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Abstract. The paper is concerned with characterizations of the 
MarshalLOlkin exponential distribution based on an integrated Iack 
of memory equation. 

Suppose that X I ,  X2,. . ., X, are nonnegative random variables and 
G(x, ,  x 2 , .  . . , x&, x, 2 0 (k = 1, 2,. . ., n), is their survival distribution function 
(s.d.f.), i.e. 

It is well known [I, 43 that, if G has the lack of memory property 
(LMP) of the type . 

and if all marginal distributions of G satisfy equalities of type (I), then G is 
an s.d.f. of the multivariate Marshall-Olkin (M-0) distribution. The require- 
ment that the marginal distributions of G should satisfy equalities analogous 
to (1) can be replaced by the following: all marginal distributions of G are 
M-O distributed. 

Denote by e and x the vectors e = (1 ,  1,. .., 1 )  and x = (x,, x2, .  .., x,,), 
respectively. Now equation (1) can be written briefly as 

(2) G ( x +  te) = G(tc)G(x) .  

If an s.d.f. satisfies equation (2), we say that it has the LMP. We give 
here a weaker definition of the LMP. 

Let a, = 0 or 1, i = 1,  2, ...,pa, and a = ( u l ,  a,. . .., 4). Deriote by E 
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the set 

E = {a: only one ai is 0, the other (n- 1) ai are 11, 

Definition. The s.d.f. G(x)  has a weak LMP (WLMP) if 

for all t 2 O and r a ~  E, where xoa =- (x, a,, x, a,, . . . , x, aJ. 

The difference between equations (3) and (2) is that in (3) at least one of 
the coordinates of x o a  is zero, whereas in (2) all coordinates of x can be 
different from zero. Evidently, (3) follows from (2). The inverse statement that 
(2) follows from (3) is contained in the following lemma and requires an 
additional condition for the function G. 

LEMMA. lf an s.dJ G{x) has a WLMP and G(te) = e-", R > 0, then G 
also has an LMP. 

P r o  of. Let y = ( y,, yz ,  . . . , y;), yr 3 0, and u 3 0 be arbitrary. Suppose 
that yi is the smallest coordinate of y, i.e. yi = min(y,, y2 , .  . . , y,). Then, for a 
fixed y, G(ue+y) can be written as 

where we write 6 = u +yl for a fixed i, and the vector x = (x,, x,, . . ., x,J has 
' the following coordinates: . 

y, - yi for k # i, 
for k = i. 

As G(te+xoe) = ~(te-k'xoa), where aE E and the i-th coordinate of a is 
zero, equation (4) becomes G (ue+ y) = G(te) G (x o a) .This equation, using (3), 
gives C(ue+ y) = G (te) G (x o a) or, after taking into account that G(te) 
- - e-at 

9 

(5) G(ue+y) =. G(ue)G(yi e)G(xo a). 

The last two factors on the right-hand side of (5), again according to (3), 
give G( yie) G(xo a) = G( yi e + x o  a). This way equation (5) becomes . 

(6) G(ue+y) = G(ue)G(yie+xo a). 

In fact, since y,  e+xo  a = y o e  = y, equation (6) is G(ue+y) 
= G (ue) G (y), which is an LMP according to (2). 

THEOREM 1. If an s.d$ G(x) has a WLMP and G(te) is an exponential 
function oft and all marginal distributions of G(x) me M-0 distributed, then G 
is M-0 distributed. 

Proof.  With respect to the Lemma, G has an LMP and, because the 
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marginal distributions of G are M-O distributed, the distribution of G is also 
an M-0 one. 

The next characterizations 01 the multivariate M-0 distribution are 
based on the integrated by t or by r equation (2). In the Idimensional case 
equation (21, integrated with respect to the Borel measure v ( t )  on (0, m), 
gives 

m 

(7) J G (t + X) p(dt) = G (x) for every x 2 0, where P = , v ( t )  
0 J G (El P (dl) 

0 

Naturally, we suppose that 

Lau and Rao [2] proved recently that, if p(t) has an infinite support, the 
unique solution of equation (7) is G( t )  = e-"I, where or 3 0 is synonymously 
determined from 

An analogicaI statement (for the case of a 2-dimentianal function G) is 
proved in [ 5 ] .  Namely, if G(x,, x,) is an s.d.f. with exponential marginal 
distributions, if p is a Borel measure on (0, m) with infinite support, and if 

w 

(8) f G(t+x, ,  f+X,)~(dt) = G(x,, xd,. 
0 

then G is M-0 distributed. 
We give here a general proof of this statement in the n-dimensional case. 
THEOREM 2. If G(xI, x2, .  . ., x,), xk 2 0, k = 1 ,  2, ..., n, is an  s.dJ whose 

marginal distributions are aII of the M-0 type and G satisfies the equation 

for some Borel lneasure p(t) on (0, CQ) with infinite support, then G is an n- 
dimensional M-0 disaibution. 

Proof .  First write equation (9) in a more compact form: 

For x = O it follows from (10) that 



while, for x = xe it follows that the function GI (x) = G(xe) satisfies equation 
(10) in the 1-dimensional case. According to the result of Lau and Rao [2], 
G, (x) = e-"", i.e. 

G(xe) = e-"". 

Suppose that x = ( x , ,  x ,,..., xJ and let us fix all n-1 coordinates 
X2, X 3 , .  . ., X, of X. Put 

' (11) 
G(u, u+x, ,  u+x3 ,..., u+x3  G ( u e + x o ~ )  

G,-, (u) = - - 
G(xoa) ' G(O, xz, x,,...,xS 

where n E  E with a, = 0. 
Since G satisfies equation (lo), it is easy to check that G,-,(u) satisfies 

equation 
m 

(12) j Gn-lCu+O~(dtI = G n - l l ~ )  
0 

and G,- , (0) = 1. Thus G,- , (t)  = exp (- fit), where 8 = #?{xz, x,, . . . , x,,). 
However, we have seen that (12) bas a solution G l ( t )  = exp(-at) and, 
becau~- the solution is unique, we have 

(13) B(xz, x3,. . ., x,J = a, G,-, ( t )  = e-", 

By (111, from (13) we get 

i.e. equation (3) is fulfilleC for all a€ E with the first coordinate a, = 0. We 
can analogically establish that equation (3) is satisfied as well for Q E E  with 
a, = 0 and, in general, for every ~ E E .  Therefore the function G has the 
WLMP. Besides, we have seen that G(te) is exponential with respect to t. 
Thus, acsording to Theorem 1, G(x) is an n-dimensional M-O distribution. 

The next assertion characterizes also the n-dimensional M-0, but this 
time through an integrated equation obtained from (2) after an integration 
with respect to x. Unfortunately, the functions of the class G, in which we 
look for a solution, are not all s.d.f. It is necessary to consider a narrower 
class. We restrict ourself to the multivariate distributions of the class IFR. 
More precistiy, we shall use one of the possible definitions (see [3]) about 
the distributions with a monotone failure-rate (IFR - increasing failure- 
rate). 

Definition. An s.d.f. G(x),  x = (x, ,  x, ,..., x,,), x i  2 0, belongs to the 
class IFR if 

G(te+x) 
R (x) = 

G ( 4  

is decreasing (in a broad sense) with respect to x for all t 2 0, and G(r) > 0 
for every x. 
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THEOREM 3. k t  G (x) belong to the cclass IFR and p(t) be a Borel measure 
on R: = {P: rk 3 0, k = 1 ,  2, .  . ., nf such that 

(15) J d ~ ( t ) # O '  
R: (a) I 

for every a = (al, a ,,..., a,), where ~ i ( a )  = Is: t, 3 a,, 1 6 k < n). If G 
satisfies equation I 

I 

I a d  if all marginal distributions uf G are M-0 distributed, then G (x) is M-0 
distributed. i 

Proof. For t = 0 it follows from (16) that 

(17) 

whence 

In view of (15), ](a) # 0 for every a. Equation (16) becomes now 

(19) J R(x)G(x)Jp(x)+ j R(x)G(x)dp(x)=G(te). 
ii,'iu) ~ . f  (a) 

We replace the integrand R(r) in the first integral of the left of (19) with 
R(Oj 2 R(x) for XER; (a) and in the second - with R(a) 2 R(x) for 
XE R: (a). This way we obtain 

f 20) R(O1 J G(x)d~(x)+Rl~)  J G(x)dp(x) 2 G ( t 4 .  
r; cu) R; (4) 

From (20), using (18), we have 

I 

from where R(a) 2 R(O) for arbitrary a. But R(x) is decreasing and, I 

therefore, R(a) = R(0). The last equation is in fact I 

G(te+a) = G(te)G(a), I 

which indicates that G has the LMP. Since (by assumption) all marginal 
I 

distributions of G are M-0 distributed, G(x) is also M-0 distributed. I 
I 

The random variables XI, X,, . . ., X, have a joint bbexpqnential minima" I I 

distribution if I 

I 

P(minXi>t)=exp(-gi't), 8,>0,  
I 
I 
! 

id I 
for every nonempty subset I c {l,  2 ,..., n). 1 

I 

I 




