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Abstract. The limit behaviour of scalar modifications of powers 
of probability measures under a generalized convolution is conside- 
red. In particular, some necessary and sufTtcient wnditions in terms 
of moments and medians for a probability measure to belong to the 
domain of attraction of a compact set consisting of nen-degenerate 
at the origin measures are established. 

1. Natsa~on a d  pareli~nsuies. Generalized convolutions were introduced 
in 131. We recall some basic definitions. Let P denote the set of all Borel 
probability measures on the positive half-line R+ = LO, a). The set P is 
endowed with the topology of weak convergence. For P E P  and a > O we 
define the map T, by setting (T, p)(E) = p(a-' E )  for all Borel subsets E of 
R , .  By S, we denote the probability measure concentrated at the poinit' c. 

A continuous in each variable separately commutative and associative 
P-valued binary operation o on P is called a generalized convoEution if it is 
distributive with respect to convex combinations and maps Ta (a  > 0) widh 6, 
as the unit element. Moreover, there exist a sequence {c~:,) of positive 
norming constants and a measure y E P  other than 6,  such that qmSy + y, 

where 6;" is the n-th power of 6, under o. The measure y is called the 
characteristic measure of o. By Propositions 4.4 and 4.5 in [4] it is defined 
uraiqueiy up to a scale change Ta (a > 0) and fulfils the equation 

Y 0 'Pb Y = TBX(,,b) Y (a, b > 01, 
where O < x < c o ,  g,(a,b)={d"+b")/" if O < x < a o  and g,ja,b) 
= max(a, b). The constant x is called the chmmteristic exponent of o. By  
Proposition 4.5 and L e m a  2.6 in [4], x = co if and only if o is the mala- 
convolution. 

Let m, be the sum of 6, and the Lebesgue measure on R + .  By Po we 
shall denote the subset of P consisting of all absolutely continuous with 



respect to m, measures. It has been proved in [4] (Theorem 4.1 and 
Corollary 4.4) that each generafizzed convolution o admits a weak characteri- 
stic function, i.e. a one-to-one comespondence / i c l . P  between measures p 
from P and real-valued functions fi  from Lm(m,) such that the functions 2 
ape continuous for AE Po, ( c p f  (I - c) v) = c j l f  (1 - CE ? (0 G c G I), L T ~  1111 ^ ~ t )  

= fi(at) (u > 0) and [p o v] *= GG' for all p, v E B. Moreover, the weak 6011- 
vergence EL, + p is equivalent to the convergence &, - fi  in the LL, (m,)-to- 
pology of L,(rn,). The weak characteristic function is uniquely determined 
up to a scale change and for any P E P  

mo-almost everywhere. 
For our purpose it is convenient to describe the weak convergence of 

measures in terms of the mo-almost sure convergence of their weak characte- 
ristic functions. 

LEMMA 1.1. k t  pn, p~ P (n = 1, 2, . ..I. TIzen p, t p if and only each. 
subsequence of indices contains n subsequence n, < n2 < ... such that ii,, -+ fi  
m0-almost everywhere. 

Proof.  Suppose that p,, 4 p. Then, by Proposition 2.4 in [51, pnopB 
3 p o p and p, o p - p  so p. Consequently, for every A E Po, 

and 

m 

j- 2 (t) ?h (dt)  7 fi2 (t) I (dt) 
0 0 

which yields 

Taking a measure A equivalent to mo we get the condition in question. 
Conversely, this condition and the boundedness of weak characteristic func- 
tions ([4], Lemma 4.4) imply the convergence 

for every I E P o .  Thus fi, - ,i'i in the L, (m,)-topology of E ,  (m,) which* yields 
,un -'p. This completes the proof. 

It has been shown in [ 5 ] ,  Chapter 2, that the generalized convolution o 
can be extended to the space P of all Bore1 probability measures on the 
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compactified half-line R+ = [ O ,  co]. Since the space P is compact in the 
topology of weak convergence, this enables us to use compactnms arguments 
and, thereforq is a useful tool in the study of genmalized convolutions. We 
identlf4r the space P with the subxpace of P consisting of measures with zero 
Inass at t:. By Theorem 4.2 and Corollaries 3.2 and 3.5 in [5] ,  for any P E P  
other than 6, we have 

where O < c g CQ. Moreover, c = cn whenever x < m. 

Given ,UE P and a norming sequence of positive numbers {a,), by 
G({a,] ,  p) we shall denote the set of all cluster points in P of the sequence 
TQ,pon. Of course, the set G({a,, p) is compact in P. 

We say that p belongs to the dorncldn of attraction of a compact subset of 
I1\(S,} if G [ { a n ] ,  p) CL F\{aO) for a normiag sequence (a,). For the symmetric 
convolution thjis compactness property was introduced and studied by W. 
Feller in [l]. The aim of this paper is to give a necessary and sufficient 
condition for p to belong to the domain of attraction of a compact subset of 
P\{d,} in terms of the moments of pon. Another condition in terms of 
medians of yon is contained in [7]. 

Given AEF, by na@) and M(1) we shall denote the lowest and the 
greatest median of A, respectively. It is clear that the functions A -+ m(A3 and 
1 -. M(Aj are lower and upper sernicontinlnous respectively and 

Moreover, by (1.2), lim M(pO") 0 for P E P  ather than 6,. 
n-+m 

Denoting by r the greatest index for which M(p03  = 0, we put 

and 
c n ( ~ ) = M ( ~ ~ ? - l  ( n > r )  

c  = I ( I  < n d r ) .  

By (1.2) we have 

For g > 0 we shall also use the notation 

MP(,uj= JxPp(dx) and M p ( C 1 ) = ~ p ( p j ' ~ P .  
0 

Et is evident that 

Our next result lies somewhat deeper. 



LEMMA 1.2. Suppose that 8 r p < x. If Mp(pok) < oa ,fbr a positive itrteger 
k, then M,(po") ca for all positive integers n. 

Proof. Let A, V E  P. By Lemma 4.4 in 14.1 we have the inequalities 
t G 1 and Iv̂ (t)l G 1 m,-almost everywhere. Con%quently, 1 - [A. ov)]t) 
+ 1 - v^(t.ji 2 1 - v^(r) wo-almost everywhere. Since, for 0 < p < w, 

where 0 < d,  < m ( [6] ,  formula (511, we get the inequality 

(1.6) M,(A)dM,(v)+M,(Aov) for all 1 1 , v ~ P .  

Suppose now that M,(p03 < m and r > I .  Since in the case p - 6, the 
Lemma is obvious, we may assume that p # 4,. There exists then a positive 
number b such that 0 r (10, b)) < 1. Setting c = y ( [ O ,  b)), p, ( E )  
= G- p(E n [ O ,  b)), p2 (El = (1 - c)- 9 ( E  n [b, woo)), we have p = cpl + 
(1 -c) pz, M,(pl) < cc and, by (1.9, M,(yo@'-l) opl) < oo. Suhtituting 
1 = and v = pl into (1.6) we get the inequality M,(poir- 'I) < m. An 
illductive repetition of this argument leads to the inequality M,(p) u)< m, 
Applying Lemma 1 in [6] we obtain the inequality M,(pO") d nMp(p) for 
every n, which ccrrnpIetes the proof. 

Given 0 < p < x, we put 

whenever O < Np (poo) m, 

( cc otherwise. 

Observe that, by Lemma 2.3 in [5],  Np(yo") > 0 for all n provided 
N,(p) > 0. This fact and Lemrna 1.2 show that the above definition makes 
sense. 

2. Normi% serpaewes. In order to discuss properties of noroaing sequen- 
ces we have to make a brief digression to describe the behaviour of tails of lu, 

under the assumption that pLnk is convergent for a subsequence n, < n, < . . . 
We begin with auxiliary resuIts on generalized convolutions with finite 
exponent. 

LEMMA 2.1. Suppose that 31 < cx, and p E P.  If the set It: f i ( t )  = I )  has 
p s i f i ~ e  Lebesgue measure, then p = 60. 

Proof. Taking a probability measure v with the support contained in 
(t: $( t )  = 1 )  and absolutely continuous with respect to the Lebesgue measu- 
re on R+ we have, by Lemma 3.11, Propositions 3.3 and 3.4, and Theorem 
4.1 in [4], 
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Further, by Corollary 4.1 in [4], 

Suppose that p + So. Then, by (1.2), p"" - dm and, consequently, by the 
continuity of v^ and (2.1), 

53 

J ?(t) pan (dt )  -* 0 
0 

which contradicts (2.2). Thus p = 4,. 
LEMMA 2.2. Suppose that x < a, v E Po and v # 6, .  Then, fir every a > 0, 

sup {v^(t): t 2 a )  < 1. 

Proof.  Suppose the contrary. Sinee, by Zernma 3.11, IPropesitions 3.3 
and 3.4, and Theorem 4.1 in [4], 

and, by Lemma 4.4 in [4], IP(t)l 6 1, the continuity of v^ yields the existence 
of a number u 2 a such that C(v) = 1, Using formula (1.1) we get the equality 
&(x) = J1 (ux) = ]I for v-almost all x. But this contradicts Lemma 2.1, which 
completes the proof. 

LEMMA 2.3. Suppose that x c ao. If n1 < n, < .. . and piAk (k = 1, 2, .. .) is 
convergent in P, then pk ua 

o(n, - Proof.  By Corollary 2.3 in [ 5 ]  the sequences pk and pk (nk > r; r 
= 1, 2, . . .) are conditionally compact in P. Passing to a subsequence if 

necessary we may assume without loss of generality that -.,I, ~ l ,  -t v and 

L(ak-r) --* v,., where A, v, v, E P ( r  = 1 ,  2, . . .). Then, of course, vor ov, = A ( r  
= 1, 2, . ..) and, by Corollary 2.3 in [ 5 ] ,  the sequence vO' is conditionally 
wmgact in P. Comparing this with (1.2) we conclude that v = 60, which 
completes the proof. 

LEMMA 2.4. Suppose that pl < m. If n, < n, < . . . and p:'sk --* 3, in P, then 
x(t) > O m,-almost everywlaere. 

Proof.  Applying L e m a  2.3 we obtain p, -t So. Let s be a positive 
integer and pk the integral part of rids. Wrhe n, = sp, + r,, where Q 6 r, < s, 

v, = a,, if r, = 0 and v, = pi" otherwise. Then vk -, 6, and p:" = ( i p k ) o s  017, 
(k = 1, 2,. . .). Hence, by Corollary 2.3 in [S], it follows that the sequence 

piPk is conditionally compact in P. Let A, be its cluster point. Then 
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and, consequently, 13(ty = X(t) mo-almost everywhere. This yidds the inequa- 
lity J(t) 2 O mo-almost everywhenre. Mctrmver, for odd indices s, &(t) = 3(t)113 
m,-almost everywhere. Put E =: ( t :  I ( t )  = 0). Then, for odd s, &(t) = O mO- 
almost everywhere on E. We have to show that m,(E) = 0. Contrary to this 
let us assume that mall?) > 0. Taking a measure Q from Po with the support 
contained in E we get 

Since, by (2.3) and Lemma 2.3, As -. 6, and, by Lemma 4.1 in [q, &(t)  
= 1 (t E R+) ,  we have 

But this contradicts (2.4), which completes the proof. 

LEMMA 2.5. Stdppo~e that n, < n, < . . . and yyk + R io P" Then 

if either 3~ = rn and A([O, b)) > O or x < rn a~zd h > 0. 

Pro of. First consider the case x = m. Then o is the max-convolution 
and, consequently, 

for all continuity points b of 2. Hence, by stand& calculations, we get the 
assertion of the Lemma. 

Suppose now that x < a. From Lemma 2.3 it follows that ,uk -6,. 
Passing to a subsequence if necessary and applying Lemma 1.1 we may 
assunme without loss of generality that 

(2.5) 
and 

(2.6) 

mo-almost everywhere. By Egorev Theorem ([2], Section 21, Theorern 1) 
there exists a Bore1 subset B of R ,  with m, (B) > 1 swh that, in view of 
Lemma 2.4, 2 is bounded from below by a positive: number on B and 
convergences (2.5) and (2.6) are uniform on B. This yields 
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uniformly on B. Since m0(B%) > 1, we can find a measure Q from Po, other 
than 6p, with the support contained in B. Then, by (2.7), 

Observe that, by Corollary 4.1 In [4J, 

Given b > 0, we have, by Lemma 2,2, the inequality 

c =; inf {I-@(t): t 3 b ]  > 0, 
which yields 

m 

j(l-iiin(t))eIdt)&c~~((Cb,alo)) ( k = t , 2 , . . . ) .  
0 

Now the assertion of Lemma 2.5 is an immediate consequence of 
inequality (2.8). 

To state the next result we introduce some new notation. 
Given P E  P, by Adu) we denote the set of dl n o r ~ n g  sequences (g) fox 

which the in~lusion G({a, j ,  ,u] L)I P\)j(S,) is true. Two squences {a,) and {bn) 
of non-negative numbers are said to be equiualent, in symbols - {b,), if 

4 0 < Ern-  and lim- <a. -- 
,+a, bn n - r m b ,  . 

Let (a,) E A (p). Put 

b ( { ~ , ) ,  P )  = inf {b :  b)) > 0 for all 1 ~ 6 / f a , ) ,  p)). 

By the compactness of G((a, ) ,  p) the inequality b ({a,), p) < cc is true. 
LEMMA 2.6. Let {a,) E A (p) and I @ )  = sup {npor([ba&19 ao)): n ,  r 

= r, 2, ...>. 
Then d(b) < oo Sf either x = co and b; > b({a,) ,  p) or x < m and b >0. 
Proof. Suppose that b fulfils the conditions of the Lemma. Let (nk, rk) 

be a sequence of pairs for which 

If the sequence (nk) is bounded, then the inequality 4(b) < cc is obvious. 
Otkemise we may assume without loss of generafity that n, < us, < . . . 
Mbreover, we may also assume that the sequence T, /?Iirk is convergent 

,knk 
in P. Setting 



we conclude that the sequence pi"k is convergent in PP and 

Applying Lemma 2.5 we gat the inequa~ty I(b) < GO, which completes 
the proof. 

LEMMA 2.7. Let {an] E A (p). Then 
- 
lim a, IV, ( p o p  a~ 
R+04 

for mficienntly small p. 
Proof.  Passing, by Lemmas 1 and 2 in [73, to m quivalent sequence 

we may assume without loss of generality that (a,) is anonotone non- 
increasing and b ((a,,), p) < 1. 

First consider the ease lim a, > 0. Then, by Lemma 3 in [7J, o is the 
n-m 

max-convoIution and pD" -, Sc, where 0 < c < oo. It ES easy to verify that the 
support of pO" is contained in [O, c]. Thus Np(p03 6 c for all p > 0, which 
yields the assertion of the Lemma. 

Suppose now that lirn ra, = 0. Since, by CoroBlary 1 in [7], {afi} - (az,>, 
#"a) 

we can find a positive number q swb that 

f i t  u(k,n)=aik: ( k = 0 ,  1 ,...; n = 1 , 2  ,... ). Clearly a(k,n)<u(k 
+ 1, n), lim ec (k, n) = m and, by (2.9)? u u(k, n) < 2kq a; l .  Moreover, t&ing 

k-rar 

into account the inequality b({a,), p) ~ r ) <  1 and applying Lemma 2.6, we 
obtain the inequality 

Thus, for every p > 0, 

lack+ I,,) 

j xpp""(dx) < u(k+ 1, n)pp"n([s(k, n), m)) 
u(k,n) 

<2(kf1)qPa~p2-kd  (k=O, 1 ,...; n = 1 , 2 ,  ...) 
and 

u(O,nl 

j xp p0"(dx) < 14 (0, n)p = a i P  (n = 1,  2 ,  . . .). 
0 

For p fulfilling the condition 0 < p < q-"he above inequalities imply, 
by a routine computation, 
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which yields the assertion of the Lemma. 

3, Main rwults. We are now in a position to establish a necessary and 
sufficient condition for y to belong to the domain of attraction of a compact 
subset of P\(6,) in terms of the asymptotic behaviour of N,[~L"") (n 
= 1, 2, . . .). We begin with the following result: 

THEOREM 3.1. Sf p belongs to the domain of attraction of a compact subset 
of P\jd,), then fN,(p"9-1) E A (PI and { (Np(p03)  - { M  (ponji} for sujficiently 
sm66 p. 

Proof .  By Theorem 1 in [7) the sequence (c,(p)3, defined in Section 1, 
belongs to A(&. Consequently, by Lemma 2.7, 

- 
lim c, (p) N p  (pan) < m 
ii-m 

whenever p is small enough. Further, the obvious inequality 

for all p > 0 yields 
' 

~ C , ~ ( ~ ) N , ( ~ ~ " " )  3 2- l/fl. 
11'" 10 

Thus {N,(pO")-I) - (c,(p]) which, by Lemma 1 in [7], implies the 
assertion of the Theorem. 

PROPOSITION 3.1. If Kp(p) < co for an index p < x, then p belongs to the 
domain of attraction of a compct subset of P\{aO). 

Proof.  It follows from the assumption that 0 < N2,(pon) < m (n 
= 1 ,  2, . . .). Put b, = N ,  (pO?-I (n = 1, 2, . . .). Then 

Hence it folIows that G((b,), p) c P and, for q < 2p, the f'unction xq is 
uniformly integrable with respect to all measures il from G ( { b , ) ,  p) and 
Tb, pO" (n = 1, 2, . . .). Consequently, the equalities M,(T,,  pa") 1 ((1.8 

= 1, 2, . . .) imply M,(i) = 1 for all L E G ( (b , ) ,  p), which shows that 
~ ( { b , ) ,  p) c P\(JO]. This completes the proof. 

THEOREM 3.2. The folIowing conditions are equivabnt: 
(i) p belongs to the domain of attraction of a compact subset of R\(6,); 
(ii) p # do and {NP(pon)) - (M(pa3) for sttficiently small p; 

(iii) K,(p) < m for an index p < u. 

7 - Rob. Math. Statist. B 



Proof.  By Theorem 3.1 the implication (i) 1. {ii) is true. Suppose that 0 
< q c x and (ii) holds for .p -=c g. Taking 2p < q we have thc equivalence 
(N, , (pDn)j  - (N,(pO"), which yields (iii). Finally, Proposition 3.1 yields the 
impIi~ation (iii) + (i), which cornplletes the proof 

LEMMA 3.1, Suppose that {b,] is monotone non-incueasiq and (b,,) E A (p> 
for a positiue integer s. Than {b,} E A (p).  

Proof.  Let p, be the integral part of n/s. From Lemmas 1 and 4 in [73 
it follows that {B, , , )  (bgn}. Since sp, < n 6 sn, we have the inequalities 
b,,, 2 b, 2 b,,, which yield {b,)  {bsnj. Now OUT assertion is an immediate 

consequence of Lemma 1 in [7]. 
A generalized convolution o is said to be regular if the set P wit& the 

operation a and the operations of convex cornbinations admits a non- 
constant continuonsrhomomorplrism into the algebra of real numbers with 
the operations of multip~cation and convex combinarions. From Theorem 3 
in [3] and Lena~na 4.5 in E4-j it follows that o is regular if md only if for 
every P E P  the weak characteristic fu~xtion 4 is equal to a continuous 
fui~ction ii mo-almost everywhere on R ,  . TlGs con~nuous, version p --r fi  is 
called a characteristic function of o, The we-& convergence p, -r p is eqmva- 
lent to the uniform convergence c,, - ,li on every compact subset of R , .  'VG% 
note that regular generalized ssnvolutions have always finite; exponent. 

Let o be a regular generalized convolution and p + a,. Put 

Since P(0) = 1 and f i  is not identically equal to 5, we infer that there 
exists an index no such that Bn = t$ if PX < no and B, 7 ~ :  @ if n 2 no. Put 
bb (p) = minBn if n k no and b, (lr) = b,, (p] if n < n,.  Of course, b, (p) u) 0 
and 

Hence, in particular, it follows that the sequence {b, (p)} is monotone 
non-increasing. 

LEMMA 3.2. Suppose that o is regudar and p # 6,. Then 643 gf G ({b,,  (p), 
for any  positiue integer n. 

Proof.  Suppose, on the contrary, that there exist a positive integer s 
and a subsequence n, < n, -< . . . such that - &, where d, = bSak (p) ( k  
= 1 ,  2, . . .). Then 

(3.2) k(dk t),k -+ 1 
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uniformly on every compact subset of R , .  By the continuity of ,ii there exist 
real numbers P, satisfying the conditions 0 6 r, < 3 and 

1 

JF(d,;Y)CIx = P(dk tk )  (k = 1, 2, . . .). 
0 

Consequently, 

which contradicts (3.2). The Lemma is thus proved. 
IEMMA 3.3. Suppose that o is seguhr and p f 6,3. There exists then n 

posirive integer s such thdt b,,{p) 6 CAP) for stlficiently l a ~ g e  n. 
Proof. First we shall prove the inequality 

Contrary to this let us suppose that there exists a subsequence n, < n, 
< . . . with the property 

We may assume without loss of generality that the sequence v, 

= T,, where dk = en, (p), converges in P, say to v. From (3.4) it b!lows 
that 

which, by virtue of the inequality 0 < p(t )  < I for t small enough (131, 
Theorem 5), yields 

or, eq~mivalently, 
1 

Denoting by w the uniform distribution on the interval LO, I] and 
applying Corollary 4.4. in [4] we have 



Since, by Lemma 3.11, Propositions 3.3 and 3.4 and Theorem 4.1 in 141, 
liln G(x) = 0, 

x-cm 

we infer, by (3.51, that Y E P  and 
a0 

JG(x)v(dx) = 1 ,  
0 

which, by Lemma 2.2, yields v = so. But, in view of (1.31, M(vd = dk M ( ~ ~ ~ ~ )  
= 1 for sufficiently large Ic, which implies M ( C ~ ~ )  2 I .  Thus we have reached 
the desired contradiction. Inequality (3.3) is thus proved. As its immediate 
consequence we get the existence of a positive integer s for which the 
inequality 

1 

sn(1- S~(c , (~ )x )dx )  2 1 
0 

is true for sufficiently large n. Now, applying (3.1), we get the assertion of the 
Lemma. 

THEOREM 3.3. Let o be a regular generalized convolution. Then a measure 
f i  belongs to the domain of attraction of a compact subset of P\{GO] if and only 
if ,u # d0 and 

If it is the case, then (b,(p)) E A ( ~ ) .  
Proof.  Necessity. Suppose that p belongs to the domain of attraction 

of a compact subset of P\fdo). Then, of course, p # J,, and, by Theorem 1 in 
[7], {en (p))  E A (p). Since, by Lemma 3.3, b,, (p) < c, (p) for a positive integer s 
and sufficiently large n, we have the inclusion 

which, together with Lemma 3.2, yields G({b,(p)), p) t P\(Go). In other 
words, {bs, (PI} E A ('1. Since the sequence (b, (p)} is monotone non-increasing, 
we have, by Lemma 3.1, {b,(p)) EA(P). Further, by Corollary 1 in [7J, 
(b, (p)) - {b,, (p)}, which implies condition (3.6). 

Sufficient y. Suppose that p # 6, and condition (3.6) is fulfilled. By 
Lemma 3.3 there exists a positive integer s such that b,(d < c,(p) for 
sufficiently large n. Since, by (3.31, 

b2,(~) > *, lim --- 
m i  bsn (PI 
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we have, by Lemma 4 in [6], the inclusion G({b, , (p)) ,  p) c P, which, 
together with Lemma 3-2, shows that p belongs to the domain of attraction 
of a compact subset of P\{6,3. The Theorem is thus proved. 
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