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Abstract. The paper deals with the analysis of some natiual 
symmetries of one- and multidimensional problems of testing nor- 
mality. Some grotips of transformations are coilsidered and their 
maximal invariants are found. An example of invariant testing 
multinarmalrty is also given. 

I. %m&rsd~tiron. Let X = (XI, . . ., X,IT be ar vector of observations. The 
independent random variables Xi are assumed to have the probability 
density function of the form a-I f Mx-p)/cr]. The nuill hypothesis H I , :  f = f ,  
against N,: f is to be checked. No and HI are composite hypotheses. 
The parameters p and a are then the nuisance parameters and in most cases 
the uniformly most powerful rest does not exist. So one restrids himself to 
some limited classes of tests and to same smaller family 3, to get the 
solution of such restricted problem which is, in some sense, optimal. An 
example of such a procedure is applying the invariance principle which 
makes use of natural symmetries of the problem. The basic notions and 
concepts connected with the invariance may be found in [3]. 

2 0 ~ 4 m e m i a ~ d  iailva~ao.8 testa 'En one-dimensional problems the 
Ifoliowing groups sf transformations are of particular interest: 

9 - the group of affme transformations R"-+ 6 of the form 
Y = n X + b ( l ,  ..., I I T ,  where a # O and ~ E R ;  

9f2 - the group of transformations of the same form but with a > 0. 
The problem of testing No against HI ,  as defined in Section 1, remains 

invariant with respect to 92. If we assume that f is an even function, the 
problem is invariant with respect to 9,. 



Let x, be the observation defined by 

Ix,-21 = max Ixi-xl, 
1 C i d n  

where Z is the sample mean and let c?; be the sample variance. Some max- 
imal invariants under 8 1  and 212 are given in the two following theorems. 

THEOREM 1. The staristic 

is a maximal invariant for the: group Yl. 
Proof, Let y, = axi+b for i = 1, ..., n and a # 0. Then 

x,,-z 
TI ( V) = sgn [a (x, - $1 - . .  -- A 

g x  

and TI is an invariant for 9,. If TI [ X )  = T, (Y) ,  then 

and 

sgn (x, - ,F) gY sgn(x,--46, - 
Yi = xi+y- x = axi +- b, 

sgn CY, - 3 g x  sgn (YP - 9 z* 
i = 1 ,  ..., n and a # 0. 

Hence TI is a maximal invariant for the group 9,. 
In a similar way one can prove the following 
THEOREM 2. The sample conjiguration 

is a maximal invaricsnt f i r  the gr0'0~6p 95. 
For several f the explicit probability density functions of maximal 

invariants under Yl and g2 are known. For some fa and f, it leads to the 
most powerful invariant tests for testing No: f = f, against HI: j" = 4;. 
Important examples are the most powerful invariant tests for normality 
against uniform [7], LapEace [8], Cauchy [I] and exponential 073 alter- 
natives. The well known Shapiro-Wi& test [63 and many other tests for 
normality are also invariant. Note that a good omnibus test for normality or 
a test ag;;rlnst symmetric alternatives should be invariant with respect to 9, 
but seeking for a test sensitive for asymmetric alternatives of some particula 
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type (e.g dislaributions concentrated on intervals (a,  m)), one should rather 
restrict himself to the group 24. An example of such a test: is that for 
normality a g ~ n s t  the exponential alternative [7]. It is also sensitive for aehm 

t21as alternatives like log-normal and g 

3 b4u%ti&memiooo\.1 imvarisaot tmts. Let X = EX,, . . . , X,] denote now 
the ~4 independent identically distributed random vectors X i ~ R a  having a 
probability distribution absolutely cantinuoms with respect to the Lebesgua 
measure in R P .  Let us consider the problem of testing M,: X ,  -- .A~p(m, E). 
against W, : Xi - P E  PI, where ,PI is a family of nonnormal p-dimensional 
distributions. 

One possible way of finding tests far such a problem i s  a generaGzaiion 
of one-dimensional tests to the multjdimensional case. In paper [4] the Roy's 
intersection principle 151 has been applied to find multidimensional versions 
of some one-dimensional tests for nomalidy. The Ray's principle leads to 
tests which are invariant with respect to the group GI of transformations of 
the form JY = AX -I- B, where A is a nonsingular ( p  x p)-matfix and B is a (g 
xn)-matrix with all its columns being identical. It reduces the enrnpesite 

hypothesis Ha to the simple one and t h  critical regions of such tests do not 
depend on unknown parameters rn and T;. Just as in the one-dimensional 
case, the uniformly most powerful test does not exist and it is suitable to 
restrict the family of a%te;matives to gel tests which are sensitive for departn- 
res from normality of some particular type. Such restricted problems may be 
not invariant with respect to 6,. If e.g. F, is the cl;ass of distributions 
concentrated in the redon included in D = (a , ,  cro) x . . . x (a,, a), the testing 
problem is, in general, not invariant with respect to GI. However? there exists 
a subgroup 6, of 6,  for which testing Ha against M, remains invariant. 

Let 

s, = (x- Z)(X -ma;ln, 
where 

1 " 
=-  X i k ?  

B k = l  

be the sample covariance matrix and let a matrix Ex be de5ned by S; 
= E,L:. It may be e.g. the decomposition based on dgenvators and 
eigenvalues or the triangular demmposition. Since the distributions of Xi are 
dominated by the Lebesgue measure, X is a full-rank matrix with probaBPility 
1 and, consequently, S, is almost surely positive defined. 

The hllcswing theorem is an extension of Theorem 2 to the multidimen- 
sional case: 



THEOREM 3. A tnoximul invmianf for the group GI  is rJre waarrix 13, 
= M ,  L : ( X - X ) ,  where M ,  is an orthogonal matpix defined in the prmf 

Proof.  Let B: = %:(X-q and Y = GX+B he a translarmation 
belonging to the group G I .  Then Y - F = C(X - 21, 5; = CS, CTy and. 
consequently. 

Since S;' = L,!;, we have L,L; = A A ~ .  This implies the existence of 
an orthogonal matnx M such that LT = A4AT = IML; C- ' and, further, 

We call the matrix BI; (B;,) lhe configurratio~z of the sumpk X (Y). Each 
column of B; (Bk) is a point of RP and will be called a point of sonfigurerion 
B, @I). Since any tra~msformation belonging to G ,  may change the configura- 
tion only according to (I), the Euclidean disiancis and angles between the 
points of configuration in R p  remain ~~nchanged. 

Now we indicate a new c>rthogonal coordinate system in RP whkh is 
defined by the configuration itself. The ost hogonal change of the coordinates 
will define the orthogonali matrix M ,  desired in the theorem. Let us consider 
a new orthogonal coordinate system {,, . . . , c, with the same origin and the 
S1-axis led through the point of configuration most distant from the origin. 
Then we project the remaining points of collfiguratioli onto the ( p -  1)- 
dimensional subsgace .Yp-, c Rp, orthogonal to c,, and lead the <,-axis 
through the projected point from .Pp-, most distant from the origin. The 
remaining PI -2 points from Pp- ,  are then projected onto the ('- 2)- 
dimensional subspace Pp-2 c PP-ly orthogonal to t2 ,  and the t3-axis is led 
through the projected point from PP-2 most distant $om the origin. 
Analogously we define the axes 5,, . .., r, and, as a result, we get a new 
orthogonal coordinate system 4 , ,  . . . , r, which may be obtained from the 
previous one through an orthogonal transformation in RP. SO we get the 
new coordinates of the points of configuration multiplying B: by an orthogo- 
nal matrix M ,  which is defined by the change of coordinate system described 
above. Consequently, B, = M ,  L:(X -X) is an invariant for the group G I .  

If now 15: = B,, we have M,,L:(Y- Y) = M,LT,(X-X!). Hence 

Y = (E;)-'M,TM~LT,X+F-(LT)-~ M ; M , E ; X  = C X + D ,  

where 

C = ( L ~ ) - ~ M ~ I ~ ~ , L ;  and D = I ' - - - ( L ~ ) - ~ M ~ ' M ~ E I ; W .  

It is easy to note that C is a nonsingular matrix and all columns of D 
are identical. Hence 5, is a maximal invariant for the group GI. 

The multidimensional version of the gmup 8, is the group G ,  of 



trarisformations of the form Y = C X + Q  where C is an upper triangular 
matrix with positive diagonal and 9 is a matrix with all its columns being 
identical. 

For a symmetric and positive defined matrix A we define its decomposi- 
tion 

(2) A =uT, 
where L is a lower triangular matrix with positive diagonal. Such a decorn- 
position is unique [2].  

Now we can formulate the multidimensional version of Theorem 2. 
THEOREM 4. A maximal invariant fm the group G2 is the cnqfiguration of 

rhe sample B: = E:(X - XI, where L, is defined by the rlecomzpnsiiion (2)  of rhe 
matrix S; I .  

P r o  of. Let Y = C X  -+ D be a tramsformatic~n belonging to G 2 .  Like 
above, we have 

Note that (CT)-I Lx is a lower triangular matrix. The uniqueness of the 
decomposition (2) implies that L, = (cT)-' L,. Hence we have 

and 8; is invariant with respect to 6,. 
Let now 6; = Bi for two different matrices Y and X. Then we have 

Ll(r-YT =L:(X-B .  Mace Y - F = ( L ? ; ) - l L t ( ~ - X )  and 

Y = [(L;')~L;]-~x+ Y-[(L?J-'L;]-~ X = CX+D, 

where 
1 TLT 1 T  T - 1 ~  C = f ( L ; )  ,]-I and D = F - j - [ L ; } L y ]  . 

Since G is an upper triangular matrix and all colum~lls of D are identical, 
B: is a maximal invariant for 6,.  

In order to describe some features of the group 6, we need the 
following 

D e fi n i t  i a n. The distribution of the p-dimensional random vector X 
= (XI, . . . , X,)" will be called left-bounded if and only if: 

1. the marginal distribution of X, is bounded from the left, i.e. there 
exist a such that a Q X ,  with probability 1; 

2. the condilional distributions of Xi 1 Xi + = xi+ . . . , X p  = xp are 
bounded from the lefi for i = 1, . . . , p- l for any fixed values of xi+ ,, . . . , x,. 

Some characterization of the group G, is given by 
THEOREM 5. The group G2 is the maximal subgroup of the group GI 

preserving IeB-boundedness of the distribution. 



Proof.  Let X =(XI,  ..., %,IT rand Y = (V,, ..., YPJTbe random vectors 
and Y = AX +B,  where A is a (p x p)-nsnsilagulax matrix and B 
= (b , ,  . . . , b,)'. We assume the distribution of X to be Iefi-bounded. Ht is 
sufficient to show that the distribution of Y is left-bundd if and only if A is 
an  upper triangular matrix with positive diagonal. 

Since Yp -- a,,, X ,  + . . . +a,, Xp + b,, YP is bounded fkom the left if and 
only if each term of the sum is bounded from the left. The marginal 
dis-idbutions of XI, . . . , X,- may be unbounded, because the distribution of 
X ;nay have nomero density, e.g, in the region D -- {X: X, > a, X,- , > 
-X,, .,., X, > -Xa- ... -Xp). Hence e a ~ h  of the first p-P terms is 
bounded from the left il and only if a , ,  = . . . = a ,,-, = 0. Since X, is 
bounded from the left, the p-tb term is bouxlded from the kft if and only if 
a,,, 2 0. Normsingularity of the matrix A implies that a,,, > 0. 

Further, we have Yp-, = uq_ ,, , X I  -t . . . +ap- ,,,-, Xp- , + a,- X ,  
d- b,- and we are seeking Eor csnrd~tions on which the conditional dismbu- 
rion YP- I I Y, is boeulded from the left. Like above, all terms of the sum must 
be bounded from the left. Since Y, =: ap,,X,, the fixed value of Y, fixes 
uniquely the value of %, 2nd the tsvs last terms of the sum are fixed. By 
fixed value of X, the variable X,-, is, by defitiora, bounded from the left. 
Hence ,,-, Xp-l is bounded from the left if and only if a,- ,,,-, 3 0. 
Since the ~ariablles X,, ..., X,-, may be, like above, unbounded, each of tbe 
fist p - 2  terms is bounded if and only if a ,-,,, - .. . - a,- ,,,-, = 0. This 
and the noasingularity of A imply that a,- ,,,- > 0. 

In the same way we show, step by step, that the rows p -  2, p -  3, . . . , 1 
have such a form that A is upper triangular matrix with positive diagonal. 
Amlysing the hrm of the i-th row use the fact, impPiehl by previous steps 
of the prost that fixed values d &+ ,, . . . , Yp fix uniqueiy the values of 
Xi.+ .. ., Xr .  

The distributdoams of the maximal invariants Bx and Bx do not depend on 
the parameters m and Z assuming that the population has the normal 
distribution 4 ( m ,  E). This is due to the fact that for any h e d  rn and Z (2 
is assumed to be positive defined) there exist transformations in GI and in G ,  
transforming the 1) d i s t d u ~ o n  into the Np(m9 2') one. 

Theorems 1 and 2 may be obtained from Theorems 3 and 4 assuming p 
= I. The sample variance matrix becomes then simply the sample variance? 
the matrix L, there corresponds to $ - I ,  the onedimensional matrix M ,  
reduces to sgn (x, - 3 and the multidimensional configuration of 'the sample 
becomes one-dimensional. The matrix MX and the sgn-function play the 
same role: they introduce a new coordinate system defined by the sample 
itself. 

The new coordinate system 5 , ,  . . . , c,, described in the proof of Theo- 
rem 3, is not the only possible. One can obtain another coordinate system 
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defined by the sample, just as for p = 1 one can take, e.g., sgn (x, - 3) instead 
of sgn (x, - 5). 

Similarly, one can define the right-boundedness of the multidimensional 
distribution and show that the group 6, preserves it. 

4. InvaP7iamt tes& for mnltinormaliity. If we are seeking for tests for 
multinormality which are powerful against left-bounded alternatives, we 
should restrict ourselves to the invariance with respect to 6, .  The class of 
tests being invariant with respect to G2 is larger than those invariant with 
respect to G I .  Hence, usually there exist tests invariant with respect to G2 
and not invariant with respect to 6 ,  which for particular alternatives, not 
invariant far G I  but invariant for G2, have greater power than tests invariant 
with respect lo G I .  It is plansible that such properties have for example the 
most powerful invariant tests for particular alternatives of the form 

U is a (p xp)-upper trianguka matrix and F is a distribution function of a 
left-bounded random vector X E Rp. 

The most powerful tests are, however, not available in an explicit form 
in the multidimensional cases because of technical difficulties in performing 
appropriate calcuktions('). Therefore, in this section we propose some 
explicit tests invariant for G 2  and show by the Monte Carlo method that 
they perform in a reasonable way for two particular alternatives of the form 
(3) and have greater power than some tests known in the literature and 
being invariant with respect to GI. 

First we obtain a multidimensional version of the one-dimensional most 
powerful invariant test for normality against the exponential alternative 
derived in [7]. This test is also sensitive for other alternatives bounded from 
the left. We shall show, on examples, that our multidimensional version has 
analogous properties. We also propose new multidimensional versions of the 
Shapiro-Wilk test and investigate their power for some alternatives invariant 
with respect to G2. 

The one-dimensional statistic of the test [7] is E = ( X - - X ~ ~ ~ ) / C ? ~  and the 
Shapiro-Wilk test is based on statistic 

The coefficients ci are tabulated in 661. 
We propose the following method of construction of the multidimensio- 

nal tests: 

(I) Swh tests have been found only for two simple bivariate alternatives and have rather 
complicated form [9]. 
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I" Compute the maximat invariant BX for GI or Bk for G 2 .  
It will be treated as a new transformed sample. 
2" Compute the one-dimensional test statistic E or W for samples from 

""margbnaB distributions" (i-th row of the maximal invariant is an n-element 
sample from the i-th marginal distrib~~tisn). 

Note that computing these statistics is very simple because in each case 
the sample mean is zero md the sample variance is equal to one. 

3" The multidimensionaI test statistic is then computed as the sum of 
squares d the marginal statistics. 

Starting from the maximal invarimt B, (B:) we get the test which is 
invariant with respect to GI (GZ). Some additional arguments supporting the 
xnelhod presented above will be published in a separate paper. 

Note that the multidimensional version of the Shapiro-Wik test obtain- 
ed in [4] is simply the one-dimensional test for the first margin of the 
transformed data forming the matrix B,. To see this, note that the denami- 
nator of W* in Section 3 of [43 n a y  bs: expressed in our notation as 

max {(Xj - XR)T(nSx)a (Xj - XO)j 
l S j S n  

where X Q  is a column of the nxatrix and Y, is the p i n t  of configuration 
most distant from the origin of the coordinate system. Analogously, the 
statistics uj in [4-1 may be expressed as uj = Yz Vn, where Yj is the j-th point 
of configuration. 

Let us write 

Then formulae (3.2) in [4] may be expressed as W* = a a j ~ u ] 2 ,  where 
- v , ,  are ordered values of v i .  

Since x o j  = 0 and x u :  = 1, and v ,G~ j  are projections of the points of 
configuration onto the t,-axis led through the point of configuration most 
distant from the origin, W* is the one-dimensional Shapiro-Wik test statistic 
for the first margin of the transformed data forming the matrix B,. 

Let us write: 
EA4 - the multidimensional version of the test E invariant with respect 

to 6,; 
I+-* - the multidimensional Shapiro-Wilk test described in [43; 
W M ,  - the multidimensionaE Shapiro-Wik test constructed the way 

described above and invariant with respect to 6,; 
W M ,  - the version of W M ,  invariant with respect to G,. 



A preliminary Monte Garlo analysis of powers of these tests for the 
case p = 2 and rz =z 10 was accomplished. For each text 500 samples of size 
10 from Jk'",(O, I). were generated and, for every sample, the test statistic was 
computed. Appropriate order statistics of the sampling distribution were used 
as empirical critical points. All critical regions were of the form {a :  n < 4,;. 
Two alternatives of the form (3) were considered with F being a distribution 
function of identically and independently distributed random variables. The 
marginal distribution was log N ( 0 ,  1) in the &st and EXP(P) in the second 
case. For each alternative 500 samples of size 10 were generated and the test 
statistics were cornputcd. As an estimate of the power of the tests, the 
fraction of samples for which the computed values of the test statistics have 
fallen into the critical region, was used. Figure A shows the results of 

FIGURE A 

LOG N EX P 

computations. One can see that limiting the invariance to the group G ,  
causes an essential rise of the power. The power of W M ,  is considerably 
greater than that of W M , .  Both tests W M ,  and WM, perform better 
than W*. 

The test EM has the best power against both alternatives. Like E in the 
one-dimensional case, EM seems to be a sensitive test against left-bounded 
nonsymmetric alternatives. For symmetric alternatives the power of EM may 
be, of course, smaller than that of W*. 

5. Some additional ipesulltss;. Let us now formulate some related results. 
Let G ,  be the group of permutations of the sample, i.e., gX  = XPI for g E G,, 
where P is a permutation matrix. The following theorems hold: 

THEOREM 3'. A rnaxinzal invariant for the group (GI, 6,) is the matrix 
B(,, formed from B, though ordering its columns with respect e.g. to  the ,first 
component. 



THEOREM 4". A maximal invariant for the group (G2,  6,) is the ma~rix B;,) 
farmed B: through orderhg its coluwnm with respect, e.g., to the first 
component. 

The proofs of Theorems 3' and 4' follow from the proofs of Theorems 3 
and 4, respectively, after replacing Y = GX + D by Y = CXP+ 5. 
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