PROBABILITY AND <u>MATHEMATICAL STATISTICS</u> Vol. 8 (1987), p. 89–101

DOMAINS OF ATTRACTION AND MOMENTS

BY

K. URBANIK (WROCŁAW)

Abstract. The limit behaviour of scalar modifications of powers of probability measures under a generalized convolution is considered. In particular, some necessary and sufficient conditions in terms of moments and medians for a probability measure to belong to the domain of attraction of a compact set consisting of non-degenerate at the origin measures are established.

1. Notation and preliminaries. Generalized convolutions were introduced in [3]. We recall some basic definitions. Let P denote the set of all Borel probability measures on the positive half-line $R_+ = [0, \infty)$. The set P is endowed with the topology of weak convergence. For $\mu \in P$ and a > 0 we define the map T_a by setting $(T_a \mu)(E) = \mu(a^{-1}E)$ for all Borel subsets E of R_+ . By δ_c we denote the probability measure concentrated at the point c.

A continuous in each variable separately commutative and associative *P*-valued binary operation \circ on *P* is called a *generalized convolution* if it is distributive with respect to convex combinations and maps T_a (a > 0) with δ_0 as the unit element. Moreover, there exist a sequence $\{c_n\}$ of positive norming constants and a measure $\gamma \in P$ other than δ_0 such that $T_{c_n} \delta_1^{\circ n} \to \gamma$, where $\delta_1^{\circ n}$ is the *n*-th power of δ_1 under \circ . The measure γ is called the *characteristic measure* of \circ . By Propositions 4.4 and 4.5 in [4] it is defined uniquely up to a scale change T_a (a > 0) and fulfils the equation

$$T_a \gamma \circ T_b \gamma = T_{g_{\gamma}(a,b)} \gamma \quad (a, b > 0),$$

where $0 < \varkappa \leq \infty$, $g_{\varkappa}(a, b) = (a^{\varkappa} + b^{\varkappa})^{1/\varkappa}$ if $0 < \varkappa < \infty$ and $g_{\infty}(a, b) = \max(a, b)$. The constant \varkappa is called the *characteristic exponent* of 0. By Proposition 4.5 and Lemma 2.1 in [4], $\varkappa = \infty$ if and only if 0 is the max-convolution.

Let m_0 be the sum of δ_0 and the Lebesgue measure on R_+ . By P_0 we shall denote the subset of P consisting of all absolutely continuous with

respect to m_0 measures. It has been proved in [4] (Theorem 4.1 and Corollary 4.4) that each generalized convolution \circ admits a weak characteristic function, i.e. a one-to-one correspondence $\mu \leftrightarrow \hat{\mu}$ between measures μ from P and real-valued functions $\hat{\mu}$ from $L_{\infty}(m_0)$ such that the functions $\hat{\lambda}$ are continuous for $\lambda \in P_0$, $(c\mu + (1-c)\nu) = c\hat{\mu} + (1-c)\hat{\nu}$ ($0 \le c \le 1$), $[T_a\mu](t) = \hat{\mu}(at)$ (a > 0) and $[\mu \circ \nu] = \hat{\mu}\hat{\nu}$ for all $\mu, \nu \in P$. Moreover, the weak convergence $\mu_n \to \mu$ is equivalent to the convergence $\hat{\mu}_n \to \hat{\mu}$ in the $L_1(m_0)$ -topology of $L_{\infty}(m_0)$. The weak characteristic function is uniquely determined up to a scale change and for any $\mu \in P$

(1.1)
$$\hat{\mu}(t) = \int_{0}^{\infty} \hat{\delta}_{1}(tx) \,\mu(dx)$$

 m_0 -almost everywhere.

For our purpose it is convenient to describe the weak convergence of measures in terms of the m_0 -almost sure convergence of their weak characteristic functions.

LEMMA 1.1. Let μ_n , $\mu \in P$ (n = 1, 2, ...). Then $\mu_n \to \mu$ if and only if each subsequence of indices contains a subsequence $n_1 < n_2 < ...$ such that $\hat{\mu}_{n_k} \to \hat{\mu}$ m_0 -almost everywhere.

Proof. Suppose that $\mu_n \to \mu$. Then, by Proposition 2.4 in [5], $\mu_n \circ \mu_n \to \mu \circ \mu$ and $\mu_n \circ \mu \to \mu \circ \mu$. Consequently, for every $\lambda \in P_0$,

$$\int_{0}^{\infty} \hat{\mu}_{n}^{2}(t) \,\lambda(dt) \to \int_{0}^{\infty} \hat{\mu}^{2}(t) \,\lambda(dt)$$

and

$$\int_{0}^{\infty} \hat{\mu}_{n}(t) \,\hat{\mu}(t) \,\lambda(dt) \to \int_{0}^{\infty} \hat{\mu}^{2}(t) \,\lambda(dt)$$

which yields

$$\int_{0}^{\infty} \left(\hat{\mu}_{n}(t) - \hat{\mu}(t)\right)^{2} \lambda(dt) \to 0.$$

Taking a measure λ equivalent to m_0 we get the condition in question. Conversely, this condition and the boundedness of weak characteristic functions ([4], Lemma 4.4) imply the convergence

$$\int_{0}^{\infty} \hat{\mu}_{n}(t) \,\lambda(dt) \to \int_{0}^{\infty} \hat{\mu}(t) \,\lambda(dt)$$

for every $\lambda \in P_0$. Thus $\hat{\mu}_n \to \hat{\mu}$ in the $L_1(m_0)$ -topology of $L_{\infty}(m_0)$ which yields $\mu_n \to \mu$. This completes the proof.

It has been shown in [5], Chapter 2, that the generalized convolution \circ can be extended to the space \overline{P} of all Borel probability measures on the

compactified half-line $\overline{R}_{+} = [0, \infty]$. Since the space \overline{P} is compact in the topology of weak convergence, this enables us to use compactness arguments and, therefore, is a useful tool in the study of generalized convolutions. We identify the space P with the subspace of \overline{P} consisting of measures with zero mass at ∞ . By Theorem 4.2 and Corollaries 3.2 and 3.5 in [5], for any $\mu \in P$ other than δ_0 we have

$$(1.2) \qquad \qquad \mu^{\circ n} \to \delta_c \text{ in } P,$$

where $0 < c \leq \infty$. Moreover, $c = \infty$ whenever $\varkappa < \infty$.

Given $\mu \in P$ and a norming sequence of positive numbers $\{a_n\}$, by $G(\{a_n\}, \mu)$ we shall denote the set of all cluster points in \overline{P} of the sequence $T_{a_n}\mu^{\circ n}$. Of course, the set $G(\{a_n, \mu\})$ is compact in \overline{P} .

We say that μ belongs to the domain of attraction of a compact subset of $P \setminus \{\delta_0\}$ if $G(\{a_n\}, \mu) \subset P \setminus \{\delta_0\}$ for a norming sequence $\{a_n\}$. For the symmetric convolution this compactness property was introduced and studied by W. Feller in [1]. The aim of this paper is to give a necessary and sufficient condition for μ to belong to the domain of attraction of a compact subset of $P \setminus \{\delta_0\}$ in terms of the moments of $\mu^{\circ n}$. Another condition in terms of medians of $\mu^{\circ n}$ is contained in [7].

Given $\lambda \in \overline{P}$, by $m(\lambda)$ and $M(\lambda)$ we shall denote the lowest and the greatest median of λ , respectively. It is clear that the functions $\lambda \to m(\lambda)$ and $\lambda \to M(\lambda)$ are lower and upper semicontinuous respectively and

(1.3)
$$m(T_a\lambda) = am(\lambda), \quad M(T_a\lambda) = aM(\lambda) \quad (a > 0).$$

Moreover, by (1.2), $\lim_{n \to \infty} M(\mu^{\circ n}) > 0$ for $\mu \in P$ other than δ_0 .

Denoting by r the greatest index for which $M(\mu^{\circ r}) = 0$, we put

$$c_n(\mu) = M(\mu^{\circ n})^{-1}$$
 $(n > r)$

and

 $c_n(\mu)=1 \quad (1\leqslant n\leqslant r).$

By (1.2) we have

(1.4)

$$_{n}(\mu) \rightarrow 0$$
 if $\varkappa < \infty$.

For p > 0 we shall also use the notation

С

$$M_p(\mu) = \int_0^\infty x^p \mu(dx)$$
 and $N_p(\mu) = M_p(\mu)^{1/p}$.

It is evident that

(1.5)
$$M_p(c\mu + (1-c)\nu) = cM_p(\mu) + (1-c)M_p(\nu) \quad (0 \le c \le 1).$$

Our next result lies somewhat deeper.

LEMMA 1.2. Suppose that $0 . If <math>M_p(\mu^{\circ k}) < \infty$ for a positive integer k, then $M_p(\mu^{\circ n}) < \infty$ for all positive integers n.

Proof. Let $\lambda, \nu \in P$. By Lemma 4.4 in [4] we have the inequalities $|\hat{\lambda}(t)| \leq 1$ and $|\hat{\nu}(t)| \leq 1$ m_0 -almost everywhere. Consequently, $1 - [\lambda \circ \nu](t) + 1 - \hat{\nu}(t) \geq 1 - \hat{\nu}(t)$ m_0 -almost everywhere. Since, for 0 ,

$$\int_{0}^{\infty} \frac{1-\hat{\varrho}(t)}{t^{1+p}} dt = d_p M_p(\varrho) \quad (\varrho \in P),$$

where $0 < d_p < \infty$ ([6], formula (5)), we get the inequality

(1.6)
$$M_p(\lambda) \leq M_p(\nu) + M_p(\lambda \circ \nu)$$
 for all $\lambda, \nu \in P$.

Suppose now that $M_p(\mu^{\circ r}) < \infty$ and r > 1. Since in the case $\mu = \delta_0$ the Lemma is obvious, we may assume that $\mu \neq \delta_0$. There exists then a positive number b such that $0 < \mu([0, b)) < 1$. Setting $c = \mu([0, b))$, $\mu_1(E) = c^{-1} \mu(E \cap [0, b))$, $\mu_2(E) = (1-c)^{-1} \mu(E \cap [b, \infty))$, we have $\mu = c\mu_1 + (1-c)\mu_2$, $M_p(\mu_1) < \infty$ and, by (1.5), $M_p(\mu^{\circ (r-1)} \circ \mu_1) < \infty$. Substituting $\lambda = \mu^{\circ (r-1)}$ and $v = \mu_1$ into (1.6) we get the inequality $M_p(\mu^{\circ (r-1)}) < \infty$. An inductive repetition of this argument leads to the inequality $M_p(\mu) < \infty$. Applying Lemma 1 in [6] we obtain the inequality $M_p(\mu^{\circ n}) \leq nM_p(\mu)$ for every n, which completes the proof.

Given 0 , we put

$$K_p(\mu) = \begin{cases} \overline{\lim_{n \to \infty} \frac{N_{2p}(\mu^{\circ n})}{N_p(\mu^{\circ n})}}, & \text{whenever } 0 < N_p(\mu) < \infty, \\ \infty & \text{otherwise.} \end{cases}$$

Observe that, by Lemma 2.3 in [5], $N_p(\mu^{\circ n}) > 0$ for all *n* provided $N_p(\mu) > 0$. This fact and Lemma 1.2 show that the above definition makes sense.

2. Norming sequences. In order to discuss properties of norming sequences we have to make a brief digression to describe the behaviour of tails of μ_k under the assumption that $\mu_k^{\circ n_k}$ is convergent for a subsequence $n_1 < n_2 < \ldots$. We begin with auxiliary results on generalized convolutions with finite exponent.

LEMMA 2.1. Suppose that $\varkappa < \infty$ and $\mu \in P$. If the set $\{t: \hat{\mu}(t) = 1\}$ has positive Lebesgue measure, then $\mu = \delta_0$.

Proof. Taking a probability measure v with the support contained in $\{t: \hat{\mu}(t) = 1\}$ and absolutely continuous with respect to the Lebesgue measure on R_+ we have, by Lemma 3.11, Propositions 3.3 and 3.4, and Theorem 4.1 in [4],

$$\lim_{t\to\infty}\hat{v}(t)=0.$$

(2.1)

Further, by Corollary 4.1 in [4],

(2.2)
$$\int_{0}^{\infty} \hat{v}(t) \, \mu^{\circ n}(dt) = \int_{0}^{\infty} \hat{\mu}^{n}(t) \, v(dt) = 1 \quad (n = 1, \, 2, \, \ldots).$$

Suppose that $\mu \neq \delta_0$. Then, by (1.2), $\mu^{\circ n} \rightarrow \delta_{\infty}$ and, consequently, by the continuity of \hat{v} and (2.1),

$$\int_{0}^{\infty} \widehat{\nu}(t) \, \mu^{\circ n}(dt) \to 0$$

which contradicts (2.2). Thus $\mu = \delta_0$.

LEMMA 2.2. Suppose that $\varkappa < \infty$, $\nu \in P_0$ and $\nu \neq \delta_0$. Then, for every a > 0,

$$\sup\left\{\widehat{v}(t): t \ge a\right\} < 1.$$

Proof. Suppose the contrary. Since, by Lemma 3.11, Propositions 3.3 and 3.4, and Theorem 4.1 in [4],

$$\lim_{t\to\infty}\hat{v}(t)=v(\{0\})<1$$

and, by Lemma 4.4 in [4], $|\hat{v}(t)| \leq 1$, the continuity of \hat{v} yields the existence of a number $u \geq a$ such that $\hat{v}(u) = 1$. Using formula (1.1) we get the equality $\hat{\delta}_u(x) = \hat{\delta}_1(ux) = 1$ for v-almost all x. But this contradicts Lemma 2.1, which completes the proof.

LEMMA 2.3. Suppose that $\varkappa < \infty$. If $n_1 < n_2 < \ldots$ and $\mu_k^{\circ n_k}$ $(k = 1, 2, \ldots)$ is convergent in P, then $\mu_k \rightarrow \delta_0$.

Proof. By Corollary 2.3 in [5] the sequences μ_k and $\mu_k^{\circ(n_k-r)}$ $(n_k > r; r = 1, 2, ...)$ are conditionally compact in *P*. Passing to a subsequence if necessary we may assume without loss of generality that $\mu_k^{\circ n_k} \to \lambda$, $\mu_k \to v$ and $\mu_k^{\circ(n_k-r)} \to v_r$, where λ , v, $v_r \in P$ (r = 1, 2, ...). Then, of course, $v^{\circ r} \circ v_r = \lambda$ (r = 1, 2, ...) and, by Corollary 2.3 in [5], the sequence $v^{\circ r}$ is conditionally compact in *P*. Comparing this with (1.2) we conclude that $v = \delta_0$, which completes the proof.

LEMMA 2.4. Suppose that $\varkappa < \infty$. If $n_1 < n_2 < \ldots$ and $\mu_k^{\circ n_k} \to \lambda$ in P, then $\hat{\lambda}(t) > 0$ m₀-almost everywhere.

Proof. Applying Lemma 2.3 we obtain $\mu_k \to \delta_0$. Let s be a positive integer and p_k the integral part of n_k/s . Write $n_k = sp_k + r_k$, where $0 \le r_k < s$, $v_k = \delta_0$ if $r_k = 0$ and $v_k = \mu_k^{\circ r_k}$ otherwise. Then $v_k \to \delta_0$ and $\mu_k^{n_k} = (\mu_k^{\circ p_k})^{\circ s} \circ v_k$ (k = 1, 2, ...). Hence, by Corollary 2.3 in [5], it follows that the sequence $\mu_k^{\circ p_k}$ is conditionally compact in P. Let λ_s be its cluster point. Then

(2.3)
$$\lambda_s^{\circ s} = \lambda \quad (s = 1, 2, \ldots)$$

and, consequently, $\hat{\lambda}_s(t)^s = \hat{\lambda}(t) m_0$ -almost everywhere. This yields the inequality $\hat{\lambda}(t) \ge 0 m_0$ -almost everywhere. Moreover, for odd indices s, $\hat{\lambda}_s(t) = \hat{\lambda}(t)^{1/s} m_0$ -almost everywhere. Put $E = \{t: \hat{\lambda}(t) = 0\}$. Then, for odd s, $\hat{\lambda}_s(t) = 0 m_0$ almost everywhere on E. We have to show that $m_0(E) = 0$. Contrary to this let us assume that $m_0(E) > 0$. Taking a measure ρ from P_0 with the support contained in E we get

(2.4)
$$\int_{0}^{\infty} \hat{\lambda}_{s}(t) \varrho(dt) = 0 \quad (s = 1, 2, ...).$$

Since, by (2.3) and Lemma 2.3, $\lambda_s \to \delta_0$ and, by Lemma 4.1 in [4], $\hat{\lambda}_0(t) = 1$ $(t \in R_+)$, we have

$$\int_{0}^{\infty} \hat{\lambda}_{s}(t) \varrho(dt) \to 1 \quad \text{as } s \to \infty.$$

But this contradicts (2.4), which completes the proof.

LEMMA 2.5. Suppose that $n_1 < n_2 < \ldots$ and $\mu_k^{\circ n_k} \rightarrow \lambda$ in P. Then

$$\overline{\lim_{k\to\infty}} n_k \mu_k [(b,\infty)) < \infty$$

if either $\varkappa = \infty$ and $\lambda([0, b)) > 0$ or $\varkappa < \infty$ and b > 0.

Proof. First consider the case $\varkappa = \infty$. Then \circ is the max-convolution and, consequently,

$$\mu_k^{n_k}([0, b)) \to \lambda([0, b))$$

for all continuity points b of λ . Hence, by standard calculations, we get the assertion of the Lemma.

Suppose now that $\varkappa < \infty$. From Lemma 2.3 it follows that $\mu_k \rightarrow \delta_0$. Passing to a subsequence if necessary and applying Lemma 1.1 we may assume without loss of generality that

$$(2.5) \qquad \qquad \hat{\mu}_k^{n_k} \to \hat{\lambda}$$

and (2.6)

 $\hat{\mu}_k
ightarrow 1$

 m_0 -almost everywhere. By Egorev Theorem ([2], Section 21, Theorem 1) there exists a Borel subset B of R_+ with $m_0(B) > 1$ such that, in view of Lemma 2.4, $\hat{\lambda}$ is bounded from below by a positive number on B and convergences (2.5) and (2.6) are uniform on B. This yields

(2.7)
$$\lim_{k \to \infty} n_k \left(1 - \hat{\mu}_k(t) \right) = -\log \hat{\lambda}(t)$$

uniformly on B. Since $m_0(B) > 1$, we can find a measure ρ from P_0 , other than δ_0 , with the support contained in B. Then, by (2.7),

(2.8)
$$\lim_{k\to\infty}n_k\int_0^{\infty}(1-\hat{\mu}_k(t))\varrho(dt)<\infty.$$

Observe that, by Corollary 4.1 in [4],

$$\int_{0}^{\infty} \widehat{\mu}_{k}(t) \varrho(dt) = \int_{0}^{\infty} \widehat{\varrho}(t) \mu_{k}(dt) \quad (k = 1, 2, \ldots).$$

Given b > 0, we have, by Lemma 2.2, the inequality

 $c = \inf \left\{ 1 - \hat{\varrho}(t) \colon t \ge b \right\} > 0,$

which yields

$$\int_{0}^{\infty} (1-\hat{\mu}_{k}(t)) \varrho(dt) \ge c \mu_{k}([b, \infty)) \quad (k=1, 2, \ldots).$$

Now the assertion of Lemma 2.5 is an immediate consequence of inequality (2.8).

To state the next result we introduce some new notation.

Given $\mu \in P$, by $A(\mu)$ we denote the set of all norming sequences $\{a_n\}$ for which the inclusion $G(\{a_n\}, \mu) \subset P \setminus \{\delta_0\}$ is true. Two sequences $\{a_n\}$ and $\{b_n\}$ of non-negative numbers are said to be *equivalent*, in symbols $\{a_n\} \sim \{b_n\}$, if

$$0 < \lim_{n \to \infty} \frac{a_n}{b_n}$$
 and $\lim_{n \to \infty} \frac{a_n}{b_n} < \infty$.

Let $\{a_n\} \in A(\mu)$. Put

$$b(\{a_n\}, \mu) = \inf \{b: \lambda([0, b)) > 0 \text{ for all } \lambda \in G(\{a_n\}, \mu)\}.$$

By the compactness of $G(\{a_n\}, \mu)$ the inequality $b(\{a_n\}, \mu) < \infty$ is true. LEMMA 2.6. Let $\{a_n\} \in A(\mu)$ and $I(b) = \sup \{n\mu^{\circ r}([ba_{nr}^{-1}, \infty)): n, r = 1, 2, \ldots\}$.

Then $I(b) < \infty$ if either $\varkappa = \infty$ and $b > b(\{a_n\}, \mu)$ or $\varkappa < \infty$ and b > 0. Proof. Suppose that b fulfils the conditions of the Lemma. Let (n_k, r_k) be a sequence of pairs for which

$$I(b) = \lim_{k \to \infty} n_k \mu^{\circ r_k} ([ba_{n_k r_k}^{-1}, \infty)).$$

If the sequence $\{n_k\}$ is bounded, then the inequality $I(b) < \infty$ is obvious. Otherwise we may assume without loss of generality that $n_1 < n_2 < \dots$ Moreover, we may also assume that the sequence $T_{a_{n_k n_k}} \mu^{\circ n_k r_k}$ is convergent in *P*. Setting

$$\mu_k = T_{a_{n_k r_k}} \mu^{\circ r_k},$$

we conclude that the sequence $\mu_k^{\circ n_k}$ is convergent in P and

$$\mu_k([b, \infty)) = \mu^{\circ r_k}([ba_{n_k r_k}^{-1}, \infty)) \quad (k = 1, 2, \ldots).$$

Applying Lemma 2.5 we get the inequality $I(b) < \infty$, which completes the proof.

LEMMA 2.7. Let $\{a_n\} \in A(\mu)$. Then

$$\lim_{n\to\infty}a_nN_p(\mu^{\circ n})<\infty$$

for sufficiently small p.

Proof. Passing, by Lemmas 1 and 2 in [7], to an equivalent sequence we may assume without loss of generality that $\{a_n\}$ is monotone non-increasing and $b(\{a_n\}, \mu) < 1$.

First consider the case $\lim_{n \to \infty} a_n > 0$. Then, by Lemma 3 in [7], \circ is the max-convolution and $\mu^{\circ n} \to \delta_c$, where $0 < c < \infty$. It is easy to verify that the support of $\mu^{\circ n}$ is contained in [0, c]. Thus $N_p(\mu^{\circ n}) \leq c$ for all p > 0, which yields the assertion of the Lemma.

Suppose now that $\lim_{n \to \infty} a_n = 0$. Since, by Corollary 1 in [7], $\{a_n\} \sim \{a_{2n}\}$, we can find a positive number q such that

(2.9) $a_2^{-1} \leq 2^q, \quad \frac{a_n}{a_{2n}} \leq 2^q \quad (n = 1, 2, ...).$

Put $u(k, n) = a_{2k_n}^{-1}$ (k = 0, 1, ...; n = 1, 2, ...). Clearly $u(k, n) \leq u(k + 1, n)$, $\lim_{k \to \infty} u(k, n) = \infty$ and, by (2.9), $u(k, n) \leq 2^{kq} a_n^{-1}$. Moreover, taking into account the inequality $b(\{a_n\}, \mu) < 1$ and applying Lemma 2.6, we obtain the inequality

$$d = \sup \{2^k \mu^{\circ n} ([u(k, n), \infty)): k = 0, 1, ...; n = 1, 2, ...\} < \infty.$$

Thus, for every p > 0,

$$\int_{u(k,n)}^{u(k+1,n)} x^p \mu^{\circ n}(dx) \leq u(k+1, n)^p \mu^{\circ n}([u(k, n), \infty))$$
$$\leq 2^{(k+1)qp} a_n^{-p} 2^{-k} d \qquad (k = 0, 1, ...; n = 1, 2, ...)$$

and

$$\int_{0}^{(0,n)} x^{p} \mu^{\circ n}(dx) \leq u(0, n)^{p} = a_{n}^{-p} \quad (n = 1, 2, \ldots).$$

For p fulfilling the condition 0 the above inequalities imply,by a routine computation,

$$M_p(\mu^{\circ n}) \leq a_n^{-p} \left(1 + \frac{d \cdot 2^{qp}}{1 - 2^{qp-1}} \right) \quad (n = 1, 2, \ldots),$$

which yields the assertion of the Lemma.

3. Main results. We are now in a position to establish a necessary and sufficient condition for μ to belong to the domain of attraction of a compact subset of $P \setminus \{\delta_0\}$ in terms of the asymptotic behaviour of $N_p(\mu^{\circ n})$ (n = 1, 2, ...). We begin with the following result:

THEOREM 3.1. If μ belongs to the domain of attraction of a compact subset of $P \setminus \{\delta_0\}$, then $\{N_p(\mu^{\circ n})^{-1}\} \in A(\mu)$ and $\{N_p(\mu^{\circ n})\} \sim \{M(\mu^{\circ n})\}$ for sufficiently small p.

Proof. By Theorem 1 in [7] the sequence $\{c_n(\mu)\}\$, defined in Section 1, belongs to $A(\mu)$. Consequently, by Lemma 2.7,

$$\lim_{n\to\infty}c_n(\mu)N_p(\mu^{\circ n})<\infty$$

whenever p is small enough. Further, the obvious inequality

$$\frac{1}{2}M^{p}(\mu^{\circ n}) \leq M_{p}(\mu^{\circ n}) \quad (n = 1, 2, ...)$$

for all p > 0 yields

$$\underline{\lim} c_n(\mu) N_p(\mu^{\circ n}) \ge 2^{-1/p}.$$

Thus $\{N_p(\mu^{\circ n})^{-1}\} \sim \{c_n(\mu)\}\$ which, by Lemma 1 in [7], implies the assertion of the Theorem.

PROPOSITION 3.1. If $K_p(\mu) < \infty$ for an index $p < \varkappa$, then μ belongs to the domain of attraction of a compact subset of $P \setminus \{\delta_0\}$.

Proof. It follows from the assumption that $0 < N_{2p}(\mu^{\circ n}) < \infty$ (n = 1, 2, ...). Put $b_n = N_p(\mu^{\circ n})^{-1}$ (n = 1, 2, ...). Then

$$\overline{\lim_{n\to\infty}} M_{2p}(T_{b_n}\mu^{\circ n}) = K_p(\mu)^{2p} < \infty.$$

Hence it follows that $G(\{b_n\}, \mu) \subset P$ and, for q < 2p, the function x^q is uniformly integrable with respect to all measures λ from $G(\{b_n\}, \mu)$ and $T_{b_n}\mu^{\circ n}$ (n = 1, 2, ...). Consequently, the equalities $M_p(T_{b_n}\mu^{\circ n}) = 1$ (n = 1, 2, ...) imply $M_p(\lambda) = 1$ for all $\lambda \in G(\{b_n\}, \mu)$, which shows that $G(\{b_n\}, \mu) \subset P \setminus \{\delta_0\}$. This completes the proof.

THEOREM 3.2. The following conditions are equivalent:

(i) μ belongs to the domain of attraction of a compact subset of $R \setminus \{\delta_0\}$;

(ii) $\mu \neq \delta_0$ and $\{N_p(\mu^{\circ n})\} \sim \{M(\mu^{\circ n})\}$ for sufficiently small p;

(iii) $K_p(\mu) < \infty$ for an index $p < \varkappa$.

7 - Prob. Math. Statist. 8

Proof. By Theorem 3.1 the implication (i) \rightarrow (ii) is true. Suppose that $0 < q < \varkappa$ and (ii) holds for p < q. Taking 2p < q we have the equivalence $\{N_{2p}(\mu^{\circ n})\} \sim \{N_p(\mu^{\circ n})\}$, which yields (iii). Finally, Proposition 3.1 yields the implication (iii) \rightarrow (i), which completes the proof.

LEMMA 3.1. Suppose that $\{b_n\}$ is monotone non-increasing and $\{b_{sn}\} \in A \{\mu\}$ for a positive integer s. Then $\{b_n\} \in A(\mu)$.

Proof. Let p_n be the integral part of n/s. From Lemmas 1 and 4 in [7] it follows that $\{b_{sp_n}\} \sim \{b_{sn}\}$. Since $sp_n \leq n \leq sn$, we have the inequalities $b_{sp_n} \geq b_n \geq b_{sn}$, which yield $\{b_n\} \sim \{b_{sn}\}$. Now our assertion is an immediate consequence of Lemma 1 in [7].

A generalized convolution \circ is said to be *regular* if the set *P* with the operation \circ and the operations of convex combinations admits a nonconstant continuous homomorphism into the algebra of real numbers with the operations of multiplication and convex combinations. From Theorem 3 in [3] and Lemma 4.5 in [4] it follows that \circ is regular if and only if for every $\mu \in P$ the weak characteristic function $\hat{\mu}$ is equal to a continuous function $\tilde{\mu}$ m₀-almost everywhere on R_+ . This continuous version $\mu \to \tilde{\mu}$ is called a *characteristic function* of \circ . The weak convergence $\mu_n \to \mu$ is equivalent to the uniform convergence $\tilde{\mu}_n \to \tilde{\mu}$ on every compact subset of R_+ . We note that regular generalized convolutions have always finite exponent.

Let \circ be a regular generalized convolution and $\mu \neq \delta_0$. Put

$$B_n = \{t: n(1 - \int_0^1 \tilde{\mu}(tx) dx) = 1\} \quad (n = 1, 2, ...).$$

Since $\tilde{\mu}(0) = 1$ and $\tilde{\mu}$ is not identically equal to 1, we infer that there exists an index n_0 such that $B_n = \emptyset$ if $n < n_0$ and $B_n \neq \emptyset$ if $n \ge n_0$. Put $b_b(\mu) = \min B_n$ if $n \ge n_0$ and $b_n(\mu) = b_{n_0}(\mu)$ if $n < n_0$. Of course, $b_n(\mu) > 0$ and

1)
$$b_n(\mu) \leq a \text{ if } n\left(1 - \int_0^1 \widetilde{\mu}(ax) \, dx\right) \geq 1.$$

Hence, in particular, it follows that the sequence $\{b_n(\mu)\}\$ is monotone non-increasing.

LEMMA 3.2. Suppose that \circ is regular and $\mu \neq \delta_0$. Then $\delta_0 \notin G(\{b_{sn}(\mu), \mu\})$ for any positive integer n.

Proof. Suppose, on the contrary, that there exist a positive integer s and a subsequence $n_1 < n_2 < \ldots$ such that $T_{d_k} \mu^{\circ n_k} \to \delta_0$, where $d_k = b_{sn_k}(\mu)$ (k = 1, 2, ...). Then

 $(3.2) \qquad \qquad \widetilde{\mu}(d_k t)^{n_k} \to 1$

(3.

uniformly on every compact subset of R_+ . By the continuity of $\tilde{\mu}$ there exist real numbers t_k satisfying the conditions $0 \le t_k \le 1$ and

$$\int_{0}^{1} \tilde{\mu}(d_{k} x) dx = \tilde{\mu}(d_{k} t_{k}) \quad (k = 1, 2, \ldots).$$

Consequently,

$$\tilde{\mu}(d_k t_k)^{n_k} = \left(1 - \frac{1}{sn_k}\right)^{n_k} \quad (k = 1, 2, ...),$$

which contradicts (3.2). The Lemma is thus proved.

LEMMA 3.3. Suppose that \circ is regular and $\mu \neq \delta_0$. There exists then a positive integer s such that $b_{sn}(\mu) \leq c_n(\mu)$ for sufficiently large n.

Proof. First we shall prove the inequality

(3.3)
$$\lim_{n\to\infty}n\left(1-\int_0^1\tilde{\mu}(c_n(\mu)x)dx\right)>0.$$

Contrary to this let us suppose that there exists a subsequence $n_1 < n_2 < \ldots$ with the property

(3.4)
$$n_k \left(1 - \int_0^1 \widetilde{\mu}(c_{n_k}(\mu) x) dx\right) \to 0.$$

We may assume without loss of generality that the sequence $v_k = T_{d_k} \mu^{\circ n_k}$, where $d_k = c_{n_k}(\mu)$, converges in \overline{P} , say to v. From (3.4) it follows that

$$\left(\int_{0}^{1} \widetilde{\mu}(c_{n_{k}}(\mu) x) dx\right)^{n_{k}} \to 1$$

which, by virtue of the inequality $0 < \mu(t) \le 1$ for t small enough ([3], Theorem 5), yields

$$\int_{0}^{1} \widetilde{\mu}^{n_{k}}(c_{n_{k}}(\mu) x) dx \to 1$$

or, equivalently,

 $\int_{0}^{1} \tilde{v}_{k}(x) \, dx \to 1.$

Denoting by ω the uniform distribution on the interval [0, 1] and applying Corollary 4.1 in [4] we have

(3.5)
$$\int_{0}^{\infty} \widetilde{\omega}(x) v_{k}(dx) \to 1.$$

Since, by Lemma 3.11, Propositions 3.3 and 3.4 and Theorem 4.1 in [4],

$$\lim_{x\to\infty}\tilde{\omega}(x)=0,$$

we infer, by (3.5), that $v \in P$ and

$$\int_{0}^{\infty} \widetilde{\omega}(x) v(dx) = 1,$$

which, by Lemma 2.2, yields $v = \delta_0$. But, in view of (1.3), $M(v_k) = d_k M(\mu^{\circ n_k}) = 1$ for sufficiently large k, which implies $M(\delta_0) \ge 1$. Thus we have reached the desired contradiction. Inequality (3.3) is thus proved. As its immediate consequence we get the existence of a positive integer s for which the inequality

$$sn\left(1-\int_{0}^{1}\widetilde{\mu}(c_{n}(\mu)x)dx\right) \geq 1$$

is true for sufficiently large n. Now, applying (3.1), we get the assertion of the Lemma.

THEOREM 3.3. Let \circ be a regular generalized convolution. Then a measure μ belongs to the domain of attraction of a compact subset of $P \setminus \{\delta_0\}$ if and only if $\mu \neq \delta_0$ and

(3.6)

$$\underline{\lim_{n\to\infty}}\frac{b_{2n}(\mu)}{b_n(\mu)}>0.$$

If it is the case, then $\{b_n(\mu)\} \in A(\mu)$.

Proof. Necessity. Suppose that μ belongs to the domain of attraction of a compact subset of $P \setminus \{\delta_0\}$. Then, of course, $\mu \neq \delta_0$ and, by Theorem 1 in [7], $\{c_n(\mu)\} \in A(\mu)$. Since, by Lemma 3.3, $b_{sn}(\mu) \leq c_n(\mu)$ for a positive integer s and sufficiently large *n*, we have the inclusion

$$G(\{b_{sn}(\mu)\}, \mu) \subset \{T_a \lambda: 0 \leq a \leq 1, \lambda \in G(\{c_n(\mu), \mu\}\} \subset P,$$

which, together with Lemma 3.2, yields $G(\{b_{sn}(\mu)\}, \mu) \subset P \setminus \{\delta_0\}$. In other words, $\{b_{sn}(\mu)\} \in A(\mu)$. Since the sequence $\{b_n(\mu)\}$ is monotone non-increasing, we have, by Lemma 3.1, $\{b_n(\mu)\} \in A(\mu)$. Further, by Corollary 1 in [7], $\{b_n(\mu)\} \sim \{b_{2n}(\mu)\}$, which implies condition (3.6).

Sufficiency. Suppose that $\mu \neq \delta_0$ and condition (3.6) is fulfilled. By Lemma 3.3 there exists a positive integer s such that $b_{sn}(\mu) \leq c_n(\mu)$ for sufficiently large n. Since, by (3.3),

$$\lim_{n\to\infty}\frac{b_{2sn}(\mu)}{b_{sn}(\mu)}>0,$$

we have, by Lemma 6 in [6], the inclusion $G(\{b_{sn}(\mu)\}, \mu) \subset P$, which, together with Lemma 3.2, shows that μ belongs to the domain of attraction of a compact subset of $P \setminus \{\delta_0\}$. The Theorem is thus proved.

REFERENCES

- W. Feller, On regular variation and local limit theorems, Proceedings of the Fifth Berkeley Symposium on Math. Statist. and Prob., Vol II, Part I, Probability Theory (1967), p. 373-388.
- [2] P. R. Halmos, Measure theory, New York 1950.
- [3] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), p. 217-245.
- [4] Generalized convolutions IV, ibidem 83 (1986), p. 57-95.
- [5] Quasi-regular generalized convolutions, Coll. Math. (in print).
- [6] Limit behaviour of medians, Bull. of the Polish Acad. of Sciences, Mathematics 33 (1985), p. 413-419.
- [7] Compactness, medians and moments, Lecture Notes in Math. Probability measures on groups VIII (1985), Springer Verlag, 1986, p. 163-173.

Received on 9. 4. 1986

