PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 6, Fasc. 1.(1985), p. 57-63

REPRESENTATION THEOREM
 FOR MULTIPLY SELF-DECOMPOSABLE PROBABILITY MEASURES ON GENERALIZED CONVOLUTION ALGEBRA

By

CHU VAN DONG (HANOI)

Abstract

The purpose of the note is to give the proof of the representation theorem for multiply self-decomposable probability measures on generalized convolution algebra. The proof does not use neither the extreme method nor the representation theorem for α-times monotone functions ($\alpha>0$).

Throughout the paper we preserve the terminology and notation of [1][3]. In particular, by ($\Pi, 0$) we denote a regular generalized convolution algebra. For probability measure p in Π, let Φ_{p} be its characteristic function. Let Π_{0} denote a class of all infinitely divisible measures in ($\left.\Pi, 0\right)$. It is well known that for every $p \in \Pi_{0}$ the function Φ_{p} is of the form

$$
\begin{equation*}
\Phi_{p}(t)=\exp \left\{-a t^{H}+\int_{0}^{\infty}(\Omega(t x)-1) M_{p}(d x)\right\} \tag{1}
\end{equation*}
$$

where $a \geqslant 0, M_{p}$ is a Borel measure on $(0, \infty)$ and H is a characteristic exponent of an algebra.

This representation is unique (see [3], Theorem 1), determined and M_{p} is called a spectral measure of p.

We repeat (cf. [2]) that a probability measure p in $(\Pi, 0)$ is α-times selfdecomposable if for every c in $(0,1)$ there exists a probability measure $p_{c, \alpha}$ in Π_{0} such that

$$
\begin{equation*}
p=\bigodot_{k=0}^{\infty} T_{c^{k}} p_{c, \alpha}^{r_{k, \alpha}}=p_{c, \alpha} \circ T_{c} p_{c, \alpha}^{r_{1, \alpha}} \circ T_{c^{2}} p_{c, \alpha}^{r_{2, \alpha}} \circ \ldots, \tag{2}
\end{equation*}
$$

where $p_{c, \alpha}^{a}$ denotes a measure in Π_{0} with its characteristic function $\Phi_{p_{c, \alpha}^{a}}(t)$ $=\Phi_{p_{c, \alpha}}^{a}(t)$ for every $a>0$.

Let Π_{α} denote the class of all α-times self-decomposable measures in $(\Pi, 0)$. Our further aim is to give a proof of the representation theorem of measures in Π_{α}, in which we do not use neither the extreme method nor the representation of α-times monotone functions. We also obtain a proof of the representation theorem of α-times monotone function.

Theorem. The class of characteristic functions of α-times ($\alpha>0$) selfdecomposable measures in $(\Pi, 0)$ coincides with the class of functions of the form

$$
\begin{equation*}
\Phi(t)=\exp \left\{-a t^{H}+\int_{0}^{1}\left(\int_{0}^{\infty}(\Omega(t h s)-1) G(d s)(-\ln h)^{\alpha-1} \frac{d h}{h}\right\}\right. \tag{3}
\end{equation*}
$$

where $t \in[0, \infty), a \geqslant 0$ and H is the characteristic exponent of the algebra $(\Pi, 0), G$ is a measure defined on $(0, \infty)$ satisfying the following condition:

$$
\begin{equation*}
G \text { is a spectral measure for some } p \in \Pi_{0} \tag{4}
\end{equation*}
$$

$$
\int_{1}^{\infty}(\ln s)^{x} G(d s)<\infty .
$$

Two lemmas will precede the proof of the Theorem.
Lemma 1. We have

$$
\begin{aligned}
S_{\alpha} & =\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}} \sum_{j=0}^{n} r_{j, \alpha}=\lim _{n \rightarrow \infty} \frac{1}{(n-1)^{\alpha}} \sum_{j=0}^{n} r_{j, \alpha} \\
& =\lim _{n \rightarrow \infty} \frac{1}{(n+1)^{\alpha}} \sum_{j=0}^{\infty} r_{j, \alpha}=\frac{1}{\alpha \Gamma(\alpha)}, \quad \text { where } \Gamma(\alpha)=\int_{0}^{\infty} t^{\alpha-1} e^{-t} d t
\end{aligned}
$$

and

$$
r_{j, \alpha}=\binom{\alpha+j-1}{j}= \begin{cases}1 & \text { for } j=0 \tag{6}\\ \frac{\alpha(\alpha-1) \ldots(\alpha-j+1)}{j!} & \text { for } n=1,2, \ldots\end{cases}
$$

α being an arbitrary positive number.
Proof. According to the well-known formula

$$
r_{j, \alpha} \sim \frac{1}{\Gamma(\alpha)}(j-1)^{\alpha-1}, \quad j=2,3, \ldots,
$$

we have
$S_{\alpha}=\lim _{n \rightarrow \infty} \frac{1}{n \alpha}\left[1+\alpha+\frac{1}{\Gamma(\alpha)} \sum_{j=2}^{n}(j-1)^{\alpha-1}\right]=\frac{1}{\Gamma(\alpha)} \lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}} \sum_{j=1}^{n} j^{\alpha-1}=\frac{1}{\alpha \Gamma(\alpha)}$
since, by Cavali formula,

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{\alpha}} \sum_{j=1}^{n} j^{\alpha-1}=\frac{1}{\alpha},
$$

which completes the proof.
Lemma 2. Let p belong to the class Π_{α} with its spectral measure M_{p} as defined by (1). Then there exists a measure G on $(0, \infty)$ such that:

$$
\begin{equation*}
G(E)=\frac{1}{\Gamma(\alpha)} \lim _{t>0} t^{-\alpha} p_{c, \alpha}(E), \quad c=e^{-t}(t>0) \tag{7}
\end{equation*}
$$

$p_{c, \alpha}$ being defined by (2);

$$
\begin{equation*}
M_{p}\left(e^{-u}, \infty\right)=\int_{e^{-u}}^{\infty} \frac{(u+x)^{\alpha}}{\alpha} G(d x) \tag{8}
\end{equation*}
$$

in particular, if $u=0$,

$$
\begin{equation*}
\int_{1}^{\infty}(\ln s)^{\alpha} G(d s)<\infty \tag{8'}
\end{equation*}
$$

(9) E is an arbitrary Borel set with $\bar{E} \subset(0, \infty)$.

Proof. It is easy to check that

$$
M_{p}(E)=\sum_{j=0}^{\infty} r_{j, \alpha} T_{c} p_{c, \alpha}(E)
$$

for every E satisfying (9).
Put $E_{0}=\left(e^{-u_{0}}, \infty\right)$ and $q=\left(u_{0}+\ln x\right) / t$. We easily can prove that

$$
\begin{equation*}
M_{p}\left(E_{0}\right)=\sum_{j=0}^{\infty} r_{j, \alpha} \int_{0}^{\infty} I_{E_{0}}\left(c^{j} x\right) p_{c, \alpha}(d x)=\int_{e^{-u_{0}}}^{\infty} \sum_{0 \leqslant j<q} r_{j, \alpha} p_{c, \alpha}(d x), \tag{10}
\end{equation*}
$$

where I denotes the indicator function.
By Lemma 2 we can show that

$$
\lim _{i>0} \frac{\sum_{0<j<q} r_{j x}}{q^{\alpha} / \alpha \Gamma(\alpha)}=1
$$

uniformly in every interval $[a, \infty)$ with $a>e^{-u_{0}}$ as $t \rightarrow 0$. From this and by
(10) for $a>e^{-u_{0}}$, we easily conclude that

$$
\begin{gather*}
\lim _{t \rightarrow 0} \int_{a}^{\infty} \sum_{0 \leqslant j<q} r_{j, \alpha} p_{c, \alpha}(d x)=\frac{1}{\alpha \Gamma(\alpha)} \lim _{t \rightarrow 0} \int_{a}^{\infty} q^{\alpha} p_{c, x}(d x)<M_{p}\left(E_{0}\right), \tag{11}\\
M_{p}\left(E_{0}\right)=\lim _{t>0} \int_{e^{-u_{0}}}^{\infty} \frac{\left(u_{0}+\ln x\right)^{\alpha}}{\alpha} p_{t, \alpha}(d x),
\end{gather*}
$$

where

$$
\begin{equation*}
\bar{p}_{t, \alpha}(d x)=\frac{1}{\Gamma(\alpha)} t^{-\alpha} p_{c, \alpha}(d x), \quad t=-\ln c \tag{12'}
\end{equation*}
$$

By (11) it easy to show that there exists a positive number δ such that the family ' $\bar{p}_{t, \alpha}$ ', $0<t \leqslant \delta$, is tight in weak topology.

In (12), after choosing $u_{0}^{\prime}>u_{0}$, we have for every $t, 0<t \leqslant \delta$,

$$
\bar{p}_{t, \alpha}\left[e^{-u_{0}}, \infty\right) \leqslant \frac{\alpha M_{p}\left(E_{0}^{\prime}\right)}{\left(u_{0}^{\prime}+\ln e^{-u_{0}}\right)^{\alpha}}=\frac{\alpha M_{p}\left(E_{0}^{\prime}\right)}{\left(u_{0}^{\prime}-u_{0}\right)^{\alpha}}<\infty,
$$

where $E_{0}^{\prime}=\left(e^{-u_{0}}, \infty\right)$.
Hence, by Prokhorof's theorem, there exists a sequence $\bar{p}_{t_{n}, \alpha}\left(t_{n} \searrow 0\right)$ such that $\bar{p}_{t_{n}, \alpha}$ weakly converges to $G_{u_{0}}$ on $\left[e^{-u_{0}}, \infty\right)$. Thus, according to (11) and (12), we can show that

$$
\begin{equation*}
M_{p}\left(E_{0}\right)=\int_{e^{-u_{0}}}^{\infty} \frac{\left(u_{0}+\ln x\right)^{\alpha}}{\alpha} G_{u_{0}}(d x) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{i>0} \int_{a}^{\infty} \frac{\left(u_{0}+\ln x\right)^{\alpha}}{\alpha} \bar{P}_{t, \alpha}(d x)=\int_{a}^{\infty} \frac{(a+\ln x)^{\alpha}}{\alpha} G_{u_{0}}(d x) \tag{14}
\end{equation*}
$$

for every number $a>e^{-u_{0}}$.
We therefore conclude that $G_{u_{0}}$ is a unique limiting point of the family $\left\{\bar{P}_{t, \alpha}\right\}$, i.e. $\bar{P}_{t, \alpha}$ weakly converges to $G_{u_{0}}$ on E_{0} for every u_{0}.

It follows that, for every $u_{1}<u_{2}, G_{u_{2}}=I_{E_{2}} G_{u_{1}}$, and

$$
\bar{P}_{t, \alpha} \stackrel{w}{\Rightarrow} \begin{cases}G_{u_{1}} & \text { on } E_{1}, \\ G_{u_{2}} & \text { on } E_{2},\end{cases}
$$

where

$$
E_{1}=\left(e^{-u_{1}}, \infty\right), \quad E_{2}=\left(e^{-u_{2}}, \infty\right)
$$

Put $G=\lim _{u \rightarrow \infty} G_{u}$. By (12^{\prime}) we get

$$
\begin{equation*}
\lim _{t \rightarrow 0} \bar{P}_{t, \alpha}(E)=\frac{1}{\Gamma(\alpha)} \lim _{t \gtrdot 0} t^{-\alpha} P_{c, \alpha}(E)=G(E) \tag{15}
\end{equation*}
$$

for every Borel subset E with $\bar{E} \subset(0, \infty)$ and $G(\delta E)=0$.
By (14) we also get

$$
M_{p}\left(E_{0}\right)=\int_{e^{-u}}^{\infty} \frac{(u+\ln x)^{\alpha}}{\alpha} G(d x)
$$

Putting $u=0$, we get $\left(8^{\prime}\right)$, which completes the proof of Lemma 2. Proof of the Theorem. By Lemma 2 we have

$$
M_{p}\left(u^{-u}, \infty\right)=\int_{0}^{\infty} \frac{(u+\ln x)^{\alpha}}{\alpha} G(d x)=\int_{0}^{\infty} \int_{\ln x}^{u}(y+\ln x)^{\alpha-1} d y G(d x),
$$

whence, for $y=-\ln t$ and $d y=-d t / t$,
(16)

$$
M_{p}\left(e^{-u}, \infty\right)=\int_{0}^{\infty}\left(\int_{e^{-u}}^{s}\left(\ln \frac{s}{t}\right)_{+}^{\alpha-1} \frac{d t}{t}\right) G(d s)=\int_{0}^{\infty}\left(\int_{e^{-u}}^{\infty}\left(\frac{s}{t}\right)^{\alpha-1} \frac{d t}{t}\right) G(d s)
$$

where

$$
\left(\ln \frac{s}{t}\right)_{+}=\max \left(\ln \frac{s}{t}, 0\right) .
$$

From that it is easy to see that

$$
\begin{equation*}
M_{p}(E)=\int_{0}^{\infty}\left(\int_{E}^{\infty}\left(\ln \frac{s}{t}\right)^{\alpha-1} \frac{d t}{t}\right) G(d s) \tag{17}
\end{equation*}
$$

for every Borel set E with $\bar{E} \subset(0, \infty)$.
Moreover,

$$
\begin{equation*}
\left.\int_{0}^{\infty}(\Omega(t x)-1) M_{p}(d x)=\int_{0}^{\infty} \int_{0}^{s}(\Omega(t x)-1)\left(\ln \frac{s}{x}\right)^{\alpha-1} \frac{d x}{x}\right) G(d s) \tag{18}
\end{equation*}
$$

After changing the arguments under the integral by putting $x=s h$, we
obtain

$$
\int_{0}^{\infty}(\Omega(t x)-1) M_{p}(d x)=\int_{0}^{\infty}\left(\int_{0}^{1}(\Omega(t s h)-1)(-\ln h)^{\alpha-1} \frac{d x}{x}\right) G(d s) .
$$

Since the function under the integral is not negative, we get, by Fubini's theorem and formula (1), formula (3).

By (3) it is easy to show that

$$
\int_{0}^{\infty}(1-\Omega(t s h)) G(d s)<\infty,
$$

i.e. G is the spectral measure.

By Lemma 2, formula (5) is also true. As the second part needs no comment, the proof is completed.

Recall that a function $J(u)$, defined on $(-\infty, \infty)$, is said to be α-times monotone if $J(-\infty)=0$ and for any $t>0$ and $x>y$

$$
\Delta_{t}^{\alpha} J(x) \geqslant \Delta_{t}^{\alpha} J(y), \quad \alpha>0,
$$

where

$$
\Delta_{\imath}^{\alpha} J(u)=\sum_{k=0}^{\infty}(-1)^{k}\binom{\alpha}{k} J(u-k t) .
$$

Now we put

$$
M_{j}(E)=\int_{-\mathrm{in} E} d J(u) .
$$

For every Borel subset E with $\bar{E} \subset(0, \infty)$ we have the following
Corollary. Three following conditions are equivalent:
(i) The function $J(u) \alpha$-times monotone.
(ii) There exists a unique non-negative left-continuous monotone nondecreasing function J_{a} on R^{1} such that

$$
\begin{equation*}
J(u)=\frac{1}{\Gamma(\alpha)} \int_{-\infty}^{u}(u-x)^{\alpha-1} J_{\alpha}(x) d x \tag{19}
\end{equation*}
$$

(iii) The measure $M_{J_{\infty}}$ is of the form

$$
\begin{equation*}
M_{J}(E)=\int_{0}^{\infty}\left(\int_{E}\left(\ln \frac{s}{t}\right)^{\alpha-1} \frac{d t}{t}\right) G(d s) \tag{20}
\end{equation*}
$$

and $\int_{1}^{\infty}(\ln s)^{\alpha} G(d s)<\infty$ for some measure G.
Proof. (i) \Rightarrow (iii). Put

$$
\Delta_{c}^{\alpha} M_{J}=\sum_{k=0}^{\infty}(-1)^{k}\binom{\alpha}{k} T_{c^{k}} M_{J}=M_{\alpha, c} \quad \text { for } c \in(0,1)
$$

It is easy to show that M_{j} has the form (9^{\prime}) if and only if $\Delta_{c}^{\alpha} M_{J}(E)>0$ for every $c \in(0,1)$ and for every Borel set E with $\bar{E} \subset(0, \infty)$.

By Lemma 2 and formula (17) we conclude that (20) is true and (iii) is proved.
(iii) \Rightarrow (ii). By Lemma 2 and formula (17) it is easy to prove that

$$
\begin{aligned}
J(u)=\int_{-\infty}^{u} d J(u) & =M_{j}\left(e^{-u}, \infty\right) \\
& =\int_{0}^{\infty} \frac{(u+\ln x)^{\alpha}}{\alpha} G(d x)=\int_{0}^{\infty}\left(\int_{-\ln u}^{u}(u-t)^{\alpha-1} d t\right) G(d x) \\
& =\int_{0}^{\infty}\left(\int_{-\infty}^{u}(u-t)^{\alpha-1} I_{(-\ln x, \infty)}(t) d t\right) G(d x) \\
& =\int_{-\infty}^{u}(u-t)^{\alpha-1} G\left(e^{-t}, \infty\right) d t=\frac{1}{\Gamma(\alpha)} \int_{-\infty}^{u}(u-t)^{\alpha-1} J_{\alpha}(t) d t
\end{aligned}
$$

where

$$
J_{\alpha}(u)=\frac{1}{\Gamma(\alpha)} G\left(e^{-u}, \infty\right) .
$$

The implication ($\mathrm{ii} \Rightarrow(\mathrm{i}$) is immediate, thus the Corollary is proved.
Acknowledgement. The author thanks his adviser, Dr. Nguyen Van Thu, for help and encouragement.

REFERENCES

[1] N. V. Thu, Multiply self-decomposable measures in generalized convolution algebras, Studia Math. 64 (1979), p. 177-184.
[2] K. Urbanik, Generalized convolutions, ibidem 23 (1964), p. 217-245.
[3] - Generalized convolutions II, ibidem 45 (1973), p. 57-70.

Institute of Mathematics
Vien Toan Hoc
P. O. Box 631 Bo Ho

Hanoi, Vietnam

