,(t2) < Xz,-.., % (t) <% | T > n]
A ' : .
xy X '
= {.. j' p(0, 0, ty, y1) (s, ¥1, L2, Y2) - P(t—15 Yk~15 tx> Y)Yy -.. AV
0 . .

for all k=1, x4,.. x,>0and0<t1<t2< <t,;\1,weha_\'e

(14) P¥y (t) < Xp».. s Yo () < %181 >0,..., 8y > 0]

= Z c,,,,.P[};'(z:,)<:.:1_,,.,,’1g(t,‘)<x,‘|s1 >0,...,8; > 0]
j=1 - :

xq X

- f..f P, 0, t1, y)P(ts, ¥1» L2, ¥2) oo Plti1> Yim15 b YY1 ... dYy
o 0 .

for all k=1, x;,...,x,>0and 0 <t, <t <...<tf, < 1.
We now prove that {Yy'} is tight.
Taking into account that for ¢ >0

(15) lim limsup P[w 4,0,1)>¢|S, >0,...,5,>0] =0,
%0 n-oo
where
w, (5, a, b)

—sup{]x(s) —x(0): 0<a<b< 10<5<1 as<s<t<b,|t—s <9},

we obtain, by the above arguments,

hmhmsupP[myN (6,0, 1)>s|S1 >0,. SN,,>0] =0,

650 n—-ow .
which, by theorems 15.1 and 15.5 of [1], proves that {YN’;} is tight. Therefore,
by (14) and (15), we have proved (3). : ’ N
Proof of Theorem 2. By (4) and (5) we have, for sufficiently large n,

LA
(16) P[S;>0,...,8y >0]= Z P[S, >0,...,5, > 0]P[N, = k]+

+ Z P[81>O,...,S,,>0]P[Nn%k]§cE(l/JN:).'

k=[a,2,]+ 1
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Now we note that, for n>'1 and j > 1,
P[$; >0,....8;>0]P[N,=j] .
P{8;>0,...,5y, > 0]

is a Toeplitz matrix. Indeed, we have

C,; =0, ZC,,,—I

[ty a"}

Z P[N, = k] “— J+P[A<28,.]
EW N cE(1/\/N,)

n— o, by (5), (6) and (16), since j < a,s, for sufficiently large n.
Following the considerations of the proof of Theorem 1 we get (3).
Proof of Theorem 3. Let & 0<e<a, be fixed and put q,=

[a—2)w], b, = [a+8)a,), ¢, =b,—~a,, u, = (a/b)"? A, =1{k: a, <k <b,}

and A4; is the complement of 4,.

Set

Coy=

-0,

n.j

=P[Ss; > 0,....,8,, >0}, #A=P[5>0,... 8> 0].
From (4) and (7) we get

(17 ' '
Vb J_
We see that
(18) P[Yy (1) <x|S,>0,...,8y, > 0]
= P[Yy, (1) <x, 5; >0,..., 8y, > 0/,

~ Y PY.()<x,8,>0,...,5 >0, N, = k}ff,,+

ked,
+ P[YN () <x, 8, 50,...,5,, > 0, N,e A1ff,.
But, by (7) and (17) we have T
P[Yy (1) <x, 5, >0,...,5y, >0, NeA,,]/r -0, n-wo.
Therefore, to prove that for x >0 ' ‘

_ ST
(19 Pl () <x|S, >0,...,S,,n>0]—»=1-exp( > ), n— o,

it is enough to consider
CP[Yy (1) <x, 8, > 0,. ..s 8y, > 0, N, AfF,.



(22) P[Z,() > ¢/e] < P[ max PA
| ‘ 1 SkSHla+ohay] - o= ey a\/b
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Put now, for 0 <1 <1,

Z,.(t)—rzlﬁf————"’—s a\;'ﬁ“’“ , Z.’!‘(t)=r:;n Srkrlait% ]
Then we have ' | _ |
(20) . P[Yy () <x, S, > 0,...,an >0, N,e4,]
>P[Yy, (1) <x, 8, >0,...,5, >0, N,ed,]
> PLY, (D)+Z,(1) < xu, s1 >0,...,8, >0, Naed,]
>P[Y, (D+Z,(1) <xu, S; >0,...,5, >0, Z,(1) < t/e]-P[N,e 43
> P[Y,, (1) < xu,—¥/z18, >0,...,8, > 01r, —P[Z,(1) > ¥elr, -
—P[N,e 4],
as Z,(1) does not depend on §;, S;,..., 5, .
The similar evaluations lead us to

Q1 P[Yy,(1) <X, 8, >0,...,Sy >0, Ne4,]
< PLY, (1) <xfu,—$/e|8;>0,...,S, >0]r, +P[Z,(1) > elr

Note now that, by Kolmogorov:s inequality,
y

>4e

[e+dzd-[a—ge] 2 Je
\/_b ate as n— w

and V

(23) P[z:<r)>;*/51s[‘“‘“a’f""‘]\/aig“"s’“"ﬂféf as 1 co.

Therefore, by (18), (20)-(23), we obtain
@4 P[y (1)< xu,— /2| S, > 0,..., 8, > 01(r, JF\) —

Cp -~ ~ X . ’
_\/—b (ra, /) —P[N,e AL)fF, < P[Yy, (1) <x|8; > 0,...,85,>0]
eb, " . -

<PLL (D) <xfu+ Y215, >0,....5, > 010 ”/,.,)J,\[ o

+P[N,e AfF,.




38 ' A. Szubarga and D. Szynal

“But by (3) we have
25) P[% (1) <xu,—¥/&|S; >0,...,5, >0]

—>1——exp(- X

“and

(26) PLY, (1) <x/u,—¥/2|S; >0,...,8,, >0]

- 1_exp(_(x"\/i—"_7§+%)z) |

as n— o0.

Moreover, by (4) and (17) we get -

‘ o " a—e
@ | hﬂfﬂr”"ﬁ"} T Vate
and

- R a+e-
(28) hrqugp Caffd = [ 7

Therefore, for any given 8, 0 <e<a, by (20)-(28) we get, for x>0,

a—a_t/g_' :
——2\/_ a+¢ a— s a+te )) ,
/ / exp
ate a— s ate 2
< liminf P[ Yy, (1),<xlS1>0,...,SN">()] - :

n—ao

< limsupP[Yy, (1) <x|8; >0,. SN,', > 0]

2, e C*”»

Lettmg now ¢— 0 for x > 0, we obtain (19).
Note that Z,(r) does. not depend on S, ..., Sia-ep,- ThlS fact and the

same arguments as above show that, for x> 0
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(29)  PY, () <xu,—YzlS; >0, ..., 8, >01r, Jfr—

_[a+e)a, t]\/sjgla —g)a,t] (ta=epaytfFd P N ,,IE A)fF,

‘< P[Yy () <xIS; >0, ..., Sy, >0]
< PLY, () < Xfup+3/e]8; > 0,..., 5, > 01( fF)+

[(a+e)a,t]-[(a—e)a,t]
an \/Eb"

Letting now n— oo, next ¢ -0 for x > 0 and te(0, 1) we obtain

(r[(a - e)a,,t]/fn) +P [Nn € A‘):I]/i:ll .

(30)  LmP[¥y (1) <x|S; >0,...,Sy, > 0] = [ p(0, 0,2, y)dy.
. 0 .

n—+a
In the same way for all k> 1, x,,..., x5, >0and 0<¢; <...<f <1
~we have :

B1)  PL%, () <xith—Yz,..., Y, (&)
< xgthy— 46181 > 0,.., 8y, > 01, )~ PLZy(t2) > Y]
x P[S; > 0,..., Sqa-epays > OYfa— ... —P[Z,(t) > ¥/e] x
X P[Sy > 0,..., Sia- ey > OV/Fu— P[No A7,
< P[Yy,(t1) <Xg,e.o, Y, (8) <] Sy >0, Sy, > 0]
< PLY, (1) < Xyfuy+¥/e,.., Y (8) < Xftg+ /618y > 0,...,8,, > 0]
X (FafF)+PLZE(t1) 2 /6101 - opgagd ¥ -+ +
+P[Z (1) = /21 01a- agal) + PINue A

Hence, putting n — co and uSing (13), (4), (17), (22), (23), and next letting
e—0, we obtain = -
32 lim P[Yy (8) <Xy,..., YN“(t,‘) <%|8; >0,...,5y, > 0]
n—a .
Xt Xk .

= [ ... [ p@©,0,t;, y)P(ts; ¥15 t2, ¥2)--- Ptk 15 Ya=1 tas Vi) dYs oAy
o o .

Cfor,all k=1, X4,...,x%,>0and 0<t; <t <...<f <Ll '
To complete the proof of the weaker convergence of {¥y } to W™ it
suffices (cf. Theorems 15.1 and 15.3 of [1]) to show that for every v >0

(33) fim limsupP[wyNn(é, 0,1)>v[§; >0,...,8y >0] = 0.

N0 n— o
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‘We can see that wf(é,_ 0, 1)< 2‘\‘/};— whenever fe K (0, ‘\‘/_;).\"Hence, for a
fixed ¢ > 0 such that 2%/ <v, we have

(34) Plwy, (6,0,)2v,8, >0,...,Sy_ > 0l/f,

< Ploy, (4,0, Dt+oyy -v,,0,0,1)

2,8, >0,...,8 >0, Noe A, (Yy,— Y, )eK 0, ¢/e))/F, +
+P[(Yy, - Y, )eK (0, ¢/e), S, > 0,.. S, >0, N,e 4,)/7,+ P[N,e A7,
< Ploy, (5,0, D>v—32]8,>0,...,5, > 01, /f)+
+P[r,?:x|Yk—Y,,l¢K(6, $/e), 8, >0,...,5, > 01/F,+P[N,c AfF,

< Play, (6,0,1) > v—2%/e|8; >0,...,8,, > 0](r, /f)+
S[k]

a\;’a,, a /L_l

+P [max

kedy,

¢K(9, ), 8, >0,...,8, >-0]/r +P[N € A ]/r .

Knowing _that

(35) limlimsup Pwy, (6,0, 1)>v=2%/215, >0,..., 5, > 0](r, /7 = 0

6n0 n-ow

and .
36 lim P[N,e AS]ff, = 0
and taking into account that - , . J
" S S =
37) P[maxl—"‘L Land s >0,...,5, >0J 7,
( 0 Lkea, 0'\/a—,, a\/_ ' " /
sp[max fs1>0 ,S, >0]/
keAd g

=P[Z, (1) > Q/E 8, >0,...,8, > 0l/f,

we conclude by (37), (22), (35) and (36), that (33) holds. This completes the :
proof of Theorem 3.
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