
ON A GENERA& ZERO-SUM STOCHASTIC GAME WITH STOPPING 
STRATEGY FOR ONE B U Y E R  AND C ~ ~ W O U S  STRATEGY 

FOR TIHE OTHER 

I Abstract. In the paper a general zero-sum game with a , 

I stopping strategy for the fist player and a continuous one fur the 
second player is considered. The author proves the existence of a 
value of the game and an optimal strategy for the first player under 
fairly general assumptions. 

1. IntrodwOioo. There is a considerable number of papers dealing with 
general zero-sum stochastic games with optimal stopping [I, 2, 6, 8, 91. A 
good survey on these results is given by Zabczyk in 1101. From another 
point of view Davis-Elliott [3] have studied a zero-sum game with 
continuous strategies. In this paper we consider the so-calfed mixed zero-sum 
game, where the first (resp. the second) player chooses a stopping time S 
(resp. a continuous strategy u) and looks for maximize (resp. minimize) a 
payoff E,(C", YT). 

Section 2 gives a precise model of the game. In Section 3 we prove that 
the upper value function of the game ~ ( r )  is "aggregable" under right 
continuity assumptions on the processes, i.e. there exists a right continuous 
process w such that @(r) = WT P a.e. for every stopping time 7: 

The method is based on the results of Dellacherie-Lenglart 141. The last 
section contains essential results of this paper: the value of the game and, 
with additional assumption on the left regularity of the processes, the 
existence of an optimal strategy for the first player. 
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2 Game mode1 anad basic assumptions. 
Definition 1. We call mixed game the zer?-sum game defined by the 

data of 

where (Q, F ,  P)  is a probability space, (Ft)tao - an increasing right 
continuous family of complete sub-a-fields of F IFo = (R, a)), T - the set of 
admissible strategies for the first player - is the set &,I;; - stopping times, % 
- the set of admissible strategies for the second player - is the set of a11 Cr 
valued F,-predictable processes ( V  - compact metric space). 

Under the strategy M E  @ the probability P is defined by dPu/dP[F,  
= &, where LU is a uniformly integrable martingale strictly positive with the 
following compatibility conditions: 

If u, V E  42 nd zr, = v, for every t E [S,  TI,  S ,  T E  .F, then 

. L': Ly -- & -- 5; for every t~ B_S, TI a.e. 

Rernar k 1. Usually L" is the exponential martingale associated with a 
family of stochastic integrais. Particularly, we consider the classical situation 
of the diffusions on Rn, whed we control with the drift. 

The payoff J ( S ,  u), where (S, u) is in 9 x 4V, is Eu(C:+ Y,) (E, is the 
expectation for Pu), where Y is optional bounded, Y, = 0 and Cu is an F,- 
adaptabIe process with integrable variations satisfying the compatibility 
conditions 

(1) c:,, = cy ,, if v E Q(u, S )  

(i.e. v = u on [O, Sl), 

and an assumption on the potentials generated by Cu: 

(3) if X,.,, = E,(C;.-C;/FS), T 2 S, then XF is uniformly bounded (in S 
and u) and non-negative. 

Remark 2. Particularly, we consider the case 
t 

C; = 1 e-= c (s, us) ds, c 2 0, bounded. 
0- 

Define for any Fz-stopping time ?: u in W: 

X ( u ,  T )  = P-ess inf P-ess sup E, (Cr + Y/F,), 
w&[u,T) SdT 

x, = inf sup E, (C: + Y,), X, = sup infE, (C: + &). 
v S S v 



We show that if E: C': U E  3, are right continuous, then the mixed game 
has a value, i.e. 8, = X,. For this we need X(u ,  7-J- C; to be independent 
of u and aggregable in a right continuous process. 

3. Aggregation af the uppea value First notice that 

(u, T )  = P- ess inf P-ess sup E, (C; - C; + YJFT) + C; . 
V E ~ ( U , T )  S 2  T 

From the compatibility conditions on L%nd C" we easily deduce that 

8 (u,  T )  = P-ess inf Pess sup E, (Ci - C$ + &IF,) + C;. 
we@ S 3  T 

= @(T)+C- a.e, 

The family (w(T),  TE 9) is called ugper value of the game. 
To aggregate I@ we need the fundamental result of Dellachmie-Leng- 

hrt [4]. According to their terminology, we call F-system any family 
(X (T)  I T E  S ) of random functions such that 

(i) X ( T ) = X ( T ?  a.e. on T = T ' f o r  any jT: T', 
(ii) X (T )  is &-measurable for any 7: 

THEOREM 1 [4]. Any 9 - s y s b n  X, upper right semicontinuous, i.e. 

can be aggregated by an upper semicontimwus optional process. 
It is obvious that w is a 9-system in this sense. We have 
THEOREM 2. Assume that, for all u, the process C" is lower right 

semicontinuous. Then the 9-system w is upper right semicontinuous and there 
exists an optional upper-right semicontinuom process @ such that 

W(T )  = wTqa.e. for every TE 9-. 

Proof. Let, for aU u in %, 2" be the P' SnelPs envelope of Cu+ k: We 
have 

W(T) = P-ess inf (Psess sup Eu (C! + YS/FT) - CF) = P-ess inf (Zu - Cu), . 
u S> T u 

. For all u of a, 2" is upper right semicontinuous as supermartingale. The 
assumption on C implies that Zu - C" is also upper right semicontinuous for 
d u. Then, since an infimum of upper right semicontinuous functions is 
upper right semincontinuous, and the F-essinf is always attained by a 
countable infimum, we easily deduce that the 9-system w is upper right 
semicontinuous, then aggregable. 

We need .a result based on the properties of increasing or decreasing 
filtration which allow to inverse essinf or esssup with conditional 



46 J.:P. Lepeltier 

expectation, This kind of result has k e n  already usewsee 171 or [6]) for 
other zero-sum stochastic games, 

LEMMA 1. Fur a11 u in 42, for any stopping times and q, & < &, we 
have 

Eu (X;,/F,.,) = P- ess id P-ess sup E, (Cg + yS/FTl), 
v&Iu,T~} SBTZ 

where R" = cU+fi 
Proof. It is easy to see that, for all u in 9 ( u ,  T,), the family 

(E,(C;+&/F,,), S 3 'I;) is a lattice {for the supremum). Therefore, for 
a11 u of 9 ( u ,  T2), we have 

since I"' and P" are the same on PT2. 
On the other hand, the family 

is dso an infimum lattice. In fact, if v and v' are in 9 ( u ,  7"') and if 

A = ( P a s  S U ~  (G + & / F T 2 )  < P*S SUP (Cg + YdFT>], 
S2T2 S3T2  

then the strategy w = v'/T, , lv (see [2]; w is the strategy v' on A' bifurcating 
from v' to v on A at the time 5) is in . 9 ( u ,  T,) and we easily get that 

= P-ess sup E,  (Cg + yS/FT2) A Pess sup E,. (C",' + &/FT,). 
S 3 T 2  S> TZ 

Therefore, by the property of inversion, we have 

(2) E. (XYTz/FT = P- ess inf Eu (P-ess SUP E. (C: + yS/FT2)/FT - 
v&N%Tp) S 3  T2 

Summarizing (1) and (2) completes the proof. 
We now prove under the assumption 

(H) Cu and Y are right continuous for all u of Q 

hat, for all u, the process P is lower right semincontinuous in expectation, 
then lower right semicontinuous and, finally, by Theorem 2, rkht continuous. 

THEOREM 3. For all u of 42, any stopping time T, any sequence (TJ of 
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stopping times decreasing to T we have . 

E,, (pT) fim idEg (*=I$. 
R 

Proof. First, Lemma 1 for T, = 0 and T, = T gives I 

(3). Eu (PT) = i d  sup E, (Cl + YS) = inf sup E, (C: + &), 
w&(tt+T) SB T nau,T,,) SBT 

since 3 ( u ,  TJ s 9 ( u ,  7'). 
Let v be in, 9 ( u ,  TJ. Then 

aa4 since v and u are the same until T,, 

4 (G + 51 = EN (I(s od + &I) + E. ( 4 ~ 3  rd (C; v rR + Y9 T,)) 

= 4(1(S<T3(Ci-+ y S ~ ) - E o ( ~ ( S ~ T d ~ C ~ v T , +  'vT,,))+ 

+&(C", ,T~+ % ~ T J  

= Eu (4s < T~ (Ci + &)I - Ev (4s < T~ IC;, + YT)) + 
+&IG.T,+ % ~ T J  

= EU(&.rrdIG+ Y,-C;n-GJ)+Ev(Gv~,+ GVrll). 
Then 

sup E v ( c i  + < sup E,(B.,, <,d (C; + Y,- CUT,, - YT,))+ SUP En (Ci + Yg), 
SB T S> T S S T ,  

since (SETIS T,) = (S v TdS 2 T). 
Taking the infimum over v of g ( u ,  TJ and applying to the left-hand 

side inequality (3) and to the rightLhand one .Lemma I, we finally obtain 

Let now any E > 0. We can choose S, 2 T such that 

Eu (R;) Eu (I(s,, < T~ (Gin A T~ + IrSn  AT^- CYT, - YTJ) + E + Ew ( f i n )  - 
Since T, L T and S,, A T, converges to 1: we get, by the Lebesgue 

theorem, EM(RT)  d lim inf Eu (FTJ + E  for every E > 0, and thus the final 
result. 

We finally get the main result of this part: 
THEOREM 4. If ((H holds, then there exists a right continuous process w 

such t h t  WT = W(T)  a.e. for any stopping tin= 
We shall use @ to construct stopping times which realize the €-value 

and this leads us easily to the conclusion. 
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I 4 Existenwe of a nlw id .a optimal simtqgy.for NF M pbg~l .  Let, 
for all e > 0 and any stopping time 

1 
PROPOSITION 1. If (H) holds, then for aII u of Q and for any stopping time 

I T we have 

(1) % < E (xwJFT) + E • 
I 

Proof. For any stopping time U < 4, v d 9 ( u ,  U) and 2" being the 
P Snell's envelope of C" + Y we have 

R", = P-ess id Z; < P- ess id Zb 
v&lu.UI V & ( U . @ ~ )  

since 9 (u, U) c 9 (u, &). Then 

(21 Pu G z", 
I ae. for all v of g ( u ,  DE,) and fir any stopping t h e  LJ 6 &. 
I Let T.< t < DET. By the definition of DeT we have 

I ' for all v of 9 ( u ,  &) since, from the compatibility conditions on C: we have 
C = C until PT. 

Using (2) we get 

Z ~ > C ~ + Y ; + E  for all v of 9 ( u , P r )  on {T<t<-DeT).  - (3) 

P+" 2 DT for all v of 9 ( u ,  WT). 

Then, using raults of the optimal stopping [5] ,  we obtain, for all v 
of 9 ( u ,  PT) (since, from [5] ,  Z:A,.u has the mattingaie property between T 

T 
and P+3, 

- and then, by Lemma 1, 

(4) p, b P- ess inf ZT = P- ess inf P a s  sup E. (q + YdP,) = En ( X " d F T ) .  
U & [ Y . @ ~ )  ~ € 9 b , ~ ~ )  SaDET 

From (4) we easily deduce the main result of this section. 
THEOREM 5. Wth aswmptwn (I& the mixed game has a ualue. 
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Furthermore, if processes Y and C: U E  4l, are also upper iefi semicontinuous, 
then the ,first player has an optimal strategy D = limDk. 

& -0 

Proof. Since w and Y are right continuous, we have 

BY (4) and (5) we easily get XU < E,(C;, + Y',/F,)+s for a11 u of a. 
T T 

Then, for T = 0, 

6) XoSEu(C++Yw)+~ for all u of I 
0 

and 

XO'G idE.(C%+ Y,.)+a 
U& 0 

<sup inf ,(G+ YT)+& =So+& for all E > 0, 
TE.T u& 

which implies that .To G X,, hence 8, = Xo since the inverse inequality is 
always true. 

Finally, if d = limD", then by Fatou lemma and the upper left 
8 -+o 

semicontinuity of the processes, letting E -+ 0 in (6), we have 

X o  = X o  < E,(Ck + YD) for all u of 4?l 

and the stopping time B is optima1 for the first player. 
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