PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 6, Fasc. 1 (1985), p. 51-56

CHARACTERIZATION OF THE MULTIVARIATE
MARSHALIL-OLKIN EXPONENTIAL DISTRIBUTION

BY

APOSTOL OBRETENOYV (SoFia)

Abstract. The paper is concerned with characterizations of the
Marshall-Olkin exponential distribution based on an integrated lack
of memory equation.

Suppose that X,, X,,..., X, are nonnegative random variables and
G(xy, X3,..., %4, X, 2 0 (k =1, 2,..., n), is their survival distribution function
(s.df), ie.

)

G(x1, X9,..., %) = P(X| > x4, X5 > x3,..., X, >Xx,). .

It is well known [1, 4] that, if G has the lack of memory property
(LMP) of the type - :

(1 G(x;+t, X3+1t,.., X, +t) =G(t, t,...,0) G(X;, X3,...,%,)

and if all marginal distributions of G satisfy equalities of type (1), then G is
an s.df. of the multivariate Marshall-Olkin (M—O) distribution. The require-
ment that the marginal distributions of G should satisfy equalities analogous
to (1) can be replaced by the following: all marginal distributions of G are
M-O distributed.

.Denote by e and x the vectors e=(1, 1,...,1) and x = (x;, X5,..., X,),
respectively. Now equation (1) can be written briefly as

2 : G(x+te) =G(te) G(x).
If an s.df. sausﬁes equation (2), we say that !t has the LMP. We give

" here a weaker definition of the LMP.

Let =0o0r 1, i=1,2,...,n and a=(q,, a;....,a,). Denote by E
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the set »
E = {a: only one g; is O, the other (n—1) a; are 1},
Definition. The sdf. G(x) has a weak LMP (WLMP) if
3) G(te+xoa) = G(te)G(xoa)

for all t > 0 and acE, where xoa =(x;a,, X383,..., X,a,)-

The difference between equations (3) and (2) is that in (3) at least one of
the coordinates of xoa is zero, whereas in (2) all coordinates of x can be
different from zero. Evidently, (3) follows from (2). The inverse statement that
(2) follows from (3) is contained in the following lemma and requires an
additional condition for the function G.

LemMa. If an sdf. G(x) has a WLMP and G(te) =e ¥, 1 >0, then G
also has an LMP.

Proof. Let y = (s, ¥2,---s Vi) Y& = 0, and u > 0 be arbitrary. Suppose
that y; is the smallest coordinate of y, i.e. y; = min(yy, y3,..., y,)- Then, for a
fixed y, G(ue+y) can be written as

4@ G(ue+y) = G(te+xoeé),

where we write t = u+y, for a fixed i, and the vector x = (x;, X3,...,X,) has
" the following coordinates:

o o Yy for ki,
70 for k =1i.

As G(te+xoe) = G(te+'xoa), where aeE and the i-th coordinate of a is
zero, equation (4) becomes G (ue+y) = G(te) G(x o a).This equation, using (3),
gives G(ue+y) = G(te)G(xca) or, after taking into account that G(ze)

—e M

(5) G(ue+y) = G(ue)G(y;e)G(xoa).

The last two factors on the right-hand side of (5), again according to (3),
give G(y;,0G(xoa) = G(y;e+xoa). This way equation (5) becomes

(6) G(ue+y) =Gue)G(y;e+xoa).

In fact, since y;e+xoa=yoe=y, equation (6) is G(ue+y)
= G (ue)G(y), which is an LMP according to (2).

THEOREM 1. If an sdf. G(x) has a WLMP and G(te) is an exponential
function of t and all marginal distributions of G(x) are M—O distributed, then G
is M-O distributed.

Proof. With respect to the Lemma, G has an LMP and, because the
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marginal distributions of G are M—O distributed, the distribution of G is also
an M-O one.

The next characterizations of the multivariate M—O distribution are
based on the integrated by ¢ or by x equation (2). In the 1-dimensional case
equation (2), integrated with respect to the Borel measure v(t) on (0, ),
gives :

- » V()

(M [ G+x)pu(dt)=G(x) for every x>0, where p=— .
j G (1) u(dr)

Q

Naturally, we suppose that

a0

[ G(®)u(dr) < 0.

0o

Lau and Rao [2] proved recent.ly that, if u(t) has an infinite support, the
unique solution of equation (7) is G(f) =e™*, where o = 0 is synonymously
determined from

©

| e ™ u(de) = 1.
‘ 0
An analogical statement (for the case of a 2-dimentional function G) is
proved in [5]. Namely, if G(x,, x;)} is an s.df. with exponential marginal
distributions, if u is a Borel measure on (0, oo) with infinite support, and if

o0

8) ' [ Gt+xy, t+x5) p(dt) = G(xy, x3),

0
then G is M—O distributed.
We give here a general proof of this statement in the n-dimensional case.
THeOREM 2. If G(xy, X3,...,%,), X%, =0, k=1, 2,..., n, is an s.df. whose
marginal distributions are all of the M-O type and G satisfies the equation

as

9 [ Glt+xy, t4+Xx5,...,t4x,) pu(dt) = G(xy, X3,...,%,)
0

Jor some Borel measure u(t) on (0, oo) with infinite support, then G is an n-
dimensional M—-O distribution.

Proof. First write equation (9) in a more compact form:
a0

(10) _ | G(te+x) p(dt) = G(x).
(4]

For x = O it follows from (10) that

Glgu@® =G(0)=1,

Ot §
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while, for x = xe it follows that the function G, (x) = G(xe) satisfies equation
(10) in the 1-dimensional case. According to the result of Lau and Rao [2],
G,(x)=e7"% ie. . '
G(xe) =e ™. ,

Suppose that x = (x;, X3,...,%,) and let us fix all n—1 coordinates
X3, X3,.-., %, of x. Put
| G(u, u+xy, u+x;,...,u+x,) Gue+xoa)

(11) G,,-l(u)= G(O, xz,'xs’_‘__,x") - G(xoa)

where ac E with a; =0.
Since G satisfies equation (10), it is easy to check that G,_, (u) satisfies
equation

(12) ]u G (440 (D) = Gy 1 @)

and G,_,(0)=1. Thus G, () =exp(—pt), where B = B(xs, X3,-.,%,).
However, we have seen that (12) has a solution G,(f) =exp(—at) and,
becaus~ the solution is unique, we have

(13) B(x3, X3,.., X =0, G (t)=e" "
By (11), from (13) we get
G(te+xoa)=e *G(xo0a) = G, (t)G(x0a) = G(te)G(x0a),

i.e. equation (3) is fulfille¢ for all ac E with the first coordinate a; = 0. We
can analogically establish that equation (3) is satisfied as well for ac E with
a, =0 and, in general, for every acE. Therefore the function G has the
WLMP. Besides, we have seen that G(te) is exponential with respect to t.
Thus, according to Theorem 1, G(x) is an n-dimensional M-O distribution.

The next ascertion characterizes also the n-dimensional M—O, but this .
time through an integrated equation obtained from (2) after an integration
with respect to x. Unfortunately, the functions of the class G, in which we
look for a solution, are not all s.df. It is necessary to consider a narrower
class. We restrict ourself to the multivariate distributions of the class IFR.
More preciscly, we shall use one of the possible definitions (see [3]) about
the distributions with a monotone failure-rate (IFR — increasing failure-
rate). : ,
Definition. An sdf. G(x), x =(Xy, Xa,.-., X, X; = 0, belongs to the
class IFR if '
G(te+x)

G(x)

is decreasing (in a broad sense) with respect to x for all £ > 0, and G(x) >0
for every x. .

- (14) R(x) =
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THeOREM 3. Let G(x) belon‘g to the class IFR and u(t) be a Borel measure
on Ry ={t: 1,20, k=1,2,...,n} such that
(15) [ du@®)=0
R
Jor every a=(a,a,,...,a,), where Rf(a)=1{s: t, >a, 1<k< n. If G
satisfies equation

(16) f G(te+x)duw) = G(te), =0,

and if all marginal dzstrtbutmns of G are M-O distributed, then G(x) is M—O
distributed.

Proof. For t =0 it follows from (16) that

17 | G@dux) = 1
R} (@)
whence :
(18) = | G@dux)=1- [ G(x)du(x).
R¥ @ R*(a)

In view of (15), I(a) # O for every a. Equation (16) becomes now

- (19) i R(X)Gxdux)+ [ R(x)G(x)du(x)=G(te).

R@ Rt @
We replace the mtegrand R(x) in the first integral of the left of (19) Wlth
R(G)>= R(x) for xeR; (a) and in the second — with R(a) > R(x) for
xeR"(a) This way we obtain

200 R(O) | G®dux)+R(@ [ Gx)du(x)> G(te).
i@ - RY@
From (20), using (18), we have
R(O)I(a)+R(@[1-1(a)] > G(te) = R(O),

from where R(a)> R(O) for arbitrary a. But R(x) is decreasing and,
therefore, R(a) = R(O). The last equation is in fact -

G(te+a) = G(te)G(a),

which indicates that G has the LMP. Since (by assumption) all marginall

distributions of G are M-O distributed, G(x) is also M-O distributed.
The random variables X, X,,..., X, have a joint “exponential minima”
distribution - if '

P(minX; > t) =exp(—6;1), 6, >0,
iel .

for every non-empty subset | < {1, 2,...,n}
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THEOREM 4. Let, for every fixed x = 0, the quotient
G(te+xe)
G(te)

do not increase with respect to t = 0, and all marginal distributions of G be of
the “exponential minima” type. If for some Borel measure p on (0, c0) with
infinite support we have

1) Ate) =

(22) Qf G (xe-+te) u(dt) = G(xe)
) [}

for every x =0, then G(x) is “exponential minima” distributed.

Proof. Analogically to the proof of Theorem 3 we use here the fact that
A(te) does not increase in ¢t and obtain A(de) = A(0) for every > 0. The last
equation is '

(23) G(de+xe) = G(de) G(xe).

Using now Theorem 5.4.2 of Galamgos and Kotz [1], it follows from
(23) and from the assumption about the “exponential minima” type of the
marginal dlstrlbutlons that the joint dlstrlbutlon G is also of the type
exponentlal minima”.
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