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‘ON A GENERAL ZERQO-SUM STOCHASTIC GAME WITH STOPPING

STRATEGY FOR ONE PLAYER AND CONTINUOUS STRATEGY
FOR THE OTHER

- BY

JEAN-PIERRE LEPELTIER (Le Mans)

Abstract. In the paper a peneral zero-sum game with a
stopping strategy for the first player and a continuous one for the
second player is considered. The author proves the existence of a
value of the game and an optimal sirategy for the first p]ayer under -
fairly general assumptions. .

1. Introduction. There is a considerable number of papers dealing with
general zero-sum stochastic games with optimal stopping [1, 2, 6, 8, 9]. A
good survey on these results is given by Zabczyk in [10]. From another -
point of view Davis-Elliott [3] have studied a zero-sum game with
continuous strategies. In this paper we consider the so-called mixed zero-sum
game, where the first (resp. the second) player chooses a stopping time S
(resp. a continuous strategy u) and looks for maxmnze (resp. rmmmlze) a
payoff E,(Ct+ Yp).

Section 2 gives a precise model of the _game. In Section 3 we prove that
the upper value function of the game W(T) is “aggregable” under right

'contmulty assumptlons on the processes, i.e. there exists a right continuous

process W such that W(T) = W; P ae. for every stopping time T.

The method is based on the results of Dellacherie-Lenglart [4]. The last
section contains essential results of this paper: the value of the game and,
with additional assumption on the left regularity of the processes, the
existence of an optimal strategy for the first player.
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2. Game model and basic assumptions. >

Definition 1. We call mixed game the zero-sum game defined by the
data of

(@, F, F,, P, P uc, 7, J(S, u)se;..ew)

where (Q, F, P) is a probability space, (F),>o — an increasing right
continuous family of complete sub-o-fields of F (Fp = (22, @), T — the set of
admissible strategies for the first player — is the set of F, - stopping times, %
— the set of admissible strategies for the second player — is the set of all V-
valued F,-predictable processes (VV — compact metric space). '

‘Under the strategy ue % the probability P* is defined by dP‘/dP|F,

= LY, where L is a uniformly integrable martingale strlctly positive with the

following compatibility conditions:
If u, ve¥ nd u, = v, for every te[S T[, S, Te .7, then
u v
L =£’— for every te[S, T[ ae.
Ly Ls

Remark 1. Usually L* is the exponential martingale associated with a
family of stochastic integrais. Particularly, we consider the classical situation
of the diffusions on R", wheré we control with the drift.

The payoff J(S, u), where (S, u) is in 7 x4, is E,(Cs+Ys) (E, is the
expectation for PY), where Y is optional bounded, Y, =0 and C" is an F,-
adaptable process with mtegrable variations satisfying the compatxblhty
conditions

(1) . | . \;‘AS = C;)AS 1f UE,@(U, S)
(ie. v =u on [0, S|),
Q) O Crg—Ci=C's—Cif u=v on [S, + o

and an assumption on the potentials generated by C*:

(3) if X§;=E,(Cy—C4/Fs), T=S, then X% is uniformly bounded (in S
and u) and nori-negative. .

Remark 2. Particularly, we consider the case
Ct=|e ®c(s,u)ds, c =0, bounded.
. 0. .

Define for any F,-stopping time T, u in %:

X (u, T) = P-ess inf P-esssup E, (C® + Y;/Fy),
ve%(u, T) s2T

Xo=inf sup E,(C3+Ys), X, =supinfE,(C%+ Ys).
v S s v
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¢

We show that if Y, C¥, ue 2, are nght continuous, then the mixed game
has a value, ie. Xy = X o- For this we need X (u, T)~C% to be mdependent
of u and aggregable in a right continuous process. '

3. Aggregation of the upper value. First notice that
X (u, T) = P-essinf P-esssupE, (Cs U+ Yo/ Fr)+ Ch.
ve@@,T)  S=T
From the compatibility conditions on L* and C* we easily deduce that
- X (u, T) = P-essinf P-esssup E, (Cs—C5+ Ys/Fr)+C

ve¥ S2T

=W(T)+C% P ae.

The family (W(T), Te T ) is called upper value of the game.

To aggregate W we need the fundamental result of Dellacherie-Leng-
lart [4]. According to their terminology, we call F -system any family
(X(M)TeT ) of random functions such that

i) X(T)=X(T)ae.on T=T for any T, T,
(i) X(T) is Fr-measurable for any T.
THEOREM 1 [4] Any ﬁ' -system X, upper nght semicontinuous, i.e.

X(T) = hmsupX(T) ae. if T,

can be aggregated by an upper semicontinuous optional process.

It is obvious that W is a Z -system in this sense. We have

THEOREM 2. Assume that, for all u, the process C* is lower right
semicontinuous. Then the T -system W is upper right semicontinuous and there
exists an optional upper-right semicontinuous process W such that

W(T) = Wy ae. for every Te T

Proof. Let, for all u in %, Z" be the P Snell’s énvelope of C"+Y. We
have ' -

W (T) = P-essinf(P-esssup E, (C%+ Y/Fy)— C%) = P-essinf(Z*— C";..
. Cu ST . u

For all u of %, Z* is upper right semicontinuous as supermartingale. The
assumption on C* implies that Z*—C" is also upper right semicontinuous for
all u. Then, since an infimum of upper right semicontinuous functions is
upper right semincontinuous, and the P-essinf is always attained by a
countable infimum, we easily deduce that the 7 -system W is upper right

_ semicontinuous, then aggregable.

- We need .a result based on the properties of increasing or decreasing
filtration which allow to inverse essinf or esssup with conditional -




46, J-P. Lepeltier -

expectation. This kind of result has been already used (see [7] or [6]) for

. other zero-sum stochastic games.

LemMA 1. For all u in %, for any stopping times T, and Tz, Tl T;, we
have

E, (X% /FTI) = P- essinf P-ess supE (Cs+ I@/FTI)

ved(u,T7) §=Ty
where X* = C“+W
Proof. It is easy to see that for all v in 2(u, Tz), the family

(E.(Cs+ Ys/Fr,), S 2 T, is a lattice (for the supremum) Therefore, for
all v of %(u, T;), we have . ‘

(1) E (P-.ess sup E,(C§+ Ys/Fr,)/Fr,)
P-ess supE, (E, (Cs + I@/F r,WFr,) = P-esssup E,(C5+ Ys/Fyz,),

52T, .-Tz

since P* and P’ are the same on Fr,.
" On the other hand, the family

P-esssupE, (Cs+ Ys/Fr,), veZ(u, Ty),

ST,
is also an infimum lattice. In fact, if v and ¢’ are in 2(u, T;) and if

{ P-esssup E, (Cs+ Ys/Fr,) < P—ess supE (C§ + Ys/Fz,)},

S2Ty Ty

_then the strategy w =¢'/T; fv (see [2], w is the strategy v' on A° blfurcatmg o

from v to v on 4 at the tlme T;) is in 9(u, T,) and we easnly get that
P-ess sup E (Cs + Ys/I"T2 .

s2Ty

= P-esssup E,(C5+ YS/FTZ) A P-ess supE (C% + Ys/FT2

§2Ty - §2T,

Therefore, by the property of inversion, we have

2 E,(X%,/Fr,) = P- essinf E, . (P-esssup E,(Cs+ Ys/F Tz)/FT1)

ve?(u,T3) S2T,y

Summarizing (1) and (2) COmpletes_ the proof.
We now prove under the assumption B

(H) " C* and Y are rzght continuous for all u of U

hat, for all u, the process X" is lower nght semincontinuous in expectatlon
then lower right semicontinuous and, finally, by Theorem 2, right continuous.

Tueorem 3. For all u of %, any stopping time T, any sequence (T,) of
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stopping times decreasing to T, we have
E,,(X )<11mme (XT")
Proof. First, Lemma 1for T, =0 and ’1} T gives _
) E,(X§)= inf supE,(C3+Yy)= inf sup E, (Cs + Yy),

ved(w,T) ST . ve®w,Tp S=T

-since 2, T)<s 2, T)

Let v be in- 2(u, T,). Then .
E,(Cs+ Ys) E (1(3<r,,)(cs+ Ys))'*‘E (Ls>71, (C3+ Ys))
and, since v and u are the same until T,

E,(C3+Ys) = E, (L5 <1, (Cs+ X))+ E, (l(s; T,,)(Csn +Y%.1)
' _—E (1(s<1',.)(cs +Ys))—E (1(3<T,,)(Csvr + Y1)+
+E v(Csvr, + Ysur,)
=E, (1(s<r,,)(cg+ Y5)—E (1(s<T,,) (Cr +Yr))+
+E,(Csyr,+ Ysur,)
= Ei(lis <1 (Cs+ Ys—Ct, — Yp )+ E,(C§ VT,+-stT,,)-

Then
:EI;E W(Cs+¥g) < S“PE (1(s<r,,)(cs+Ys CT —Yr,,))*‘ S“P E,(Cs+Yy),
since {Se =7’|S T = {S v T./S > T}.
Taking the infimum over v of 9(u, 1) ‘and applymg to the left-hand

side inequality (3) and to the rnght-hangl one Lemma 1, we finally obtain

E,(X9) < 599 Eu(ls<1p(Ch ar, + Ys a1, = C1, =~ Yr )+ Eu(X1).
~Let now any ¢ > 0. We can choose S, > T such that

E,(X7) < E,(Ls,<1, (C§, A T,,-+ Ys, a1, ~Ct,— Yr ) +e+E, (X 7.)

Since T, »T and S, A T, converges to 7, we get, by the Lebesgue
theorem, E,(X%) < liminfE, (X' 7)+¢e for every £¢>0, and thus the final
result.

"~ We finally get the main resuit of this part: :

- THEOREM 4. If (H) holds, then there exists a right continuous prncesa W' ,
such that Wy = W(T) a.e. for any stopping time T. :

We shall use W to construct stopping times which realize the g-value
and this leads us easnly to the conclusion.
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4. Existence of a value and an optimal strategy-for the Erst player. Let,
for all ¢ >0 and any stopping time 7,
Dr=inf(s2 T, s"g- Y. +¢).

ProrosiTion 1. If (H) holds, then for all u of U and for any stopping time
T we have

(M X3 < E(%py [F)+e.
Proof. For any stopping time U < D, v of @(u, U) and Z° being the
P’ Snell’s envelope of C’+Y we have

¥ = P-essinf Z}; < P- essinf Zy
ve@(u,U) ved(u, D)

since 2(u, U) < 2(u, D7) Then
(2) Xp<2Zy

ae. for all v of 9(u, D%) and for any stopping time U < Dj.
Let T<t < D%. By the definition of DF we have

Xt>C'+Y,+e=C/+Y+e
' for all v of 2(u, D%) since, from the compatibility conditions on C*, we have
C* = C° until D.
Using (2) we get .
) 7> C'+Y,+¢ for all v of @(u, D) on {T<t<Dj}.
If D% =inf(t = T, Z} < Y,+C; +¢), we finally get
D% > D% for all v of 2(u, D%).

Then, using results of the optimal stopping [5], we obtain, for all v
of 2(u, D%) (since, from [51 Z;. Dg has the martingale property between T

and Df Tv)

Zy= P-esssupE (C3+ Ys/Fq),
. s=Dt T
and ‘then, by' Lemma 1,
(4) X% < P- essinf Z',’- = P- essinf P-esssupE,(Cs+ Ys/FT) = ,,(X“D}/FT).
vedly, D‘;.) . pedu, Da SBD‘FF
FromA(4) we easily deduce the main result of this section. Vv
THEOREM 5. With assumption (H), the mixed game has a value.
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Furthermore, if processes Y and C¥ ue %, are also upper left semicontinuous,
then the first player has an optimal strategy D = lim Dj.

e—0

Proof. Since W and Y are right continuous, we have
(5) W,,ST < Yy +e

By (4) and (5) we easily get X* < E,,{CL‘,ET+ Y,,aT /Fr)+¢ for all u of .
Then, for T =0,

(6) X’osEu(C'f,%+YD%)+s for all u of #
and

Xo <infE,(C% + Yp:)+&
ucU 0 0
<sup inf ,(Ch+Yp)+e=Xo+¢ for all &> 0,
Ted ue¥
which implies that X, < X,, hence X, = X, since the inverse inequality is
always true.
Finally, if D =1imDj, then by Fatou lemma and the upper left

e—0

semicontinuity of the processes, letting ¢ — 0 in (6), we have
Xo=Xo<E,C4+Y; for all u of %
and the stopping time D is optimal for the first player.
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