ON A GENERAL ZERO-SUM STOCHASTIC GAME WITH STOPPING STRATEGY FOR ONE PLAYER AND CONTINUOUS STRATEGY FOR THE OTHER

BY

JEAN-PIERRE LEPELTIER (LE Mans)

Abstract

In the paper a general zero-sum game with a stopping strategy for the first player and a continuous one for the second player is considered. The author proves the existence of a value of the game and an optimal strategy for the first player under fairly general assumptions.

1. Introduction. There is a considerable number of papers dealing with general zero-sum stochastic games with optimal stopping [1, 2, 6, 8, 9] A good survey on these results is given by Zabczyk in [10]. From another point of view Davis-Elliott [3] have studied a zero-sum game with continuous strategies. In this paper we consider the so-called mixed zero-sum game, where the first (resp. the second) player chooses a stopping time S (resp. a continuous strategy u) and looks for maximize (resp. minimize) a payoff $E_{u}\left(C_{T}^{u}+Y_{T}\right)$.

Section 2 gives a precise model of the game. In Section 3 we prove that the upper value function of the game $\hat{W}(T)$ is "aggregable" under right continuity assumptions on the processes, i.e. there exists a right continuous process \hat{W} such that $\hat{W}(T)=\hat{W}_{T} P$ a.e. for every stopping time T.

The method is based on the results of Dellacherie-Lenglart [4]. The last section contains essential results of this paper: the value of the game and, with additional assumption on the left regularity of the processes, the existence of an optimal strategy for the first player.

2. Game model and basic assumptions.

Definition 1. We call mixed game the zero-sum game defined by the data of

$$
\left(\Omega, F, F_{t}, P, P^{u}, u \in \mathscr{U}, \mathscr{T}, J(S, u)_{S \in:, \sim u \in U}\right)
$$

where (Ω, F, P) is a probability space, $\left(F_{t}\right)_{t \geqslant 0}$ - an increasing right continuous family of complete sub- σ-fields of $F\left(F_{0}=(\Omega, \phi)\right), T-$ the set of admissible strategies for the first player - is the set of F_{t}-stopping times, \mathscr{U} - the set of admissible strategies for the second player - is the set of all V valued \boldsymbol{F}_{t}-predictable processes ($V-$ compact metric space).

Under the strategy $u \in \mathscr{G}$ the probability P^{u} is defined by $d P^{u} / d P \mid F_{t}$ $=L_{t}^{u}$, where L^{u} is a uniformly integrable martingale strictly positive with the following compatibility conditions:

If $u, v \in \mathscr{U}$ nd $u_{t}=v_{t}$ for every $t \in[S, T[, S, T \in \mathscr{T}$, then

$$
\frac{L_{t}^{u}}{L_{S}^{u}}=\frac{L_{t}^{v}}{L_{S}^{v}} \quad \text { for every } t \in[S, T[\text { a.e. }
$$

Remark 1. Usually L^{u} is the exponential martingale associated with a family of stochastic integrais. Particularly, we consider the classical situation of the diffusions on R^{n}, where we control with the drift.

The payoff $J(S, u)$, where (S, u) is in $\mathscr{T} \times \mathscr{U}$, is $E_{u}\left(C_{S}^{u}+Y_{S}\right)\left(E_{u}\right.$ is the expectation for P^{u}), where Y is optional bounded, $Y_{\infty}=0$ and C^{u} is an $F_{t^{-}}$ adaptable process with integrable variations satisfying the compatibility conditions

$$
\begin{equation*}
C_{t \wedge S}^{u}=C_{t \wedge S}^{v} \text { if } v \in \mathscr{D}(u, S) \tag{1}
\end{equation*}
$$

(i.e. $v=u$ on $[0, S D$,

$$
\begin{equation*}
C_{t \vee S}^{u}-C_{S}^{u}=C_{t \vee S}^{v}-C_{S}^{v} \text { if } u=v \text { on }[S,+\infty[\tag{2}
\end{equation*}
$$

and an assumption on the potentials generated by C^{μ} :
(3) if $X_{S, T}^{u}=E_{u}\left(C_{T}^{u}-C_{S}^{u} / F_{S}\right), T \geqslant S$, then X_{T}^{u} is uniformly bounded (in S and u) and non-negative.

Remark 2. Particularly, we consider the case

$$
C_{t}^{u}=\int_{0}^{t} e^{-\alpha s} c\left(s, u_{s}\right) d s, \quad c \geqslant 0, \text { bounded }
$$

Define for any \boldsymbol{F}_{t}-stopping time T, u in \mathscr{U} :

$$
\begin{gathered}
\bar{X}(u, T)=P \text {-ess inf } P \text {-ess sup } E_{v}\left(C_{s}^{v}+Y_{S} / F_{T}\right), \\
\bar{X}_{0}=\inf _{v} \sup _{S} E_{v}\left(C_{S}^{v}+Y_{S}\right), \quad \underline{X}_{0}=\sup _{S} \inf _{v} E_{v}\left(C_{S}^{v}+Y_{S}\right)
\end{gathered}
$$

We show that if $Y, C^{u}, u \in \mathscr{D}$, are right continuous, then the mixed game has a value, i.e. $\bar{X}_{0}=\underline{X}_{0}$. For this we need $\bar{X}(u, T)-C_{T}^{u}$ to be independent of u and aggregable in a right continuous process.
3. Aggregation of the upper value. First notice that

$$
\bar{X}(u, T)=\underset{v \in \mathscr{P}(u, T)}{P-\operatorname{ess} \inf } P-\underset{S \geqslant T}{P-\operatorname{ess} \sup _{v}} E_{v}\left(C_{S}^{v}-C_{T}^{u}+Y_{S} / F_{T}\right)+C_{T}^{u} .
$$

From the compatibility conditions on L^{u} and C^{u} we easily deduce that

$$
\begin{aligned}
\bar{X}(u, T) & =P \text {-ess inf } P \text {-ess sup } \\
& =\hat{S \geqslant T} E_{v}\left(C_{S}^{v}-C_{T}^{v}+Y_{S} / F_{T}\right)+C_{T}^{u} \\
& =\hat{W}(T)+C_{T}^{u} \quad P \text { a.e. }
\end{aligned}
$$

The family ($\hat{W}(T), T \in \mathscr{T}$) is called upper value of the game.
To aggregate \hat{W} we need the fundamental result of Dellacherie-Lenglart [4]. According to their terminology, we call \mathscr{T}-system any family $(X(T) \mid T \in \mathscr{T})$ of random functions such that
(i) $\quad X(T)=X\left(T^{\prime}\right)$ a.e. on $T=T^{\prime}$ for any T, T^{\prime},
(ii) $X(T)$ is F_{T}-measurable for any T.

Theorem 1 [4]. Any \mathscr{T}-system X, upper right semicontinuous, i.e.

$$
X(T) \geqslant \limsup X\left(T_{n}\right) \text { a.e. if } T_{n} \searrow T
$$

can be aggregated by an upper semicontinuous optional process.
It is obvious that \hat{W} is a \mathscr{T}-system in this sense. We have
Theorem 2. Assume that, for all u, the process C^{u} is lower right semicontinuous. Then the \mathscr{T}-system \hat{W} is upper right semicontinuous and there exists an optional upper-right semicontinuous process \hat{W} such that

$$
\hat{W}(T)=\hat{W}_{T} \text { a.e. for every } T \in \mathscr{T} .
$$

Proof. Let, for all u in \mathscr{U}, Z^{u} be the P^{u} Snell's envelope of $C^{u}+Y$. We have

$$
\hat{W}(T)=P \text {-ess inf }\left(P \text {-ess sup } \underset{s \geqslant T}{ } E_{u}\left(C_{S}^{u}+Y_{S} / F_{T}\right)-C_{T}^{u}\right)=P \text {-essinf }\left(Z^{u}-C^{u}\right)_{T} .
$$

For all u of \mathscr{U}, Z^{u} is upper right semicontinuous as supermartingale. The assumption on C^{u} implies that $Z^{u}-C^{u}$ is also upper right semicontinuous for all u. Then, since an infimum of upper right semicontinuous functions is upper right semincontinuous, and the P-ess inf is always attained by a countable infimum, we easily deduce that the \mathscr{T}-system \hat{W} is upper right semicontinuous, then aggregable.

We need a result based on the properties of increasing or decreasing filtration which allow to inverse essinf or ess sup with conditional
expectation. This kind of result has been already used (see [7] or [6]) for other zero-sum stochastic games.

Lemma 1. For all u in \mathscr{U}, for any stopping times T_{1} and $T_{2}, T_{1} \leqslant T_{2}$, we have

$$
E_{u}\left(\bar{X}_{T_{2}}^{u} / \mathbb{F}_{T_{1}}\right)=\underset{v \in \mathscr{Q}\left(u, T_{2}\right)}{P-\operatorname{essin}} \underset{S \geqslant T_{2}}{P \text { ess sup }} E_{v}\left(C_{S}^{v}+Y_{S} / F_{T_{1}}\right)
$$

where $\bar{X}^{u}=C^{u}+\hat{W}$.
Proof. It is easy to see that, for all v in $\mathscr{D}\left(u, T_{2}\right)$, the family $\left(E_{v}\left(C_{S}^{v}+Y_{S} / F_{T_{2}}\right), S \geqslant T_{2}\right)$ is a lattice (for the supremum). Therefore, for all v of $\mathscr{D}\left(u, T_{2}\right)$, we have

$$
\begin{align*}
& E_{u}\left(P \text {-ess } \sup E_{v}\left(C_{S}^{v}+Y_{S} / F_{T_{2}}\right) / F_{T_{1}}\right) \tag{1}\\
& \quad=\underset{S \geqslant T_{2}}{P-\operatorname{ess} \sup _{u}} E_{u}\left(E_{v}\left(C_{S}^{v}+Y_{S} / F_{T_{2}}\right) / F_{T_{1}}\right)=P-\underset{S \geqslant T_{2}}{ } \quad E_{v}\left(C_{S}^{v}+Y_{S} / F_{T_{1}}\right)
\end{align*}
$$

since P^{u} and P^{v} are the same on $F_{T_{2}}$.
On the other hand, the family

$$
P-\underset{S \geqslant T_{2}}{P-e s s} \sup _{v} E_{v}\left(C_{S}^{v}+Y_{S} / F_{T_{2}}\right), \quad v \in \mathscr{O}\left(u, T_{2}\right),
$$

is also an infimum lattice. In fact, if v and v^{\prime} are in $\mathscr{D}\left(u, T_{2}\right)$ and if

$$
A=\left\{\underset{S \geqslant T_{2}}{\{P-\operatorname{ess} \sup } E_{v}\left(C_{S}^{v}+Y_{S} / F_{T_{2}}\right) \leqslant \underset{S \geqslant T_{2}}{P-\text { ess sup }} E_{v^{\prime}}\left(C_{S}^{v^{\prime}}+Y_{S} / F_{T_{2}}\right)\right\},
$$

then the strategy $w=v^{\prime} / T_{2_{A}} / v$ (see [2]; w is the strategy v^{\prime} on A^{c} bifurcating from v^{\prime} to v on A at the time $\left.T_{2}\right)$ is in $\mathscr{D}\left(u, T_{2}\right)$ and we easily get that

$$
\begin{aligned}
& \text { P-ess } \sup _{s \geqslant T_{2}} E_{w}\left(C_{S}^{w}+Y_{S} / F_{T_{2}}\right) \\
&=P \text {-ess sup } \\
& S \geqslant T_{2}
\end{aligned} E_{v}\left(C_{S}^{v}+Y_{S} / F_{T_{2}}\right) \wedge P \text {-ess sup } \underset{S \geqslant T_{2}}{ } E_{v^{\prime}}\left(C_{S}^{v^{\prime}}+Y_{S} / F_{T_{2}}\right) . ~ l
$$

Therefore, by the property of inversion, we have

$$
\begin{equation*}
E_{u}\left(\bar{X}_{T_{2}}^{u} / F_{T_{1}}\right)=P-\underset{v \in \mathscr{Q}\left(u, T_{2}\right)}{\operatorname{ess} \inf } E_{u}\left(P-\underset{S \geqslant T_{2}}{ }\left(\operatorname{ess}_{v} \sup E_{v}\left(C_{S}^{v}+Y_{S} / F_{T_{2}}\right) / F_{T_{1}}\right)\right. \tag{2}
\end{equation*}
$$

Summarizing (1) and (2) completes the proof.
We now prove under the assumption
$(\mathrm{H}) C^{u}$ and Y are right continuous for all u of \mathscr{l}
hat, for all u, the process \bar{X}^{u} is lower right semincontinuous in expectation, then lower right semicontinuous and, finally, by Theorem 2 , right continuous.

Theorem 3. For all u of \mathscr{U}, any stopping time T, any sequence $\left(T_{n}\right)$ of
stopping times decreasing to T, we have

$$
E_{u}\left(\bar{X}_{T}^{u}\right) \leqslant \liminf _{n} E_{u}\left(\bar{X}_{T_{n}}^{u}\right) .
$$

Proof. First, Lemma 1 for $T_{1}=0$ and $T_{2}=T$ gives

$$
\begin{equation*}
E_{u}\left(\bar{X}_{T}^{u}\right)=\inf _{v \in \mathscr{Q}(u, T)} \sup _{S \geqslant T} E_{v}\left(C_{S}^{v}+Y_{S}\right)=\inf _{v \in \mathscr{(}\left(u, T_{n}\right)} \sup _{S \geqslant T} E_{v}\left(C_{S}^{v}+Y_{S}\right), \tag{3}
\end{equation*}
$$

since $\mathscr{D}\left(u, T_{n}\right) \subseteq \mathscr{D}(u, T)$.
Let v be in $\mathscr{D}\left(u, T_{n}\right)$. Then

$$
E_{v}\left(C_{S}^{v}+Y_{S}\right)=E_{v}\left(\mathbb{1}_{\left(S<T_{n}\right)}\left(C_{S}^{v}+Y_{S}\right)\right)+E_{v}\left(\mathbb{1}_{\left(S \geqslant T_{n}\right)}\left(C_{S}^{v}+Y_{S}\right)\right)
$$

and, since v and u are the same until T_{n},

$$
\begin{aligned}
E_{v}\left(C_{S}^{v}+Y_{S}\right)= & E_{u}\left(\mathbb{1}_{\left(S<T_{n}\right)}\left(C_{S}^{u}+Y_{S}\right)\right)+E_{v}\left(\mathbb{1}_{\left(S \geqslant T_{n}\right)}\left(C_{S \vee T_{n}}^{v}+Y_{S \vee T_{n}}\right)\right) \\
= & E_{u}\left(\mathbb{1}_{\left(S<T_{n}\right)}\left(C_{S}^{u}+Y_{S}\right)\right)-E_{v}\left(\mathbb{1}_{\left(S<T_{n}\right)}\left(C_{S \vee T_{n}}^{v}+Y_{S \vee T_{n}}\right)\right)+ \\
& +E_{v}\left(C_{S \vee T_{n}}^{v}+Y_{S \vee T_{n}}\right) \\
= & E_{u}\left(\mathbb{1}_{\left(S<T_{n}\right)}\left(C_{S}^{u}+Y_{S}\right)\right)-E_{v}\left(\mathbb{1}_{\left(S<T_{n}\right)}\left(C_{T_{n}}^{v}+Y_{T_{n}}\right)\right)+ \\
& +E_{v}\left(C_{S \vee T_{n}}^{v}+Y_{S \vee T_{n}}\right) \\
= & E_{u}\left(\mathbb{1}_{\left(S<T_{n}\right)}\left(C_{S}^{u}+Y_{S}-C_{T_{n}}^{u}-Y_{T_{n}}\right)\right)+E_{v}\left(C_{S \vee T_{n}}^{v}+Y_{S \vee T_{n}}\right) .
\end{aligned}
$$

Then

$$
\sup _{s \geqslant T} E_{v}\left(C_{S}^{v}+Y_{S}\right) \leqslant \sup _{s \geqslant T} E_{u}\left(\mathbb{1}_{\left(S<T_{n}\right)}\left(C_{S}^{v}+Y_{S}-C_{T_{n}}^{u}-Y_{T_{n}}\right)\right)+\sup _{S \geqslant T_{n}} E_{v}\left(C_{S}^{v}+Y_{S}\right),
$$

since $\left\{S \in \mathscr{T} \mid S \geqslant T_{n}\right\}=\left\{S \vee T_{n} / S \geqslant T\right\}$.
Taking the infimum over v of $\mathscr{D}\left(u, T_{n}\right)$ and applying to the left-hand side inequality (3) and to the right-hand one Lemma 1 , we finally obtain

$$
E_{u}\left(\bar{X}_{T}^{u}\right) \leqslant \sup _{S \geqslant T_{n}} E_{u}\left(\mathbb{1}_{\left(S<T_{n}\right)}\left(C_{S \wedge T_{n}}^{u}+Y_{S \wedge T_{n}}-C_{T_{n}}^{u}-Y_{T_{n}}\right)\right)+E_{u}\left(\bar{X}_{T_{n}}^{u}\right)
$$

Let now any $\varepsilon>0$. We can choose $S_{n} \geqslant T$ such that

$$
E_{u}\left(\bar{X}_{T}^{u}\right) \leqslant E_{u}\left(\mathbb{1}_{\left(S_{n}<T_{n}\right)}\left(C_{S_{n} \wedge T_{n}}^{u}+Y_{S_{n} \wedge T_{n}}-C_{T_{n}}^{u}-Y_{T_{n}}\right)\right)+\varepsilon+E_{u}\left(\bar{X}_{T_{n}}^{u}\right) .
$$

Since $T_{n} \searrow T$ and $S_{n} \wedge T_{n}$ converges to T, we get, by the Lebesgue theorem, $E_{u}\left(\bar{X}_{T}^{u}\right) \leqslant \liminf E_{u}\left(\bar{X}_{T_{n}}^{u}\right)+\varepsilon$ for every $\varepsilon>0$, and thus the final result.

We finally get the main result of this part:
Theorem 4. If (H) holds, then there exists a right continuous process \hat{W} such that $\hat{W}_{T}=\hat{W}(T)$ a.e. for any stopping time T.

We shall use \hat{W} to construct stopping times which realize the ε-value and this leads us easily to the conclusion.
4. Existemce of a value and an optimal strategy for the Irst player. Let, for all $\varepsilon>0$ and any stopping time T,

$$
D_{T}^{\varepsilon}=\inf \left(s \geqslant T, \hat{W}_{s} \leqslant Y_{s}+\varepsilon\right) .
$$

Proposition 1. If (H) holds, then for all u of \mathscr{U} and for, any stopping time T we have

$$
\begin{equation*}
\bar{X}_{T}^{u} \leqslant E\left(\bar{X}_{D_{T}^{\mathrm{e}}} / F_{T}\right)+\varepsilon . \tag{1}
\end{equation*}
$$

Proof. For any stopping time $U \leqslant D_{T}^{\ell}, v$ of $\mathscr{D}(u, U)$ and Z^{v} being the P^{v} Snell's envelope of $C^{v}+Y$ we have

$$
\bar{X}_{U}^{u}=P-\underset{v \in(u, U)}{P-\operatorname{sess} \inf } Z_{U}^{p} \leqslant \underset{\left.v \in \mathscr{(u ,}, D_{T}^{\tau}\right)}{P-\operatorname{ess} \inf } Z_{U}^{v}
$$

since $\mathscr{D}(u, U) \subseteq \mathscr{D}\left(u, D_{T}^{\ell}\right)$. Then

$$
\begin{equation*}
\bar{X}_{U}^{u} \leqslant Z_{U}^{v} \tag{2}
\end{equation*}
$$

a.e. for all v of $\mathscr{D}\left(u, D_{T}^{e}\right)$ and for any stopping time $U \leqslant D_{T}^{e}$.

Let $T \leqslant t<D_{T}^{e}$. By the definition of D_{T}^{e} we have

$$
\bar{X}_{t}^{u}>C_{t}^{u}+Y_{t}+\varepsilon=C_{t}^{v}+Y_{t}+\varepsilon
$$

for all v of $\mathscr{D}\left(u, D_{T}^{e}\right)$ since, from the compatibility conditions on C^{u}, we have $C^{u}=C^{v}$ until D_{T}^{ν}.

Using (2) we get
(3) $\quad Z_{t}^{v}>C_{t}^{v}+Y_{t}+\varepsilon \quad$ for all v of $\mathscr{D}\left(u, D_{T}^{e}\right)$ on $\left\{T \leqslant t<D_{T}^{e}\right\}$.

If $D_{T}^{\varepsilon, v}=\inf \left(t \geqslant T, Z_{t}^{p} \leqslant Y_{t}+C_{t}^{v}+\varepsilon\right)$, we finally get

$$
D_{T}^{\&, v} \geqslant D_{T}^{\varepsilon} \quad \text { for all } v \text { of } \mathscr{D}\left(u, D_{T}^{\epsilon}\right) .
$$

Then, using results of the optimal stopping [5], we obtain, for all v of $\mathscr{D}\left(u, D_{T}^{e}\right)$ (since, from [5], $Z_{i}^{v} \wedge D_{T}^{e v}$, has the martingale property between T and $D_{r}^{\infty}{ }^{2} \eta$),

$$
Z_{t}^{v}=P \underset{\substack{-\operatorname{ess} s \sup _{T}^{v}}}{ } E_{v}\left(C_{S}^{v}+Y_{S} / F_{T}\right),
$$

and then, by Lemma 1 ,

From (4) we easily deduce the main result of this section.
Theorem 5. With assumption (H), the mixed game has a value.

Furthermore, if processes Y and $C^{u}, u \in \mathscr{U}$, are also upper left semicontinuous, then the first player has an optimal strategy $D=\lim _{\varepsilon \rightarrow 0} D_{0}^{2}$.

Proof. Since \hat{W} and Y are right continuous, we have

$$
\begin{equation*}
\hat{W}_{D_{T}^{\varepsilon}} \leqslant Y_{D_{T}^{\varepsilon}}+\varepsilon . \tag{5}
\end{equation*}
$$

By (4) and (5) we easily get $\bar{X}_{t}^{u} \leqslant E_{u}\left(C_{D_{T}^{\varepsilon}}^{u}+Y_{D_{T}^{D_{T}}} / F_{T}\right)+\varepsilon$ for all u of \mathscr{U}. Then, for $T=0$,

$$
\begin{equation*}
\bar{X}_{0} \leqslant E_{u}\left(C_{D_{0}^{z}}^{u}+Y_{D_{0}^{\varepsilon}}\right)+\varepsilon \quad \text { for all } u \text { of } \mathscr{U} \tag{6}
\end{equation*}
$$

and

$$
\begin{aligned}
\bar{X}_{0} & \leqslant \inf _{u \in U} E_{u}\left(C_{D_{0}^{\varepsilon}}^{u}+Y_{D_{0}^{\varepsilon}}\right)+\varepsilon \\
& \leqslant \sup _{T \in \bar{F}} \inf _{u} u\left(C_{T}^{u}+Y_{T}\right)+\varepsilon=\underline{X}_{0}+\varepsilon \quad \text { for all } \varepsilon>0,
\end{aligned}
$$

which implies that $\bar{X}_{0} \leqslant \underline{X}_{0}$, hence $\bar{X}_{0}=\underline{X}_{0}$ since the inverse inequality is always true.

Finally, if $\bar{D}=\lim _{\varepsilon \rightarrow 0} D_{0}^{\varepsilon}$, then by Fatou lemma and the upper left semicontinuity of the processes, letting $\varepsilon \rightarrow 0$ in (6), we have

$$
\bar{X}_{0}=\underline{X}_{0} \leqslant E_{u}\left(C_{\bar{D}}^{u}+Y_{\bar{D}}\right) \quad \text { for all } u \text { of } \mathscr{U}
$$

and the stopping time \bar{D} is optimal for the first player.

REFERENCES

[1] J. M. Bismut, Contrôle de processus alternants et applications, Z. Wahrschein, verw. Gebiete 47 (1979), p. 241-288.
[2] - Temps d'arrêt optimal, quasi temps d'arrêt et retournement du temps, Ann. Probab. 7 (1979), p. 933-964.
[3] Mha Davis and R. J. Elliott, Optimization play in a stochastic differential game, Siam J. Control and Optimiz. 4 (1982), p. 543-554.
[4] C. Dellacherie et E. Lenglart, Sur des problèmes de régularisation, de recollement et dinterpolation en théorie générale des Processus, Séminaire de Probab., Université de Strasbourg, XVI, Lecture Notes in Math., Springer Verlag, 1982.
[5] N. El Karoui, Cours sur le Contrôle stochastique, Ecole d'Eté de Probab. de Saint Flour. IX, ibidem 876 (1979).
[6] J. P. Lepeltier et M. A. Maingueneau, Le jeu de Dynkin en théorie générale sans Thypothèse de Mokobodski, Stochastics 13 (1984), p. 25-44.
[7] J. Neveu, Martingales à temps discret, Masson, 1972.
[8] L. Stettner, On a general zero-sum stochastic game with optimal stopping, Probab. and Math. Statistics 3 (1982), p. 103-112.
[9] L. Stettner, J. Zabczyk and P. Zaremba, On general two persons stopping games, preprint.
[10] J. Zabczyk, Stopping problems in stochastic control, Intern. Congress of Mathematicians, Warsaw 1983.

Départment de Mathématiques
Université du Maine
Route de Laval
B.P. 535

72017 Le Mans Cedex
France

Received on 25. 3. 1984

