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Abstract. The representations of Wiener process by uniformly
convergent series of one-dimensional Gaussian random processes in
a separable Banach space are given (Section I). The Ito stochastic
integral of an operator-valued random function by a Wiener process
in a Banach space is defined (Section III}; Section II contains an
auxiliary material: there is defined a stochastic integral of a random
function with values in the dual space.

The method of the paper is based on the use of the concept of
covariance operator.

Let X be a real separable Banach space, X* — its dual, (Q, 4, P) — a
probability space, and x4 — a centered Gaussian measure on the Borel o-
algebra of X. It is well-known [16] that the characteristic functional of u has
the form ’

ﬁ(x*) = cxp{—% <RX*: X*>}s
where R: X*— X is a symmetric positive linear operator called the
covariance operator of u. Symmetric and positive linear operators R: X*
— X, which are covariance operators of Gaussian measures, are called

Gaussian covariances. A random element in X is called Gaussian if its
distribution is a Gaussian measure.

I. Wiener processes. A family of random elements (W),4o,1;, W: 2 > X
is called a (homogeneous) Wiener process (with values in X) if

1. W, =0 almost surely (a.s.);

2. for every O0<to <ty < ... <, <1, W
independent random elements;

3. for every te[0, 1], W, is a centered Gaussian random element with
covariance operator tR, where R: X* - X is a fixed Gaussian covariance;

W, (i=0,...,n—1) are

+1
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4. (W):e[o 1 has as. continuous sample paths.

If X is a finite-dimensional Hilbert space and R is the identity operator
then our definition of Wiener process coincides with the usual definition of
finite-dimensional Wiener process. It is clear that if X is an infinite-
dimensional Hilbert space, then there does not exist a Wiener process for
which R is the identity operator. Our definition is a direct extension of the
definition of a Wiener process for the Hilbert space case ([16], p. 113).

Gross [5] gave the definition of a Wiener process in the Banach space:
using the concept of a measurable norm in a Hilbert space, he constructed a
family of Gaussian measures (i)0,;); then, applying this family, he
constructed a random process and verified the condition guaranteeing the
continuity of this process. Here we propose another way of constructing the
Wiener process in a Banach space.

Let C([0, 1], X) be the vector space of all continuous functions from
[0, 1] into X. This is a separable Banach space with the norm

IAlle = Sup IIf @)llx-
tel0,1]

The functionals §, .+, te[0, 1], x* e X*, defined by {f, J, > = {f (1), x*),
separate points of C([0, 1], X), i.e. the set I' = {, .+, te[0, 1], x*e X*} is a
total subset of the dual Banach space C([0, 1], X)*.

ProrosiTioN 1.1. Let (W,),q0,1) be a Wiener process in X. Then the
random element W: Q— C([0, 1], X), defined by the equality W(w)(t)
= W, (w), is a Gaussian random element in C([0, 1], X).

The covariance operator of W on the elements 0,,.€ I takes the values
(Rw &, ) (s) = min(t, s) Rx*, where R is the covariance operator of W;.

Conversely, if W: Q— C([0, 1], X) is a centered Gaussian random
element with the convariance operator (Ry d,,,+)(s) = min(t, s) Rx*, where R is
a Gaussian covariance in X, then the random process W,(w) = W(w)(t) is a
Wiener process in X, and the covariance operator of W, is R.

Proof. The measurability of the map W: Q- C([0, 1], X) follows
from the continuity of sample paths of the Wiener process (W),o,1;- The
process (W)qo,1; is Gaussian, ie. for all ¢;,...,t, and xf, x3,..., x¥,

PRUAE S

is a Gaussian random variable. Therefore, for all ¢* from the linear span
L(I') of the total set I, <W, ¢*)> is a Gaussian random variable, hence
(W, @*> is Gaussian for all ¢*eC([0, 1], X)* ([13], th. 11), ie. W: Q
— C([0, 1], X) is Gaussian. The covariance operator Ry of the random
element W transforms C([0, 1], X)* into C([0, 1], X) and

<RW51,x*(s)’ y*> = <RW51,x*: as,y*>
= E(KXW,, x*} (W, y*>) = min(t, s) {Rx*, y*).
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Conversely, if W Q- C([0, 1], X) is a centered Gaussian random
element with the covariance operator (Ry 6, ,+(s) = min(¢, s) Rx*, then the
random process W,(w) = W(w)(t), weQ, te[0, 1], is a Wiener process in X.
In fact, fulfilment of conditions 1, 3, and 4 of definition of the Wiener process
immediately follows from the properties of the random element W. Tt is easy
to verify that, for all n, 0<¢; < ... <1, <1 and x¥,..., x*_, from X*, the

random variables (W, —W,, x¥>, i=1,...,n—1, are non-correlated.
Hence the Gaussian random variables M., W, xFy, i=1,...,n—1, are
independent, i.e. the random elements W, -W,, i=1,...,n-1, are

independent. Proposition is proved.

The following theorem is a generalization of the one-dimensional Ito-
Nisio theorem ([6], th. 5.2). It shows also the existence of the Wiener process
in a separable Banach space for every Gaussian covariance R.

THEOREM 1 1. Let (e,)ney be an orthonormal basis in L, [0, 1], and (£,),n
— a sequence of independent identically distributed centered Gaussian random
elements in X. Then the series

a t
Y [e.(r)dté, (w) =W,
n=10 i
a.s. uniformly in t converges in X, and the sum (W)),qo,1; is a Wiener process
in X.
The covariance operator of W, is tR, where R is the covariance operator

of &.

Proof. We first show that, for some ¢ > 0

: (1.l }}
P<limsu >crr=0.
{ n-oo P {\/ logn
It follows from the Chebyshev inequality that
: E 2 2
p {w: I c} < EexpGlit?) _ Eexp(lica?)
(logn) e* (log n) n*

for all positive constants o and c. The Fernique theorem [4] implies the
existence of an « > 0 such that

Eexp(@|lé ) =c; <o  forall n=1,2,...

Choose the constant ¢ > 0 such that ac? > 1. Then

HERe
Pl{w: ZCp <
{‘" (logn) = f = ype?

o [I<.ll
Plw:
ngl {w A /log n g C}

and the series
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is convergent. Hence, by the Borel-Cantelli lemma, we have

: (<] }}
Pllimsup{——=—=>cp} =0,
{ n—»mp{\.flogn

NEdl =0(/logn), n=1,2,... as

Let now (e, ),y be the Haar orthonormal basis in L,[0, 1]. It is well-
known (see e.g. [8], §21) that the number series

ie.

o

Y o fer)dr
0

k=1
is uniformly in t absolutely convergent if [la]| = O(k?) for any & <3.
Therefore the estimation of tails of |||, n =1, 2,..., gives the convergence
of the series

w 1

Y fen)dr g,

k=10
a.s. uniformly in t if (e,),v is the Haar basis. It is evident that the sum will
be an X-valued function a.s. continuous in t, i.. it represents a random
element in C([0, 1], X). The random element W: Q — C([0, 1], X),

Wo)(t) = z jek(t)dr &, tel0,1], weQ,

k=10
is Gaussian with zero mean and ,
a 1 o 8
<RW61,x*a 53.y’*> = E( Z j.ek('c) dt <ék, x*>)( Z Iek (T)d‘l.' <€k, y*>)
k=10 k=10

s

ek(T)dT jek(r)dTE <€ks x*> <ék! y*> = min(t’ S) <Rx*3 y*>
0

4]
=2
k=1

Therefore, the sum

‘OL-, -

Y fec(@)dré,

k=10

is a Wiener process. The existence of the Wiener process is proved.
Let now (e,),v be an arbitrary orthonormal basis in L, [0, 1] It is clear
that {.: @ — C([0, 1], X),

(@) (1) = fek(f)dr'fk(w) k=1,2,...,

are independent symmetric random elements in C([O 1], X) Let

Sy Q_)C([Os 1]7X):Sn= ZCI" n=1,2,..,
k=1
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be a sequence of partial sums, p, be the distribution of the Gaussian random
elements S,, and /i, be the characteristic functional of the measure yu,. Then

n

[, (01,x) = exp{—1 3 ([e (r)dr)* (Rx*, x*>}
: 0

k=1
- exp { —3t (Rx*, x*} = iy (3,.0),

where fiy is the characteristic functional of a measure on C([0, 1], X)
corresponding to a Wiener process (Wiener measure). It is easy to see that on
the linear span of I' we also have [i, — [iy. Hence, by the theorem of Ito-
Nisio ([6], th. 4.1), we have the a.s. convergence (S,),., i-€. the a.s. uniformly
in t convergence of the series

oo ¢
Z j"ek(r)d'c S
k=10

to a Wiener process. Theorem is proved.

Now we shall construct another series of independent real-valued
Wiener processes with coefficients from X, which will converge a.s. uniformly
in t to the Wiener process in X. First we note that, by the factorization
lemma ([16], p. 135), the symmetric and positive operator R: X* — X can be
factorized through the separable Hilbert space H: R = AA*, where A: H
-+ X is a continuous linear operator.

THEOREM 1.2. Let R = AA* be a Gaussian covariance, A: H— X, H be a
separable Hilbert space. Then, for any orthonormal basis (h,),.y in H and any
sequence ((,(t), te[0, 11) of independent real valued Wiener processes, the
Series

Y AhL@O) =W, te[o,1],

a.s. uniformly in t converges in X and the sum (W,),q0,1) is @ Wiener process in
X. The covariance operator of W is R.

Proof. By Theorem 1.1, for any Gaussian covariance R there exists a
Wiener process (W),qo,1; in X, and we can consider the corresponding
Gaussian random element W in C(f0, 1], X). Introduce a sequence of
independent symmetric random elements

M Q- C([0,11, X), m = Al &ty k=1,2,...

Let S,= )Y m, i, be the distribution of S,, fi, be the characteristic
k=1

functional of u,. It is easy to see that, for J, ,-eT,

ﬁn (5t,x*) = exp'(—%t Z <Ahk: x* >2)
: k=1 .
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and

n—w@

lim f,(8, ) = exp(—%t Y. (, A*x*)7)
k=1

= ﬂxp(—%t <Rx*’ x* >) = ﬁW (6t,x”‘):

where (-,*)y means the inner product in H. Since the convergence fi,— fiy
takes place on the linear span of I' and since I is total, we see, according to
the Ito-Nisio theorem, that (S,),.y converges as. in C([0, 1], X), ie. the
series

S Ah ()
k=1

converges a.s. uniformly in ¢ in X. It is clear that the limit process is a
Wiener process in X. Theorem 1.2 is proved.

Remark. The mentioned results have been announced in our paper
[10] Chevet [1] obtained these results independently and practically
simultaneously by a different method. These theorems have been considered
also in [12] but the proof of the existence of Wiener process in [12] is not
correct.

Let H be a separable Hilbert space. Define by L, ([0, 1], H) the
separable Hilbert space of vector functions ¢:[0, 1] — H for which

1
fllo@lifde < 0.
0

LemMMmA 1.1. Let uy be a Wiener measure on C([0, 1], X) with the
covariance operator (Ry 6, ,+)(s) = min(t, s) Rx*, 6, ,-€I', where R: X* — X is
a Gaussian covariance in X, and let AA* = R be its factorization through a
separable Hilbert space H(A: H — X). Then the operator

T: L,([0, 1], H)~ C([0, 1], X), Th(t) = [A(h(v))dz
0

transforms the canonical Gaussian cylindrical measure on L,([0, 1], I|1) into
pw on C([0, 1], X).

Proof. It is sufficient (see e.g. [2]) to proof the coincidence of the
operators TT*: C([0, 1], X)* — C([0, 1], X) and Ry.. To this end it suffices
to prove that they coincide on the total subset I' = C([0, 1], X)*. So we
have to verify that

({TT* 8, 4, 050> = (R Oy s, O5ps>  foOr all- t,se[0, 1] and x* y*e X*.

Let - heL,([0, 1], H). We shall calculate (T*§, ., h)yym, Where
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(*s "), means the inner product in L,([0, 1], H). We have

(T* 6!,:”‘9 h)Lz(H) = <Th’ 5l.x">
'

= }(Ah('c), x*>dt = [(h(z), A*x*)gdr
0

0
= (Xro.0 A*X*, WL,y
where 0, is the indicator of the set [0, t], i..
1, 1€[0,1t];
0, t¢[0,1].
Consequently, T* 9, .« = yj0,q A* x*. Then

(TT*0, s, Og ) = o, A* x*, Y09 A* ¥y*)
= _min(t, ) {Rx*, y*>,

ie. TT* = Ry. Lemma 1.1 is proved.
Now we proof that all Wiener processes have the representation
established in Theorem 1.1. ..
THEOREM 1.3. Let (W))q0,1; be an arbitrary Wiener process in X, and
(ewnev — an orthonormal basis in L, [0, 1]. Then there exists a sequence
(Enen of independent identically distributed centered Gaussian random elements
in X such that

X0, ()= {

W@ =Y [a@db@ as

k=10 .
Proof. Let (W), be an arbitrary Wiener process and let the
covariance operator of W; be R = AA*. Since the operator

t
T L, ([0, 1], H) - C([0, 1], X), Th(t) = [Ah(r)de
0
has the property TT* = Ry, for all orthonormal bases (fi);v from the

Hilbert space L, ([0, 1], H) there exists a sequence of standard independent
Gaussian random variables (7, ),y such that

W= Y Thwn as.
) k=1 :
and the convergence is meant in C([0, 1], X) (see e.g. [11]). Let (k) be an

orthonormal basis in H, and (e,),y — an orthonormal basis in L, [0, 1].
Then (e, hj) jv is an orthonormal basis in L, ([0, 1], H). Therefore

o
W= k; TQ,- 14y Tp-1gy 25-

5 — Probability ...
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where ¢@: N?2— N is some ordering, _ is an element of the basis
[ & Yo-14

(€ M) jens ¥,-14, is an element of the sequence (y)jen- ie. We have the

summation in the fixed order.
Take now any x*e X*. Then

E(<VVH x*>_ Z Z jek(t)dt <Ahj: xgk.)ykj)z

k=1j=10

[+ 2] o0

< i f (:!e,‘(‘t)d‘l:)2 (Ahj, x*¥2+ Y Y (ifek('r)dr)2 (Ah;, x*H?

k=1j=n+1 k=n+1j=1

o0 o0 1 )
=t Y Ldhy, x*?+|A* x|y Y ([e(@dfp >0, n- oo

j=n+1 k=n+1 0

Consequently,

(1) 2 2 6fek(f)df (Ahy, x* )9 > KW, x*)

™
™Ms

ek(T)dTAhj}’kj= Z jek(T)dréh

k=10
where

S = Z Ahj)’kj
=1

are independent identically distributed Gaussian random elements with
covariance operator R =_AA*. Therefore, by Theorem 1.1, the_ series

w0

Y. Y [e(v)dt Ahyyy |
(4]

k=1j=1

is as. convergent in C([0, 1], X). Hence, by formula (1), we immediately
obtain that

W, 3ty = 3 Ja@)ds G x*

as. for all re[0, 1] and x*e X*. Therefore

W, = i ?ek(t)d'cfk a.s.

k=10

Theorem 1.3 is proved.
The following statement gives the representation of the Wiener process

"in the form of sum of one-dimensional independent Wiener processes.

THEOREM 1.4. Let (W), 40,17 be a Wiener process in X, the covariance
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operator of Wy be R = AA*, A: H— X, H being a separable Hilbert space.
Then, for any orthonormal basis (h) in H, there exists a sequence of
independent real-valued Wiener processes ((; (1), t€[0, 1),y such that

W, = i ARG (1) as.

We omit the proof of this theorem it is quite similar to that of The-
orem 1.3.

- II. Stochastic integral of random function with values in the dual space.
Let (W,),q0,1; be a Wiener process in X and suppose that on the probability
space (2, &, P) there is given a family (%,),qo,1;, &, = %, of c-algebras such
that if 0<t; <t;<1, then &, < #,, (in other words, (F )i,y IS an

increasing family). We say that (%,),qo.1; is adapted to the Wiener process
(Wepo, 11 if

(a) W, is %,-measurable for all re[0, 1];

(b) W,— W, is independent of %, for 0 <t <s< 1.

As a typical example of an adapted family we can take the o-algebras
Z,, te0, 1], generated by the random elements W,, 0 <s <1t

We will repeatedly use the following

ProrosiTioN 2.1. Let (W))qo,5) be a Wiener process, and (F hqo,17 — @
family of o-algebras adapted to (W,),qo,1;- Then there exists a representation

- f Ah ()

such that (F )yq0,17 i adaptea' to the real-valued Wiener process ({i(t)yeo.1) for
all keN.

Proof. Let R: X* — X be the covariance operator of Wy, R.= AA%,
A: H— X. There exist an orthonormal basis (h ),y = H and a sequence
(OF)hen = X* such that (Ah,, QF> =d,; for all k, jeN (see [17], p. 17). Let

W = kgl Ahy 5 (1)

" be the corresponding- representation of (W),p,1;- Then the '-proof of the
proposition follows from the equality

W, QF> = ), <Al (1), Q> = (i (1)
i=1
Definition 2.1. A function ¢: [0, 1] xQ — X* is called non-anticipa-
ting with respect to (F )go,1; if -

1. for all xeX the functidn (t, @) = {x, @(t, @) from ([0, 1]x£,
#10, 1] x #) into (R', #(R")) is measurable;
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2. for all xe X and te[0, 1] the function @ — <{x, ¢(t, w)) from (2, %)
into {R*, #(R")) is &,-measurable.

Definition 2.2. We say that a non-anticipating function ¢ belongs to
the class Gg(X¥*) if

Pr(®) = ([ [ Ro(t, ®), ¢ (t, w)>dtdP)'/* < co.

on

Ggr(X™*) is a linear space and pg is a pseudonorm in it. Hence, we can
introduce in Gg(X*) the topology generated by. pg. The linear topological
‘spaces (Gg(X*), pg) for different covariance operators R are different. If a
family of o-algebras (%,),4o,1; is fixed and R; < R, are Gaussian covariances,
then Gg (X*) > Gg,(X*). It is easy to see that, for an arbitrary covariance

R, all non-anticipating functions from
L, ([0, 1] xR, B[0, 1] x &, 4 x P, X*)

are contained in Gg(X*) (4 denotes the Lebesgue measure on [0, 1]). Note
also that if R is non-degenerate (i.e. Rx* = 0 if and only if x* = 0), then pg is
the norm in Gg(X*). '
If peGr(X*) is a step-function,
n—1

@(t, ) = ), @, () X1 10
. i=0

O=to<..<tp=10;:R>X*i=0,.,n-1,

then the stochastic integral of ¢ with respect to (W),qo,1; i1s naturally defined
by the equality

1 n—1
0 i=0
LemMa 2.1. If @eGr(X¥) is a step-functioh, then
1 1 1
E(fedW@®))=0 and E(fedW(@)) = {[{(Re, ¢)dtdP.
0 0 on

n—1 '

Proof. Let @ = ). @y X4 q Then
- . Q=0 A

1 l n-1 -
E(b[rde(t))2 =Y Edoy, W, — W)+
=0 .

n—1 . '
:#Z 1E <q,ti’ I/Vli+1_mi><¢tj, mj‘l’l——mj)' )
i#j=

Let

M

W= Al G (8)

1 I

k
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be a representation of the Wiener process such that (Z )iero,1; 1s adapted to
(6 ®)go.y; for all keN. For arbltrary i<n—1 we have

Elpy Wy, — W, > =E (k; Ay 0 el )~ G )

a0

=(tir1—1) 3 E by 0,5 = (641 ~t) E(Y, <Ah, 0,5)
=(tis1 —t) I <R(P,'., qo,i>dP.
Q

It is easy to verify, that

n—1
'%ZDEQPI' f|+1 li><(ptjs Wj+1—mj>=0'
i#j

Therefore
E(j(de(t) Z (tiv1—t) Zl @y Ahy?
i=0 k=

1

= [ [ (Ro, @>dtdP.
00

Analogously we can show that
1

EfpdW() =0
(4]

‘Lemma 2.1 is proved. |
The - following lemma will be used to deﬁne the stochastic integral of
arbitrary ¢ e Gg(X*).

LemMma 2.2. For an arbitrary @eGg(X*) there exists a sequence of -
step-functions (¢,),y < Gr(X*) such that ¢, 2.

Proof. Let R = AA* A: H— X, be a factorization of R. Take (Pken»
an orthonormal basis in H, and (QF).y a sequence in X* such that
<Ahk, T) = 5k,j (k,jeN). Deﬁne :

f;l=z <Ahk’(p>Q;¢k’ n=1’2’
k=1
We have f,e Gg(X*) and- .

palfi—o) = H<R(f..—rp), (fi—9)>diap

ao

!I)( (Ahy, p— Z (Ah;, 0>QF)?dtdP

k=1 i=

1
=]

0

l .

= [( Z {Ah, ‘P)z)dth-—»O when n— oo,

on

k=n+1




70 B.1. Mamporia
For fixed ke N, let (Qpm)men bé. a sequence of real-valued nonanticipat-

ing step-functions such that @, — {Ah,, @) in L,(2x{0, 1], # x2[0, 1],
P xJ), when m — oo. For fixed neN let us define (f,mmeny = Gr(X™) by

f;lm = Z qakm QIT
k=1
We have

by, (3, (9snQF =<, Ahy>QP)?)dtdP

OL-'F-‘
- ’ITMB

P& (fom—1) =

1

i
0
Z g [ (Pm— <Ahy, @))*dtdP.

Therefore, for all neN, fo, 2f,, when m— co. Hence, since f,?3f, by
virtue of a standard method we can choose a subsequence (@,)uen Of (fumIn,men
such that pg(¢,—¢)— 0 when n— co. Lemma 2.2 is proved.

Now, let @eGgr(X*). By Lemma 2.2, there exists a sequence of step-
functions (@,),.y = Gg (X*) such that pg(¢,—¢)— 0 when n— co. For arbi-
trary n, me N we have

1

(jfp,.dW Icode(t) (I((p.. ) AW (1)) = PR(@n—Pn)-

1
Since pg (¢,— @) — 0 when n, m — oo, we infer that j ¢,dW (t) converges
2 .

in L,(Q, #, P). Therefore we can define the stochastic integral for arbitrary
@ eGgp(X®).

Definition 23. Let @eGg(X*). The limit in L,(2, #, P) of the
sequence '

1
fo.dW (1),
0

where (¢,),.v = Gr(X*) is an arbitrary sequence of step-functions converging
to @ in pseudonorm pg, is called the stochastic integral of a random function
@€ Gr(X*) with respect to the Wiener process (W),E[O 1

The stochastlc integral of ¢ is denoted by j' edW(¢).

It is easy’ to see that the value of this llllllt does not depend of an
approximating sequence of step-functions; in other words, the given
definition of the stochastic integral is correct. Note also, that

1

1
E(({«PdW(t))2 = g | (R, p)dtdP = pi(¢)
Q

for any function ¢ = Gg(X#).
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ITI. Stochastic integral of operator-valued random functions. Let (W:ero.13
be a Wiener process in X, the covariance operator of W, be R, and (#,),0,1
be a family of o-algebras adapted to (W),o,1;. Let Y be another separable
Banach space, Y* be its dual, and L(X, Y) (L(Y*, X*)) be the Banach space
of bounded linear operators from X to Y (from Y* to X*).

Definition 3.1. A function ¢: [0, 1]1xQ— L(X, Y) is called non-
anticipating with respect to (F),qo,17 if

I.for all xeX and y*eY* the real-valued function (r, w)
- {p(t, w)x, y*> is measurable;

2. for all xeX, y*eY*, te[0, 1] the functlon - {pt, w)x, y*> is
#,-measurable random variable.

Definition 3.2. We say that a non-anticipating function @ belongs to
the class Gg(L(X, Y)) if

or(@) = sup (H<<P(t @) Ro*(t, 0) y*, y*Ydi dP)? < oo,

<1 o

where @*(t, w)e L(Y*, X*) is the dual operator to ¢(t, w).

Gr(L(X, Y)) is the linear space and oy is the pseudonorm in it.

Let oeGg{L(X, Y)), and take any y*e Y*. ¢* y* maps [0, 1]xQ into
X* and ¢@*y*eGr(X*). Therefore we can define the stochastic integral
1

{@* y*dW (1) which will be a real random variable with variance
(1]

1
| § (Ro* y*, @* y*>dt dP.
oo

Consider the map

1
T, Y*>L,Q,%8,P), Ty*= j(p*y*dW(t)-

It is easy to see that T, is a linear continuous map, ie, it is a random
linear function (RLF).

Definition 3.3. Let ¢ e G(L(X, Y)). The hnear continuous map (RLF)
T,: Y*— L,(Q, #, P), defined by

-

= Jo*y*dW (), y*eY¥

<

is called the generalized stochastic integral of operator-valued random func-
tion ¢ with respect to (W)o,1-

This implies that for any function @eGg(L(X, Y)) there exists the
generalized stochastic integral of ¢.

Let oeGg(L(X, Y)), T,: Y*— L,(22, #, P) be a generalized stochastic
integral of ¢. Define by L,: Y*— Y** the covariance operator of the
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generalized stochastic integral (RLF) (see for example [2]). It is clear that
L,=TFT,

THeEOREM 3.1. The covariance operator of " the generalized stochastic
integral of an operator-valued random function @€ Gg (L(X, Y)) with respect to
the Wiener process (W)c(0,1) has the form

1
L,(y*) = | | pRo* y*dtdP
o0

and maps Y* into Y (the double integral is meant in the sence of Pettis).

Proof. Let us find the value of the operator L, on y*eY*. For any
yFeY* we have ‘

Lyy*, y1> =ET,y* Tyt = E(:!(P* y*aw (1) :I)fp* ytdw ().
It is not difficult to see that
Ly,y*, yi) = ;” {pRo* y*, y¥>dtdP for all yfe Y*.
e
Therefore the Pettis integral
lj [ oRo* y*dtdP = L, y*,
onR

as an element of Y**, exists for any y*e Y*. We shall prove that L,y*e Y
(Y < Y** is understood in the sense of the natural imbedding). Let

Rx* = ki Q0 ¥>0,
=1

be an expansion of the covariance operator (see for example [17], p. 17).
Then

L,y*

]
O e, =

f(Y <ok y*> 0Qi)drdP.
o k=1 )

For all ne N define
LD y* =

Oty —

f(X <00, ¥*)> ¢Q,)dtdP.
2 k=1

Consider the random element ¢Q,: [0, 1]xQ—- Y, k=1, 2,... Since
00, is a random element with the weak second order, its covariance
operator maps Y* intoY ([17], th. 7). We have for the covariance operator

of PQy:

1

Ly y* = [ | {@Qx, y*> 0Qydt dP.

0oQ
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Therefore, for all neN and y*eY* I y* belongs to Y. Since Y is
a closed subspace of Y**, it suffices to prove that the sequence Iy y*, n
=1, 2,..., converges to L,y* in Y** for all y*e Y*. We have

ke

”E")y - (py*”y**_”II Z <(ka’ *>(PQk)dthy

0 k=n+1
1

< sup (ff Z (O, @* y¥)*dtdP)* x

I|y1H<1 0 2k=n+1

x(

O ey

[ X <o*y* Q*dtdP)2.
Q

k=n+1
Since
1
°°>H<R<0 Y%, @*y*ydidP = H(Z @ % y*y)dea,
002 k=1
we have
1 @
jj'( Z (U (P*y*>2)dth—>0 for n— .
. 00 k=n+1
Further,

( ] i Q> @* y1>*drdP)'? < ox(e) < .

Ily1II<1 0 Qk=n+1

Consequently, ) y* — L, y* for n — 0. Therefore L, y* e Y. Theorem 3.1
is proved.

The generalized stochastic mtegral as an RLF, induces a cylindrical
measure on Y which, obviously, cannot always be extended to a countably
additive measure on the Borel s-algebra #(Y). In other words, T, is not
always decomposable, i.e. there does not exist in general a random eclement
£: QY such that T, y* = (&, y*>, y*e Y™,

Definition 3.4. Let ¢ be an operator-valued function, pe Gy (L(X, Y)).
We say that a random element ¢: Q@ — Y (if such an clement exists) is the
stochastic integral of ¢ with respect to a Wiener process (Wero.y if <&, ¥*>
= T,y* ae. for all y*eY*, and write

1
&= [@dW ().
/]

Thus the question of the existence of a stochastic integral is reduced to
the well-known problem on extension of cylindrical measures to countably-
additive measures or, equivalently, to the problem of decomposability of
RLF. _ _

In the concluding part of the paper we deal with a sufficient condition
for the existence of a stochastic integral. The main point here is the use of
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the L. Schwartz’s theorem saying that an operator between Banach spaces is
p-Radonfying if and only if it is p-absolutely summing (1 < p < o) (see [15],
and [9]). ,

Definition 3.5. We say that a symmetric and positive operator L: Y*
— Y belongs to the class #,(Y) (0 < p < oo0) if the operator T: H— Y in the
factorization L = TT* is p-absolutely summing.

It is easy to see that Ap,(Y) =R, (Y) if p<p,.

TueoREM 3.2. Let ¢eGg(L(X,Y)) and let a closed subspace G of

'L,(Q, B, P) be such that, for all y*eY*,

1
T,y* = fo* y*dW (1)
(]

belongs to G and G = L,(Q, B, P), p> 2.
If the operator L,: Y* - Y,

ey

L,y*={f¢@Ro*y*dtdP,
¢ Q

(=]

1
belongs to R,(Y), then there exists a stochastic integral {@dW (1) and
0

1

E||fedW()|F < .
0

Proof. We set Hy = {T, y*: y*eY*}, Hy = L,(2, &, P). Let H be the
closure of Hy in L,(R2, #, P). H is a Hilbert space and H < G, therefore
Hc L,(Q, #, P). Factorize now the operator L,: Y*— Y through the
Hilbert space H: L, = T, T,*. Since L,e#,(Y), T,;f: H— Y is P-absolutely
summing. Let C: H- L,(2,4%,P) be the natural imbedding: Ch
= he L,(2, #, P). By the closed graph theorem, C is bounded. According to
the aforementioned theorem of L. Schwartz, there exists a random element
neL,(Q, Y) such that, for all y*eY*, CT,y* = {, y*). Since

1
CT,y* = [o*y*dW (1),
(4]
we have, for every y*eY¥,

i, y*D = [e*y*aWw (),
0

ie.
1 .

n= g(de(t).

Theorem 3.2 is proved. _
Remark. If X and Y are separable Hilbert spaces, then the condition of
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Theorem 3.2 is equivalent to the condition of Yu. Daletzky [3] in his
definition of stochastic integral in the Hilbert space. If X and Y are
separable Banach spaces, then the condition of Theorem 3.2 in the case p = 2
is equivalent to the condition of H. Kuo [7]. The most interesting is the case
where p > 2.
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