PROBABILITY AND MATHEMATICAL STATISTICS Vol. 8 (1987), pp. 63–69

CONDITIONED LIMIT THEOREMS FOR FUNCTIONS OF THE AVERAGE OF I.I.D. RANDOM VARIABLES

A. Szubarga D. Szynal

Abstract: Let $\{\xi_k, k \ge 1\}$ be a sequence of i.i.d. random variables with $E\xi_1 = 0$, $0 < E\xi_1^2 = \sigma^2 < \infty$. Form the random walk $\{S_n, n \ge 0\}$ by setting $S_0 = 0$, $S_n = \xi_1 + \ldots + \xi_n, n \ge 1$. Let T denote the hitting time of the set $(-\infty, 0]$ by the random walk. Put $X_n(t) = S_{[nt]}/\sigma\sqrt{n}, 0 \le t \le 1$. Let h be a real-valued, rightcontinuous function on R, having left limits, with h(0) = 1, and continuous at 0. For $\beta > 0$ we define the map $H_n : D[0,1] \to D[0,1]$ by $H_n(f) = fh(n^{-\beta}f)$, $f \in D[0,1], n \ge 1$. Put $Y_n = H_n(X_n)$. This note deals with the asymptotic behaviour of Y_n conditioned on [T > n]. Moreover, we investigate the asymptotic behaviour in the question when n is replaced by N_n , where $\{N_n, n \ge 1\}$ is a sequence of positive integer-valued random variables.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; Key words and phrases: -

THE FULL TEXT IS AVAILABLE HERE