LINEAR KERNELS OF p-STABLE MEASURES

RY

ZDZISŁAW SUCHANECKI (WROCŁAW)

Abstract. The aim of the paper is to give a description of linear kernels of symmetric p-stable measures in terms of Pettis-type-integral of some operators.

- 1. Introduction. Let E be a locally convex space and μ a cylindrical measure on E. The linear kernel of μ is defined as the topological dual to the space E' endowed with the topology of the convergence in μ . One of the problems concerning the linear kernel of an arbitrary cylindrical measure is its description. Partial results in this direction can be found in [5] and [7]. The first paper concerns p-stable Radon measures with discrete spectrum. The second one a special class of p-stable processes. We give a description of linear kernels of symmetric p-stable measures in terms of Pettis-type-integral of some operators.
- 2. Preliminaries. Let E denote a locally convex space (l.c.s.) with topological dual E' and let (Ω, \mathcal{A}, P) be a probability space.
- L^p , $0 , denotes the space <math>L^p(\Omega, \mathcal{A}, P)$. If μ is a cylindrical measure on the algebra of cylindrical subsets of E, $\hat{\mu}$ is the characteristic function, i.e.

$$\widehat{\mu}(x') = \int_{\mathbb{R}} e^{i\langle x, x' \rangle} d\mu(x'), \quad x' \in E'.$$

In this paper we consider only cylindrical measures on E which characteristic function has the form

$$\hat{\mu}(x') = \exp\{-\|Tx'\|_{L^p}^p\},\,$$

where T is a continuous linear operator from E'_{τ} (τ denotes the Mackey topology) into L^p .

Note that every symmetric p-stable Radon measure has the form (*) (cf. [3]).

PROPOSITION 1 ([4], p. 270). Let E be an l.c.s. and let $T: E'_{\tau} \to L^1(\Omega, \mathcal{A}, P)$ be a continuous linear operator. Then T is Pettis integrable, i.e. for every A from \mathcal{A} there is an element x_A of E such that

$$\langle x_A, x' \rangle = \int_A Tx' dP$$
 for every $x' \in E'$.

We write $x_A = \int T dP$.

If $p \ge 1$ and $T: E'_{\tau} \to L^p$ is a continuous linear operator, then for every function $\psi \in L^q$, 1/p + 1/q = 1, the linear operator $\psi T: x' \to \psi T x'$ is continuous as a map from E'_{τ} into L^1 . Therefore, by Proposition 1, the integral $\int \psi T dP$ exists and is an element of E.

If we endow the dual space E' with the topology s_{μ} of the convergence in μ , then the space $H_{\mu} = (E', s_{\mu})'$ is called the *linear kernel* of μ .

3. Main result.

THEOREM 1. Let E be an l.c.s. and μ a cylindrical measure on E with characteristic function of the form (*). If $1 \le p < \infty$, then

$$H_{\mu} = \{ \int_{\Omega} \psi T dP \colon \psi \in L^{q} \},$$

where 1/p+1/q=1 (if p=1, then $q=\infty$).

Proof. We define the sets:

$$V_n = \left\{ x' \in E' : \|Tx'\|_{L^p} \leqslant \frac{1}{n} \right\}, \quad A_n = \left\{ \int_{\Omega} \psi \, T \, dP : \|\psi\|_{L^q} \leqslant n \right\}.$$

Let V_n^0 denote the *polar* of V_n , i.e. $V_n^0 = \{x \in E : |\langle x, x' \rangle| \le 1 \text{ for every } x' \in V^n\}$. First, we show that $A_n = V_n^0$.

Let a be an element of A_n . Then $a = \int_{\Omega} \psi T dP$, and we get

$$\begin{aligned} |\langle a, x' \rangle| &= \left| \left\langle \int_{\Omega} \psi T \, dP, \, x' \right\rangle \right| = \left| \int_{\Omega} \psi T x' \, dP \right| \\ &\leq \left\| \psi \right\|_{L^{q}} \left\| T x' \right\|_{L^{p}} \leqslant n \frac{1}{n} = 1 \end{aligned}$$

for every $x' \in V_n$. Therefore, $A_n \subset V_n^0$.

If $x' \in A_n^0$, then, for every $\psi \in L^q$, $\|\psi\|_{L^q} \le 1$, and $\left|\int\limits_{\Omega} \psi Tx' \, dP\right| \le 1/n$, which implies $\|Tx'\|_{L^p} \le 1/n$. Therefore $x' \in V_n$ and, consequently, $A_n^0 \subset V_n$, which implies $A_n \subset V_n^0 \subset A_n^{00}$.

It is easy to check that A_n is convex and balanced. We show that A_n is weakly closed in E. Let $\{a_{\alpha}\} = \{\int_{\Omega} \psi_{\alpha} T dP\}$ be a net in A_n which converges to

an element $a \in E$. Since $\{a_{\alpha}\} \subset A_n$, $\|\psi_{\alpha}\| \leq n$ for each α . Since a ball in L^q (in L^{∞}) is *-weakly closed, there exists a sub-net $\{\psi_{\beta}\}$ of $\{\psi_{\alpha}\}$ which weakly converges in L^q (in L^{∞}) to some ψ_0 , $\|\psi_0\| \leq n$. Therefore

$$\langle a_{\beta}, x' \rangle = \int_{\Omega} \psi_{\beta} Tx' dP \rightarrow \int_{\Omega} \psi_{0} Tx' dP$$
 for every $x' \in E'$.

Since $\{a_{\beta}\}$ also weakly converges to a, we get $a = \int_{\Omega} \psi_0 T dP$, which shows that A_n is weakly closed.

By the Bipolar Theorem (cf. [2]), $A_n^{00} = A_n$, which gives $A_n = V_n^0$. Now, we define

$$U_n = \{x' \in E' : \mu\{x: |\langle x, x' \rangle| \ge 1/n\} \le 1/n\}, \quad n = 1, 2, ...$$

The sets U_n form a neighbourhood base of 0 in E for s_μ -topology. Denoting by U_n^* the polar of U_n with respect to the dual pair $\langle E', E'^* \rangle$ (* denotes the algebraical dual), we get

$$H_{\mu}=\bigcup_{n=1}^{\infty}U_{n}^{\bullet}.$$

Since $\hat{\mu}$ is of the form (*), $\hat{\mu} \colon E'_{\tau} \to R$ is continuous. Therefore, the measure μ is scalarly concentrated on the family of all absolutely convex weakly compact subsets of E. Consequently, the canonical embedding of E'_{τ} into (E', s_{μ}) is continuous (cf. [1], pp. 26 and 30). So, for every n there is an absolutely convex compact set $K_n \subset E$ such that $K_n^0 \subset U_n$.

Note that $(K_n^0)^{\bullet} = K_n$. Indeed, if $x' \in E'^*$ is an element of $(K_n^0)^{\bullet}$, then $|\langle x, x' \rangle| \leq 1$ for every $x' \in K_n^0$. But this means that x is continuous on E. Hence x belongs to E and it follows from Bipolar Theorem that $(K_n^0)^{\bullet} = (K_n^0)^0 = K_n$.

Because of $U_n^{\circ} = (K_n^0)^{\circ} = K_n$, we get

$$H_{\mu}=\bigcup_{n=1}^{\infty}U_{n}^{\bullet}\subset E.$$

Using (*) once again we conclude that if $\{x'_n\}$ converges to x'_0 in s_μ -topology, then $\|Tx'_n - Tx'_0\|_{L^p} \to 0$. So, for any n there is a k(n) such that $U_{k(n)} \subset V_n$.

Conversely, it is easy to check that $Tx'_n \to Tx'_0$ in L^p implies $x'_n \to x'_0$ in μ . So, for every n there is an l(n) such that $V_{l(n)} \subset U_n$.

Finally, we obtain

$$H_{\mu} = \bigcup_{n=1}^{\infty} V_n^0 = \bigcup_{n=1}^{\infty} A_n = \{ \int_{\Omega} \psi T dP \colon \psi \in L^q \},$$

which completes the proof of our theorem.

Remark 1. The fact that H_{μ} is a subspace of E was known for Radon measures (cf. [3]).

Remark 2. From Theorem 1 we infer that H_{μ} is a Banach space. Indeed, we can take the Minkowski functional of the set A_1 as a norm on H_{μ} . This norm is equivalent to the norm in L^{q} (cf. also [5]).

REFERENCES

- [1] A. Badrikian, Séminaire sur les fonctions aléatoires linéaires et les mesures cylindriques, Lecture Notes in Math. 139 (1970).
- [2] H. H. Schaefer, Topological Vector Spaces, New York 1980.
- [3] W. Smoleński, Pre-supports and kernels of probability measures in Fréchet spaces, Demonstratio Math. 10 (1977), p. 751-762.
- [4] Z. Suchanecki, Remarks on Pettis integrability of cylindrical processes, Lecture Notes in Math. 828 (1980), p. 269-273.
- [5] D. H. Thang, Weakly admissible translates of probability measures on locally convex spaces. Preprint (1981).
- [6] A. Tortrat, Lois e(λ) dans les espaces vectoriels et lois stables, Z. Wahrschein. verw. Gebiete 37 (1976), p. 175–182.
- [7] J. Zinn, Admissible translates of stable measures, Studia Math. 54 (1976), p. 245-257.

Institute of Mathematics Technical University Wybrzeże Wyspiańskiego 27 50-370 Wrocław, Poland

Received on 29. 10. 1985