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ON INVARIANT TESTS ,
FOR MULTIDIMENSIONAL NORMALITY

BY
ZBIGNIEW SZKUTNIK (Kraxow)

Abstract. The paper deals with the analysis of some natural
symmetries of one- and multidimensional problems of testing nor-
mality. Some groups of transformations are considered and their
maximal invariants are found. An example of invariant testing
multinormality is also given. :

1. Introduction. Let X = (X, ..., X,)T be a vector of observations. The
independent random variables X; are assumed to have the probability
density function of the form ¢~ ! f [(x ~ p)/o’]. The null hypothesis Hy: f = f,
against H,: fe #, is to be checked. H, and H, are composite hypotheses.
The parameters p and o are then the nuisance parameiers and in most cases
the uniformly most powerful test does not exist. So one restricts himself to
some limited classes of tests and to some smaller family %, to get the
solution of such restricted problem which is, in some sense, optimal. An
example of such a procedure is applying the invariance principle which
makes use of natural symmetries of the problem. The basic notions and
concepts connected with the invariance may be found in [3].

2. One-dimensional invariant (esis. In one-dimensional problems the
following groups of transformations are of particular interest:

%, — the group of affine transformations R"— R" of the form
Y=aX+b(1,...,1)7, where a # 0 and beR:

9, — the group of transformations of the same form but with a > 0.

The problem of testing H, against H,, as defined in Section 1, remains
invariant with respect to %,. If we assume that f is an even function, the
problem is invariant with respect to %,.




2 ' Z. Szkutnik

Let x, be the observation defined by

’xv.._.f' = max le'—fl,
1€i€n
where X is the sample mean and let 62 be the sample variance. Some max-
imal invariants under ¥, and %, are given in the two following theorems.

Tueorem 1. The statistic

T (X) = sgn(x,—X) (xla—f, . x,,—)’c)

o~
X ax

is a maximal inbariant for the group %,.
Proof. Let y,=ax;+b for i=1,...,n and a # 0. Then

la \ 6. G
= sgn’(a) Ty (X) = Ty (X)
and T; is an invariant for %,. If T;(X)= T,(Y), then

T, (Y) = sgn[a(xv-«x-)]i(xl_’—c, x”fi)

yi—y X=X ,
sgn(yu—f)~07~=sgn(xv—x) = i=1,...,n
¥

X

and

__sgn(x,—X)6, __sgn(x,—X) G,

Csen(—»6. 0 sen(—7dx |
i=1,...,n and a#0.

X = ax,~+b,

Hence T, is a maximal invariant for the group %;.
In a similar way one can prove the following

TueoreM 2. The sample configuration

T, (X) = (xléhf’ - x,,—)’c)

~
x O-JC

is a maximal invariant for the group %,.

For several f the explicit probability density functions of maximal
invariants under ¥, and %, are known. For some f; and f; it leads to the
most powerful invariant tests for testing H,: f = f, against H,: f = f;.
Important examples are the most powerful invariant tests for normality
against uniform [7], Laplace [8], Cauchy [1] and exponential [7] alter-
natives. The well known Shapiro-Wilk test [6] and many other tests for
normality are also invariant. Note that a good omnibus test for normality or
a test against symmetric alternatives should be invariant with respect to %,
but seeking for a test sensitive for asymmetric alternatives of some particular
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type (e.g. distributions concentrated on intervals (a, c0)), one should rather
restrict himself to the group %,. An example of such a test is that for
normality against the exponential alternative [7]. It is also sensitive for other
asymmetric alternatives like log-normal and gamma distributions.

3. Multidimensional invariant tests. Let X =[X,, ..., X,] denote now
the n independent identically distributed random vectors X;cR” having a
probability distribution absolutely continuous with respect to the Lebesgue
measure in RP. Let us consider the problem of testing Ho: X; ~ A ,(m, )
against H,: X; ~ Pe &, where %, is a family of nonnormal p-dimensional
distributions. '

One possible way of finding tests for such a problem is a generalization
of one-dimensional tests to the multidimensional case. In paper [4] the Roy’s
intersection principle [5] has been applied to find multidimensional versions
of some one-dimensional tests for normality. The Roy’s -principle ‘leads to
tests which are invariant with respect to the group G, of transformations of
the form Y = AX + B, where A4 is a nonsingular (p x p)-matrix and B is a (p
x n)-matrix with all its columns being identical. It reduces the composite
hypothesis H, to the simple one and the critical regions of such tests do not
depend on unknown parameters m and X. Just as in the one-dimensional
case, the uniformly most powerful test does not exist and it is suitable to
restrict the family of alternatives to get tests which are sensitive for departu-
res from normality of some particular type. Such restricted problems may be
not invariant with respect to G,. If eg. &, is the class of distributions
concentrated in the region included in D = (a,, o) x ... x{a,, o), the testing
problem is, in general, not invariant with respect to G,. However, there exists
a subgroup G, of G, for which testing H, against H, remains invariant.

Let

S, =(X-X)(X—-X)"/n,
where

Lt . 1 n
X=1...... N fi. = - Z Xik»
Ri=1

p. _i(p xn)

be the sample covariance matrix and let a matrix L, be defined by S;!
=L IT. It may be eg. the decomposition based on eigenvectors and
eigenvalues or the triangular decomposition. Since the distributions of X; are
dominated by the Lebesgue measure, X is a full-rank matrix with probability
1 and, consequently, S, is almost surely positive defined.

The following theorem is an extension of Theorem 1 to the multidimen-
sional case:
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THEOREM 3. A maximal invariant for the group G, is the matrix B,
=M, I*(X -—f{), where M, is an orthogonal matrix defined in the proof.

Proof. Let B.=IL(X—X) and Y=CX+D be a transformation
belonging to the group G,. Then Y—-Y =C(X—X), S,=CS,C", and,
consequently,

S;t=(CH 1S, C  =(CTYy 'L ILC ' = AA", where A=(C")"'L,.

Since S, ! = L, L}, we have L, LT = AA". This implies the existence of

an orthogonal matrix M such that [T = MAT = MLLC™" and, further,
(1) B,=II(Y—¥)= MILC 'C(X—X) = MB,.

We call the matrix By (B)) the configuration of the sample X (Y). Each
column of B} (B}) is a point of R” and will be called a point of configuration
B, (By). Since any transformation belonging to G, may change the configura-
tion only according to (1), the Euclidean distancés and angles between the
points of configuration in R” remain unchanged. ‘

Now we indicate a new orthogonal coordinate system in R? which is
defined by the configuration itself. The orthogonal change of the coordinates
will define the orthogonal matrix M, desired in the theorem. Let us consider
a new orthogonal coordinate system &, ..., &, with the same origin and the
‘¢,-axis led through the point of configuration most distant from the origin.
Then we prdject the remaining points of configuration onto the (p—1)-
.dimensional subspace #,_; < R?, orthogonal to £,, and lead the &;-axis
through the projected point from £, , most distant from the origin. The
remaining n—2 points from #,_; are then projected onto the (p—2)-
dimensional subspace #,_, < 2,_,, orthogonal to ¢,, and the £;-axis is led
through the projected point from 2, , most distant from the origin.
Analogously we define the axes &,, ..., ¢, and, as a result, we get a new
orthogonal coordinate system &, ..., £, which may be obtained from the
previous one through an orthogonal transformation in R”. So we get the
new coordinates of the points of configuration multiplying B, by an orthogo-
nal matrix M, which is defined by the change of coordinate system described
above. Consequently, B, = M, IL(X —X) is an invariant for the group G,.

If now B, =B,, we have M, LT(Y—Y) = M, L (X —X). Hence

Y=L *MIM LLX+Y—(L)"'MI M. LTX =CX+D,
where
C=(LDH"*MIM L, and D=Y-(L)"'M M ILX.

It is easy to note that C is a nonsingular matrix and all columns of D
are identical. Hence B, is a maximal invariant for the group G;.

The multidimensional version of the group %, is the group G, of
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transformations of the form Y = CX+D, where C is an upper triangular
matrix with positive diagonal and D is a matrix with all its columns being
identical.

For a symmetric and positive defined matrix 4 we define its decomposi-
tion
2 ‘ A=LIT,

where L is a lower triangular matrix with positive dlagonal Such a decom-
position is unique [2].

Now we can formulate the multidimensional version of Theorem 2.

Tueorem 4. A maximal invariant for the group G, is the configuration of
the sample B); = IL(X — X), where L, is defined by the decomposition (2) of the
matrix S;'.

Proof. Let Y=CX+D be a transformation belonging to G,. Like
above, we have

S;t=(CH L CH 'L =L, LT.
Note that (CT)"' L, is a lower triangular matrix. The uniqueness of the
decomposition (2) implies that L, =(C")~!L,. Hence we have '
‘ B,=Ll(Y-Y)=LIC 'C(X—X)=

and B is invariant with respect to G,.
Let now Bj = B} for two different matrices Y and X. Then we have
By-yY)= LT(X X). Hence Y— Y =(L) ' LL(X~X) and
Y=L L] ' X+Y-[(L) 'LI1* X =CX+D,
where ‘
C=MLNH"LT"' and D=Y-[LNH L] 'X.
Since C is an upper triangular matrix and all columns of D are identical,
B, is a maximal invariant for G,.
In order to describe some features of the group G, we need the
following
Definition. The distribution of the p-dimensional random vector X
=(X,, ..., X,)" will be called left-bounded if and only if:
1. the marginal distribution of X, is bounded from the left, i.e. there
exist a such that a < X, with probability 1;
2.-.the conditional distributions of X;|X;.; = X;44, ..., X, =X, are
bounded from the left for i = 1, ..., p—1 for any fixed values of x;,, ..., x,.
Some characterization of the group G, is given by

THEOREM 5. The group G, is the maximal subgroup of the group Gl
preserving left-boundedness of the distribution.
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Proof Let X =(X,,..., X" and Y = (¥}, ..., Y,)7 be random vectors
and Y =AX+B, where 4 is a (pxp)nonsingular matrix and B
=(by, ..., by)". We assume the distribution of X to be lefi-bounded. It is
sufficient to show that the distribution of Y is left-bounded if and only if 4 is
an upper triangular matrix with positive diagonal.

Since Y, =a, X+ ... +a,,X,+b,, Y, is bounded from the left if and
only if each term of the sum is bounded from the left. The marginal
distributions of X, ..., X,_; may be unbounded, because the distribution of
X may have nonzero density, e.g. in the region D ={X: X, >qa, X,_; >

~Xp ... X1 > —X,—...—X,}. Hence each of the first p—1 terms is
boundcd from the left 1f and only if a,; =...=a,,-; =0. Since X,
bounded from the left, the p-th term is bounded from the left if and only 1f
ap, = 0. Nonsingularity of the matrix 4 implies that g, , > 0.

Further, we have Y, =a, ;1 X1+ ...+ ap 1,1 Xp-1+0,-1,X,
+b,_, and we are seeking for conditions on which the conditional distribu-
tion Y,_|Y, is bounded from the left. Like above, all terms of the sum must
be bounded from the left. Since Y, = a,,X,, the fixed value of Y, fixes
uniquely the value of X, and the two last terms of the sum are fixed. By
fixed value of X, the variable X,_, is, by definition, bounded from the left.
Hence a,_;,,—1 Xp—1 is bounded from the left if and only if a,_,,-, 2 0.
Since the variables X, ..., X,_, may be, like above, unbounded, each of the
first p—2 terms is bounded if and only if a,_,; =...=a,_; ,-, =0. This
and the nonsingularity of A imply that a,_;,-; >0. )

In the same way we show, step by step, that the rows p—2, p—3,..., 1
have such a form that A is upper triangular matrix with positive diagonal.
Analysing the form of the i-th row we use the fact, implied by previous steps
of the proof, that fixed values of Y.y, ..., Y, fix uniquely the values of
Hivtsoonr Xp

The distributions of the maximal invariants B, and B} do not depend on
the parameters m and X assuming that the population has the normal
distribution 4#,(m, 2). This is due to the fact that for any fixed m and 2 (2
is assumed to be positive defined) there exist transformations in G, and in G,
transforming the A47,(0, I) distribution into the A",(m, X) one.

Theorems 1 and 2 may be obtained from Theorems 3 and 4 assuming p
= 1. The sample variance matrix becomes then simply the sample variance,
the matrix L, there corresponds to 67!, the one-dimensional matrix M,
reduces to sgn(x,—x) and the multidimensional configuration of the sample
‘becomes one-dimensional. The matrix M, and the sgn-function play the
same role: they introduce a new coordinate system defined by the sample
itself. '

The new coordinate system &, ..., ¢,, described in the proof of Theo-
rem 3; is not the only possible. One can obtain another coordinate system
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defined by the sample, just as for p = 1 one can take, e.g., sgn(x, —X) instead
of sgn(x,—X).

Similarly, one can define the right-boundedness of the multidimensional
distribution and show that the group G, preserves it.

4. Invariant tests for mulitinormality. If we are seeking for tests for
multinormality which are powerful against left-bounded alternatives, we
should restrict ourselves to the invariance with respect to G,. The class of
tests being invariant with respect to G, is larger than those invariant with
respect to G,. Hence, usually there exist tests invariant with respect to G,
and not invariant with respect to G; which for particular alternatives, not
invariant for G; but invariant for G,, have greater power than tests invariant
with respect to G,. It is plausible that such properties have for example the
most powerful invariant tests for particular alternatives of the form

G) H,: X, ~F[U(X—m)], meR,

U is a (p x p)-upper triangular matrix and F is a distribution function of a
left-bounded random vector X e RP.

The most powerful tests are, however, not available in an explicit form
in the multidimensional cases because of technical difficulties in performing
appropriate calculations(*). Therefore, in this section we propose some
explicit tests invariant for G, and show by the Monte Carlo method that
they perform in a reasonable way for two particular alternatives of the form
(3) and have greater power than some tests known in the literature and
being invariant with respect to Gj. ' '

First we obtain a multidimensional version of the one-dimensional most
powerful invariant test for normality against the exponential alternative
derived in [7]. This test is also sensitive for other alternatives bounded from
the left. We shall show, on examples, that our multidimensional version has
analogous properties. We also propose new multidimensional versions of the
Shapiro-Wilk test and investigate their power for some alternatives invariant
with respect to G,.

The one-dimensional statistic of the test [7] is E = (X—Xx(;))/6,.and the
Shapiro-Wilk test is based on statistic

W =2, Z C; Xay-

The coefficients ¢; are tabulated in [6].
~ We propose the following method of construction of the multidimensio- .
nal tests:

(}) Such tests have been found only for two simple bivariate alternatives and have rather
complicated form [9].
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1° Compute the maximal invariant B, for G, or B} for G,.

It will be treated as a new transformed sample.

2° Compute the one-dimensional test statistic E or W for samples from
“marginal distributions” (i-th row of the maximal invariant is an n-element
sample from the i-th marginal distribution).

Note that computing these statistics is very simple because in each case
the sample mean is zero and the sample variance is equal to one.

3° The multidimensional test statistic is then computed as the sum of
squares of the marginal statistics.

Starting from the maximal invariant B, (B)) we get the test which is
invariant with respect to G, (G,). Some additional arguments supporting the
method presented above will be published in a separate paper.

Note that the multidimensional version of the Shapiro-Wilk test obtain-
ed in [4] is simply the one-dimensional test for the first margin of the
transformed data forming the matrix B,. To see this, note that the denomi-
nator of W* in Section 3 of [4] may be expressed in our notation as

max {(X;—X°"(nS,)" ' (X;—X°)}

1<ji<a

L max {L1(X,— X0 0K - X9} = -T2
Bigjsn . n
where X° is a column of the matrix X and Y, is the point of configuration
most distant from the origin of the coordinate system. Analogously, the
statistics u; in [4] may be expressed as u; = Y}, Y;/n, where Y is the j-th point
of configuration.
Let us write

w _ My, 1

1 AT
RITIRRV.I ) 4 RV
ﬁu fl

Uj=

1Y)l cos x(Y,, Y)).

Then formulae (3.2) in [4] may be expressed as W* =[) q; vu,]z, where
v are ordered values of v;.

Since Y v; =0 and Y v? =1, and ﬁvj are projections of the points of
configuration onto the &;-axis led through the point of configuration most
distant from the origin, W* is the one-dimensional Shapiro-Wilk test statistic
for the first margin of the transformed data forming the matrix B,.

Let us write: o

EM — the multidimensional version of the test E invariant with respect
to Gj; ‘

- W* — the multidimensional Shapiro-Wilk test described in [4];
- WM, — the multidimensional Shapiro-Wilk test constructed the way
described above and invariant with respect to Gy;

WM, — the version of WM, invariant with respect to G,.
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A preliminary Monte Carlo analysis of powers of these. tests for the
case p =2 and n = 10 was accomplished. For each test 500 samples of size
10 from A", (0, I) were generated and, for every sample, the test statistic was
computed. Appropriate order statistics of the sampling distribution were used
as empirical critical points. All critical regions were of the form {a: a < a_]}.
Two alternatives of the form (3) were considered with F being a distribution
function of identically and independently distributed random variables. The
marginal distribution was log N(0, 1) in the first and EXP(1) in the second
case. For each alternative 500 samples of size 10 were generated and the test
statistics were computed. As an estimate of the power of the tests, the
fraction of samples for which the computed values of the test statistics have
fallen into the critical region, was used. Figure A shows. the results of

FIGURE A
LOGN ’ EXP
POWER ’
F V,——*_‘
.6} ‘
S &t
.2+ 2}
1 1 1 Il oi X 1 i 1 0(
05 0 B .20 .25 05 0 15 20 .5

DOw*, QwM, ,@®wM, DEM

computations. One can see that limiting the invariance to the group G,
causes an essential rise of the power. The power of WM, is considerably
greater than that of WM,. Both tests WM, and WM, perform better
than W*. '

‘The test EM has the best power against both alternatives. Like E in the
one-dimensional case, EM seems to be a sensitive test against lefi-bounded
nonsymmetric alternatives. For symmetric alternatives the power of EM may
be, of course, smaller than that of W*.

5. Some additional results. Let us now formulate some related results.
Let G, be the group of permutations of the sample, ie., gX = XP for geG,,
where P is a permutation matrix. The following theorems hold:

Tueorem 3. A maximal invariant for the group (G,, G,) is the matrix
B formed from B, through ordering its columns with respect eg. to the first
component.
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THEOREM 4'. A maximal invariant for the group (G,, G,) is the matrix By,
Jormed from B through ordering its columns with respect, eg., to the first
component.

The proofs of Theorems 3’ and 4’ follow from the proofs of Theorems 3
and 4, respectively, after replacing ¥ =CX+D by Y=CXP+D.
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