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A CLASSIFICATION OF RANDOM MEASURES

BY

NGUYEN NAM HONG (Hanor)

Abstract. Modifying the definition of a-times (0 < a < o0) self-
decomposable (selfdec.) distributions on linear spaces due to N. V.,
Thu, we define a-times selfdec. random measures (r.m.) on a Polish
space. We prove representation theorems for such r.m. and study
some related limit problems.

Throughout the paper we preserve the terminology and notation of [2].
Recall some of them. Let o be a Polish space, # — the ring of all bounded
Borel subsets of ¢, F, — the class of all continuous functions f: ¢ —» R,
= [0; o) with compact support and M — the class of all Radon measures
on o. We shall consider M as a Polish space with the vague topology. By a
random measure (r.m.) on ¢ we mean a Borel probability measure on M. By
M, we denote the class of all infinitely divisible random measures (i.d.r.m.)
on ¢ (cf. [2]). '

Let L, denote the Laplace transform of an i.d.r.m. P on ¢. By v1rtue of
Theorem 61 in [2] we get the formula

(1) —logL,(f) = m(f)+i(l—e V), fe#.
where me M, 1 is a measure on M’ = M\{0} satisfying the condition
2) - Al—e ™)<, Bea.

In what follows (m, 4) will be called canonical measure of P and we write
P = (m, 1). Further, by L, we denote the class of all measures A on M’
satisfying condition (2).
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For every >0 and k=0, 1,... we put

' 1
r,,k=(“+k“1)= a(@+1)...(a+k—1)
' k k!

Given a number ¢ > 0 and an r.m. P on o, we define an r.m. 7, P on ¢ by
T.P(Ey=P {y: cucE}

for every Borel subset E of M.

The concept of a-times selfdec. probability measures on linear spaces
was introduced and studied by Thu [5, 6]. In the same way one can define -
times selfdec. r.m. Namely, an r.m. P on ¢ is said to be a-times selfdec. if for
every ce(0, 1) there exists an idr.m. P,, such that

if k=0,

if k=1,2,...

(3) P= % TZkA(Pa,c; ra,k)9
k=0
where for an i.d.r.m. Q and t > 0 the symbol 4(Q; t) denotes @* and =* is the ~
convolution operation.
Further, if (3) holds for some fixed ce(0, 1) and P,.e M,, then we say
that P is a-times c-decomposable (c-dec., cf. [4]).
By M, (resp. M, ), 0 < a < oo, we denote the class of all a-times selfdec.
(resp. c-dec)) r.m. on ¢. Further, the r.m. in
M, = ﬂ M, (I'CSp. Mao.c'= ﬂ Ma.c)
a>0 a>0 '
~ are called completely selfdec. (resp. completely c-dec.).
, Anr.m. Pe M, is said to be a-differentiable if the following limit exists in
the weak sense: '
D®P=LimA(P, ;t™");
t—0 .
P, is determined in (3) with ¢ = e~ (cf. [6]). For every r > 0 and Be # we
put M,(B)={ eM: uB >r}. '
The following theorem is an analogon of Theorem 2.1 in [4] and its
proof will be omitted: :

THEOREM 1. The following statements are equivalent:

(i) The infinite convolution * T, A(P;r,,) is weakly convefgent.
k=0

G) [ log*uBP(dw) <, Bed.
M,(B)

(i) | log*uBi(dp) < oo, BeA.

M(B)
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Let M,, denote the class of all Pe M, satisfying condition (i) of
Theorem 1. Further, by L,, we denote the class of all Ae L, such that P
=(0, e M,,.

THEOREM 2. The following statements are equivalent:

(i) PeM,.

(i) PeM, and {A(P,.;t™%), t>0,c=e""} is relatwely compact in the
weak sense.

(iil) There exist an mye M and a A, Lo, such that

~logL,(f) = ma(f)+f%;)j ’1;_,/1‘,(1—e—’rf)t“‘"1 dt, fe4%F,

(iv) P is a-differentiable and D‘“)Pe M,y,.

Proof. Suppose first that (i) holds, ie. PeM,. By an elementary
argument we get 1—e”? >c(1—e7?) for every ce(0, 1) and y > 0. Con-
sequently,

Le(f) < {Lp, (N} 7075 fe..
By the last inequality and Lemma 4.5 in [2] we can show that

(APt 79, 1> 0,c=e™)

is relatively compact which proves (ii).
Now we assume that (ii) holds. Let P, —(m,,, 4y) be a limit point of
A(P,.;t7%) as t— 0. By Theorem 2, X.9, in [1] and by the fact that

1 _ _
= ey
mn@je
0

(4) Fox

it follows that m, = m and

[+.+]

(5) A(l—e ™) =—1—)J"1;_,11(1—e—"f)t“_1dt, feZF

0
which implies (iii). ‘ '
Finally, if (iii) holds, then by (4), (5) and Theorem 2, X.9, in [1] it follows

~ that

6) A= mznﬂhmm

s—~0k=0

Putting, for ¢ > 0, t, = t/2", ca=e ™ and

2’”‘ = Z Tok ﬂﬁ(t:la): n= 0, 1, 2,...,
k=0
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we get

(7) . Pt.n = (mzv A!,H)EMG,CH'

Note that, for every ce(0, 1), M, is closed in the weak topology and
M, is contained in M__,. Then (6) together with (7) imply that Pe M _,.
‘Since t >0 is arbltrary, we conclude that Pe M,. Hence (ii) holds.

It is easy to show that P,=(m,, 4,) is uniquely limit point of
A(P,.;t™% as t = 0. Thus (iv) is proved.

It is clear that (iv) implies (i). Theorem 2 is thus proved.

Let S, denote the class of all finite convolutions of stable ms. on ¢ and
their cluster points. ' :

Tueorem 3. The following statements are equivalent:
(i) Pe M
(ii) Pe§,
(i1) There exist an me M, a subset K of (0, 1}xM' and a probability
measure i, on K such that

—log Lp(f) = m(f)+ [ [u(/)]" A (dwdp), feZ.
M ‘

Proof. By Theorem 1 in [3] one ‘can show that (ii) implies (ii). It is
clear that (ii) implies (i). We shall prove that (i) implies (iii). Suppose that P
=(m, \)eM,. Let L, be the set of all measures A'e L, such that P’
=(0, A)e M. By the arguments similar to those given in the proof of
Proposition 11.5 in [7] one can show that L is the union of its caps (see
[7], Section 11). Suppose that 4 is in a cap C of L. Note that if R, ! is an
extreme ray of L, (see [7], Section 11), then [ is a canonical measure of a
stable r.m. on o. By Theorem 1 in [3] and Proposition 11.1 in [7] the
extreme non-zero points of C are of the form [, , with we(0, 1], ue M’, such
that I, ,(1—e 7y =[u(N]" feF.. By Choquet’s theorem ([7], Section 3)
there exists a probability measure [, on the set e x C of all extreme points of
C such that

e xC

A(lme"ff)= [ ll—e ™)l,@), fe#,

~ Let ¢ be'the- mapping from (0, 1] x M’ into the set of all canonical
measures of stable r.m. on ¢, determined by the formula

ow, p(l—e )y =[u(N1", feZ.
Put k = ¢ (axC) and A o =lo0 1. We get (iii). The proof of Theo-
rem 3 is completed.

Now, by a minor changing the proof of Theorem 5.1 in [5], one can
prove the following
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THeEOREM 4. (i) Every M, (0 <a < ¢0) is closed under convolution
operation shifts changes of scales and passages to weak limits.
(ii) For.any 0<a < f < o,
MycM, M= (N M, M,={ M,
O<y<p - P>

where the bar denotes the closure in the weak topology.
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