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Abstract. Using the thinning operator there are defined stable 
and multiply selfdecomposable point processes. A representation for 
generating functional of such processes is gven. Moreover, stable 
and Poisson processes .are characterized as solutions of some 
daerential equations. 

0. Introduction, notation and preiirnisraries. En general distribution theory 
there exists a dual relationship between discrete probabilities and continuous 
ones. In particuIar, discrete stable, sel&decomposable (self-dec.) and n-times 
(n = 1 ,  2,. . .) self-dec. distributions (193 and [I]) share the basic properties 
with their continuous counterparts (cf. [6], p. 322, and [163). Thus, it is 
natural to study discrete a-times (0 < a  < cc) self-dec. distributions as 
analogues of continuous a-times self-dec. ones. The latter class of 
distributions was introduced by the second author in several ways (cf. 
[11 - 141). 

In this paper we study stable and a-times (0 < a  < oo) seld-dec. point 
processes (p. proc.). Since the distributions on Z+ = [O,  1, 2,. . .) can be 
interpreted as p. proc. on one-point space, our results are multi-dimensional 
extensions of that of Steutel and van Harn [9] and Berg and Forst [I] and 
stand for a multi-dimensional analogy of that in 1123. Moreover, we develop 
a new differential method for the representation of u-times self-dec. p. proc. 
Namely, we first prove that each a-times self-dec. p. proc. is a-differentiable 
(see Def. 0) and then obtain. the representation (Theorem 2.2) by an inverse 
operation. 

In the sequel we shall use the basic terminology concerning p. proc. and 
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random measures (r.m.) in [4] and [?I. Further, we introduce the following 
notation: 

X - a complete separable metric space; &I - bounded Bore1 subsets of 
X; 9 - continuous non-negative functions on X with compact support; Y 
- functions fi X --+ LO, 11 such that I-f E F; M, N - random and 
counting measures on X, respectively, equipped with the vague convergence; 
.P/M),  B(N) - r.m. and p. proc. on X, respectively, equipped with the weak 
convergence; L P ( . )  - the Laplace transform of P E ~ ( M ) ;  G p ( . )  - the 
generating functional of PE 9 ( N )  defined by 

P (c 3 0) - the image of PE .41P(M) under the mapping T, defined by T , p  
= c p  ( P E  M ) ;  D, (0 < < 1) - the thinning operator defined on P(N) (cf, 
[7], p. 91, and [4], p. 9); Lo: = L,(N) - the infinitely divisible (id.) p. proc.; 
P - the canonical measure of an i.d. p, proc. P (cf. [4], p. 39); A l p ,  t ]  - 
the r.m. P,'where P E  .P(M), t 2 0, and the power is taken in the convolution 
sense (we assume that P is i.d. if t is a non-integer number). 

Definition 0.1 (cf. [123). A p. proc. P on X is said to be a-times self- 
dec. (0 < a < a) if for every 0 < c < 1 there exists an id.  p. proc. T/, ,  such 
that 

where * denotes the convolution operation. Further, P is called conpletely 
self-dec. if it is ol-times self-dec. for each a > 0. 

Let L: = &(N) denote the class of all a-times (0 c u d m) self-dec. p. ' 

proc. on X. 
Remark 0.1. (i) For u = 1, 2 and X = (x) the concept of a-times 

seH-dec. p. proc. reduces to that of discrete multiply selfdec. probabilities 
Id. C1, 161). 

(ii) For or = 1, 2,. . . Def. 0.1 is equivalent to the following: 
P E L ,  iff for every 0 c < 1 there exist P ,,.. ., Pa such that P  

= D C P * P l ,  PI = D c P * P z  ,..,, Pa- ,  = D , P , - , * P ,  (cf. [12]). 
Definition 0.2 (cf. [15]). A p. proc. P is said to be a-differentiable (0 

< a  < ao) if PEL, and there exists a limit 

where P , ,  is as in (0.1) and t = -1ogc. 
Definition 0.3. A p. proc.. P is said to be stable if there exists a p. 

proc. Q and a sequence (c,) c (0, 1) such that P = lim D,,, Qn. 
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Remark 0.2. (i) If X = {XI, then stable p. proc. are exactly discrete 
stable probabilities as defined by Steutel and van Harn [9]. 

(ii) P E  9(N) is stable iff either P is a Poisson p. proc. or - 
(0.3) 3a40.1) Q C E ( 0 . 1 ,  DC P = ca P. 

Remark 0.3. Replacing the operator D, (0 < c < I) in Definitions 0.1, 
0.2 and 0.3 by T, we get the corresponding concepts for r.m. on X. 

1. Stable. p int  pesm. Consider a stable r.m, W on X with canonical 
measure [K A], where aE M and A is a measure on M \ (0) (cf. [4J, p. 39). By 
virtue of A. 6.1 [4] and Borel-Cantelli lemma it follows that there exists a 
strictly positive continuous function h on X such that hW is supported 
by the subset Mh of M consisting of finite measures. Moreover (cf. 141, Thm- 
rem 6.1), 

Further, from C83 it follows that ' if W # E, ( p ~  M), then there exists an 
a, 0 < a < 1, and a finite Bore1 measure G on M\{O) such that 

where A is a Borel subset of M\ (0). , 

Conversely, if G is a finite Borel measure on W{O), then (1.2) defines a 
canonical measure corresponding to a stable r.m. Hence and by Theorem 6.1 
14) we get the folkwing 

THEOREM 1.1. Let W be w stable r.m. on X .  Then there exists a measure 
V E  M such that 

or there exists a number a, 0 < a  < 1, and a .finite Bore1 measure m on M\(O) 
such that 

Conversely, fur any u, a, G as mentioned above, formulas (1.3) and (1.4) 
define some stable r.m. on X .  

Let Q, denote a Poisson process on X with intensity  EM. Given an 
r.m. W let Qw denote the Cox process directed by W (cf. [5]) .  It is wasy to 
verify that if W is id. with canonical measures [v ,  A], then Qw is id. and 
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Further, from Def. 0.2 and Theorem 8.4 [4] it follows that each stable p. 
proc. is Coxian. By the obvious relation D, Qw = QTEW we infer that a Cox 
process Qw is stable iff W is stable. 

Let Qw be a non-Poisson stable Cox process. By iirtue of (1.2) and (1.5) 
it follows that 

which, together with Theorem 6.1 [4], implies the following ' 

THEOREM 1.2. Ler P be a stable p. proc on X .  Then P is a Poisson process 
or there exists a number a, 0 < a < 1, a strictly positive continzrous function h 
on X and a ,finite Bore1 measure on M\[O) such that 

Conversely, f i r  any a, h, G as mentioned above, fbrmula (1.7) defines some 
stable p. proc. on X .  

Remark. The index a is the same as in (0.3). P is Poissonian iff it is a- 
stable with o = 1.  

2. a-times self-decomposable p int  processes. Suppose that P is an a- 
times self-dec. (0 < ct < m) p. proc. on X. Then, by Def. 0.1, it follows'that 
for every 0 < < 1 there exists an i.d. p. proc. V =  K,, on X such that 

Hence we get 

Let us fix a function cp on X such that l - e - 9  belongs to Xand put 

(2.3) g ( ~ ) = - l o g G ~ ( l - r - ~ + ~ )  (340). 

It is easy to see from (2.2) that if PE La, then 

for any s d 0 and t 2 0. 
Consider a particular case where X consists of d points (d = 1, 2,. . .). 

Then a p. proc. P on X can be identified with a distribution on ~ d , .  Let P be 
an u-times self-dec. distribution on z$. By an elementary argument we see 
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that the function g defined by (2.3) is OF class Cm. Therefore there exists a 
limit 

which implies that there exists an i.d, distribulion R on ~ d ,  such that 

log G, ( f )  = Iim t -" log GVCf), 
I -*D+ 

where f E [ O ,  1) x . . . x [O, 1 )  (d times), V = t/,,, and r = - log c. From (2.6) it 
follows that each a-times self-dec. distribution on Zd, is %-differentiable, i.e. 
there exists a limit 

(2.7) D" P = A = lim A [K.,, t-"1, 
t -0 + 

where r = - log c. 
Now suppose that P is an a-times self-dec. p. proc. on a separable 

Polish space X. Let E l , .  .., Ed be disjoint sets in 9. Denote by Q the image 
of P under the mapping N s  w(pE,, . . ., pEd)€ Z: . Then Q is an a-times 
self-dec. distribution on Zd, . Hence (2.7) holds with P -replaced by Q. Finally, 
by Lemma 5.1 [4] it follows that (0.3) holds. Thus we have proved the 
following 

THEOREM 2.1. Ecery z-times self-dec.'(O < cx < a) p. proc. on X is a- 
differentiable. 

In the sequel we shall need the following lemma: 
LEMMA 2.1. For each Q E Lo 

Proof is similar to that of Lemma 2.5 [14] and is omitted. 
The following theorem gives a representation of a-times self-dec. p. proc. 

on X: 
THEOREM 2.2. PE L, (0 < z < zo) ifl there is Q E  Lo such that condition 

(2.8) is satisfied and 

(2.10) log G, (f) = LL l u Q 1  l o g ~ ~ ( l  - - e - ' + r U f l d u  ( f ~  ;P). 
(4 

0 
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Moreover, we get the formula' 

Proof. Given PEL,, define a function g by means of (2.31, where rp is 
fixed. Since P is a-differentiable (Theorem 2.1) there exists a limit 

Hence (see e.g. [2]) 

By (2.2)-(2.4) and Theorem 2.1 we infer that the function k defined by 
(2.12) is of the form 

where Q = P P .  Hence and by (2.13) we get the formula 

- m 

In particular, for s = 0 and f = 1 -e-'P formulas (2.15) and (2.3) together 
imply (2.10). 

Note that 

for every A E  8 (cf. [4], Theorem 6.1). 
The last condition together with (2.10) implies that 

or, equivalently, 

Hence and by Lemma 2.1 the "only if' part of the theorem is proved. 
The "if part" is clear (cf. Theorem 6.1 141). 
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3. Completely mlf-daompalble ]paint processes a d  radom measures. In 
this section we apply the extreme point method to give a representation of 
infinitely selfaec. p. proc. and r.m. First we prove the following 

PROPOSITION 3.1. Every p. proc. in L, is C o x i ~ n .  
Proof. S tep  1. X is a d-point space (d = 1, 2 ,... ). Then a p. proc. 

PEL, can be identified with a distribution on Zd,. 
Let C = Zd, u (003 denote a compactification of Zd, and H the class of 

all probability distributions 1 on C such that Rj,\(o,,) is a canonical measure 
of some completely self-dec. distribution on ~ d , .  Obviously, H is convex and 
compact. Let IZ be an extreme point of H. Then, either R = E,, ,I = E,  or R 
= A,&, with 1,3 0 and C d, = 1. In the later case we put 

n*O n 

where In1 = n, + . . . + n, whenever n = (n, , . . . , n,). It is clear that O < u < 1. 
Next we. define 

1 
y1 = DL JIz: \to) and 

It is easily seen that y,,  y2 E H and, moreover, 1 = rwy, +(1 -a) y2,  which 
implies that A = y ,  = y,. Thus we have proved that, for each 0 < c < 1, there 
exists an u(c) such that D, IIJ,:\t,l = a(c) A, which implies that there exists a 
number Q, O < a < 1, such that u(c) = ca. 

Hence and by Remark 0.2 it follows that R is a canonical measure of a 
stable distribution on Zd, . On the other hand, every y E H, concentrated on 
Zd, \{O), is the convex combination of extreme points of H concentrated on 
Zd, \lo). Consequently, every completely self-dec. distribution P on Zd, is the 
limit of finite convolutions of stable distributions. Therefore, P is a Cox 
distribution. 

S tep  2. X is an arbitrary separable Polish space. Let P belong to L,. 
Then, for any finite sequence B,, . . ., 3, of pairwise disjoint subsets of a, the 
image of P on Zd, under the mapping M 3 t-+(pB,, . . . , pB,) is completely 
self-dec. By Step 1 and by a simple argument it follows that P is Coxian. 

Consider a completely selfdec. r.m. W = [a, A] on X, where a, 1 are 
canonical measures of I.t: a~ M and 1 is a measure on M\(O}. From the 
proof of Theorem 6.1 [4] it follows that there exists a strictly positive 
continuous function h on X such that 

Thus, defining m(dp)  = (1 - e -@)  l(dp), we get a finite measure on M 
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Given a subset K of M we put t(K) = { t p :  r > 0, ~ E K ) .  Further, using 
1 -e-" as a weigh[ function on M one can prove the following (cf. [ I l l ,  
Lemma 3.4) 

LEMMA 3.2. Let i, be a carwnicul measure of a completely self-dec. p.m. on 
X .  Tlzn there exists a decomposition A = Ah, where each 1, is a canatrical 

k 

measure of a completely seFdec. r.m., Ak is concentrated on r(Mk), Mk is a 
compact subset of M ,  09 M ,  and the sets z (Mk) ,  k = 1 ,  2, ..., are disjoint. 

This lemma reduces the study of canonical measures A of completely 
self-dec. r.m. to the case of measures concentrated on .r(E), where E is a 
compact subset of M and 04 E .  

Let T(E) be a compactification of T I E )  and H the class of all probability 
measures m on F(E) such that if p is the restriction of m to z(E) ,  then the 
measure ~ ( d p ) :  = [@(p)J- ' y (dp), where @ (p) = 1 -exp (- ph), p E z (E), is a 
canonical measure of a completely self-dec. r.m. 

By the same method as in the proof of Theorem 6.4 [11] one can show 
that if rn is an extreme point of H concentrated on r ( E ) ,  then the measure 
2(dp)  = [ @ ( p ) ] - '  rn(dp) is a canonical measure of a stable r.m. Therefore, by 
Theorem 1.3, there exist a number a, O < a  < 1 ,  and p ~ . r ( E )  such that 

where A is a Borel subset of z (E) and h is the same as in (3.1). Consequently, 
by Krein-Milman-Choquet Theorem ([g], Chapter 3), it follows that if y is a 
canonical measure of a completely self-dec. r.m. and y is concentrated on 
z (E), then there exists a finite Borel measure G on z (E)  x(0, 1) such that, for 
every y-integrable function r p  on z (E) ,  we get 

m 

(3.3) j rp(p)~)y(dp)= 1 J(~h)-"cp(t~)f-"-~dtG(d~,da). 
r ( E )  HE)  x ( 0 , l )  0 

We now turn our considerations to an arbitrary canonical measure R of 
a completely self-dec. r.m. By Lemma 3.2 and by the above arguments it 
follows that there exist finite measures G, (k = 1 ,  2,. . .) such that each G, is 
concentrated on TIM,) x (0, 1) and 

(3.4) (' rp i ~ )  h: ( d ~ )  = C J rp (A 
M({OI k r ( M h )  

m 

= 2 j J (ph)-" rp ( t p )  t -" -  dt G, (dp ,  da) 
k r (Mk)  x (0.1) 0 

1 ,  

= J j j (ph)-" rp ( t p ) t f a -  dtG(dp, da),  
M\{OI 0 0 

where G = G,. 
k 
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Since 
J ( l - e x ~ ( - ~ h ~ ) ~ ( d ~  a, 

M\l'JI 

we infer that G is a finite measure on [M\(O)] x ( 0 ,  1). 
Conversely, it is easy to prove that for every finite measure G formula 

(3.4) defines a canmica1 measure of a completely self-dec. r.m. 
Finally, by (3.4) and Theorem 6.1 [4], we get 
THEOREM 3.3. k t  W be a completelj~ selfaec. r.m. on X .  Then there exists 

a measure OEM, a strictly positive continuozrs function l z  on X and a .finite 
Borsl measure G on [A4 \ { Q ) ]  x (0, 1) such that 

1 

(3-5) - l ~ g L w ( f ) = u f +  5 S ( d Y ( ~ h ) - ~ G ( d ~ , d a )  (f~*. 
M\@I 0 

Conversely, jbr any v, h, G us mentioned above, formula '(3.5) defines some 
completely self-dec. r.m. 

Since every p. proc. P ' s L ,  is Coxian (Proposition 3.1), we infer that 
there exists a completely selfdec. r.m. W such that P = Qw. Hence and by 
Theorem 3.3 we get the following 

THEOREM 3.4. Let P be a completelv self-dec. p. proc. on X .  Then there 
exists a strictly positive continuous function h on X and a ,finite Borel measure 
G on [M\[Oj] x(0, 1 )  such that 

1 

(3.6) -logGpCf)= 1 JCu(l-f)Ja(ph)-aG(dp,da) C~EX) .  
M\lO! 0 

Coriversely, for any h, G as mentioned aboue, forrmla (3.6) defines a 
completely self-dec. p. proc. on X .  

A simple consequence of the above theorems is the following 
COROLLARY. The class of all completely self-dec. p. proc. (r.m.) is the 

smallest class containing all stable p. proc. (r.m.) and closed under convolution 
operarion and weak convergence. 

4 Concluding remarks. In the same way as in 1121 one can prove the 
following 

THEOREM 4.1. (i) For each a, 0 < a < co, L, is closed under convolution 
operation and weak convergence. 

(ii) For any a and B, 0 < a < /? 6 a, 

(4.1) Lo % 
(4.2) L @ =  n L,, 

0 < y  <a 

where the bar denotes rhe closure in the weak topology. 
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The following theorem is a discrete analogy of Theorem 4.2 [15]: 
THEQREM 4.2. A p. proc. P E L ,  0 < a  < co, is stable i$, fur some a, 

O < n < l ,  

(4.4) LP P = A [ P ,  a"]. 

In particular, P E L ,  is a Poisson process Sflr it is a fixed point of D". 
Proof. It is clear that if P is stable, then PEL, and (4.4) holds. 

Conversely, suppose that P E L ,  and (4.4) holds. Then P belongs to L,. 
Therefore, if its generating functional is gven by (3.61, then we get the 
equation 

1 '  

= J j C c c ( l - f ) = ( ~ h ) - " d G ( d ~ , d x )  ( S ~ r n ,  
M\iW 0 

which implies that the measure G is concentrated on [M\{O>] x ( {a ] ) .  
Consequently, G, is of the form (1.10) and P is a-stable. In particular, for a 
= 1, D" P = P iff P is a Poisson process. 

By the same d m e n t i a l  method as in Section 2 one can prove the 
following 

THEOREM 4.3. An r.m. W on X is E-times self-dec. (0 < ct < co) @ there 
exists an i.d. r.m. V such that 

and 
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