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Abstract. The limit behaviour of scalar modifications of powers
of probability measures under a generalized convolution is conside-
red. In particular, some necessary and sufficient conditions in terms
of moments and medians for a probability measure to belong to the
domain of attraction of a compact set consisting of non-degenerate
at the origin measures are established.

1. Notation and preliminaries. Generalized convolutions were introduced
in [3]. We recall some basic definitions. Let P denote the set of all Borel
probability measures on the positive half-line R, = [0, c0). The set P is
endowed with the topology of weak convergence. For ueP and a >0 we
define the map T, by setting (T, u)(E) = pu(a™ ! E) for all Borel subsets E of
R.. By ¢, we denote the probability measure concentrated at the point c.

A continuous in each variable separately commutative and associative
P-valued binary operation o on P is called a generalized convolution if it is
distributive with respect to convex combinations and maps T, (a > 0) with J,
as the unit element. Moreover, there exist a sequence {c,} of positive
norming constants and a measure ye P other than J, such that T, 01" — 7,

where 67" is the n-th power of J; under o. The measure y is called the
characteristic measure of o. By Propositions 4.4 and 4.5 in [4] it is defined
uniquely up to a scale change T, (a > 0) and fulfils the equation

Lyohy=Than? (a,0>0),

where 0<x< o0, g,(a,b)=(@+b)" if O<x<oo and g, (a,b)
= max(a, b). The constant » is called the characteristic exponent of o. By
Proposition 4.5 and Lemma 2.1 in [4], » = co if and only if o is the max-
convolution. C : :

Let my be the sum of é, and the Lebesgue measure on R, . By P, we
shall denote the subset of P consisting of all absolutely continuous with
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respect to m, measures. It has been proved in [4] (Theorem 4.1 and
Corollary 4.4) that each generalized convolution o admits a weak characteri-
stic function, i.e. a one-to-one correspondence p <« ji between measures u
from P and real-valued functions i from L (m,) such that the functions 1

are continuous for Ae Py, (cu+(1—c) v)A-= ci+(1—a7 (0<ce< ), [T, u] (0
= fi(at) (a > 0) and [pov] = /v for all u, ve P. Moreover, the weak con-
vergence f,— U is equivalent to the convergence [, — [ in the L, (mg)-to-

pology of L. (mg). The weak characteristic function is uniquely determined
up to a scale change and for any ueP

(L) ) = :f& (tx) ()

mg-almost everywhere.

For our purpose it is convenient to describe the weak convergence of
measures in terms of the my-almost sure convergence of their weak characte-
ristic functions.

Lemma 1.1. Let p,, ueP (n=1,2,..). Then y,— p if and only if each
subsequence of indices contains a subsequence n, <n, <... such that i, — [
mg-almost everywhere.

Proof. Suppose that u, — pu. Then, by Proposition 2.4 in [5], p,ou,
—pop and p,ou— pop Consequently, for every LeP,,

f 2 (1) A(dt) — fﬁz(t)l(dt)

and

8

| Ba(®) 2(2) A(dt) — :f (1) A(dr)

[~

which yields
[ (2.0 — i) A(dt)—+0
0

Taking a measure A equivalent to m, we get the condition in question.
Conversely, this condition and the boundedness of weak characteristic func-
tions ([4], Lemma 4.4) imply the convergence

| i t)/l(dt) j f() A(dr)
. 0
for every AeP,. Thus fi,— ji in the L, (mg)-topology of L., (mg) whicki yields
U, — 1. This completes the proof.
It has been shown in [5], Chapter 2, that the generalized convolution o
can be extended to the space P of all Borel probability measures on the
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compactified haif-line R, = [0, o0]]. Since the space P is compact in the
topology of weak convergence, this enables us to use compactness arguments
and, therefore, is a useful tool in the study of generalized convolutions. We
identify the space P with the subspace of P consisting of measures with zero
mass at co. By Theorem 4.2 and Corollaries 3.2 and 3.5 in [5], for any ueP
other than 6, we have

(1.2) : ur— 4, in P,
where 0 < ¢ < o0. Moreover, ¢ = co whenever » < 0.

. Given peP and a norming sequence of positive numbers {a,}, by
G({a,}, w) we shall denote the set of all cluster points in P of the sequence
T,, #°". Of course, the set G({a,, p) is compact in P.

We say that pu belongs to the domain of attraction of a compact subset of
P\{8,} if G({a,}, W) = P\{6o} for a norming sequence {a,}. For the symmetric
convolution this compactness property was introduced and studied by W.
Feller in [1]. The aim of this paper is to give a necessary and sufficient
condition for p to belong to the domain of attraction of a compact subset of
P\{8,} in terms of the moments of p°". Another condition in terms of
medians of u°" is contained in .[7].

Given AeP, by m(4) and M(4) we shall denote the lowest and the
greatest median of A, respectively. It is clear that the functions 4 — m(4) and
A— M(4) are lower and upper semicontinuous respectively and

(1.3 m(T,A) =am(l), M(T,A)=aM@) (a>0).
Moreover, by (1.2), lim M (u°") > 0 for pe P other than 60;
Denoting by r the élrec;test index for which M(p*) =0, we put

GW=M@pn™ @m>r)
and
=1 (A<n<r).

By (1.2) we have
(14 , c,(W—0 if x <oo.

For p > 0 we shall also use the notation
M, = [x*u(dx) and  N,(s) = M,(n)"".
0 .

It is evident that
(1.5) M, (cu+(1—cv)=cM (+(1—-)M,(») (O<c<I).

QOur next result lies somewhat deeper.
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LemMa 1.2. Suppose that 0 < p <x. If M,(1°*) < oo for a positive integer
k, then M,(u°") < oo for all positive integers n.

Proof. Let 4,veP. By Lemma 44 in [4] we have the inequalities
A0 <1 and [§(t) <1 mg-almost everywhere. Consequently, 1—[10ov] (?)
+1—9(t) = 1—-V(t) me-almost everywhere. Since, for 0 <p <z,

[Fd = d, M@ (<P,

t1+p

where 0 <d, < oo ([6], formula (5)), we get the inequality
(1.6) M,(H) <M (W+My(Aov) for all 4,veP.

Suppose now that M,(u°") < oo and r > 1. Since in the case u = J, the
Lemma is obvious, we may assume that u # §,. There exists then a positive
number b such that 0 <u([0,b) <1. Setting c=pu([0,0), u(E)
=c ' p(En(0,), p(E)=01—c) *u(En[b, ©)), we have p=cp,+
(1—c)pz, M,(y) <oo and, by (1.5), M, (u°* Yopu;) < oo. Substituting -
A=p""D and v =y, into (1.6) we get the inequality M,(y°"~ ") < c0. An
inductive repetition of this argument leads to the inequality M,(u) < co.
Applying Lemma 1 in [6] we obtain the inequality M,(u°") < nM,(y) for
every n, which completes the proof.

Given 0 <p <%, we put

= Nap(”)
K, () = § noeo Np (™)’
oo  otherwise.

Observe that, by Lemma 2.3 in [5], N,(u*) >0 for all n provided
N,(¢) > 0. This fact and Lemma 1.2 show that the above definition makes
sense.

whenever 0 < N,(p) < o,

2, Norming sequences. In order to discuss properties of norming sequen-
ces we have to make a brief digression to describe the behaviour of tails of g,

under the assumption that pp® is convergent for a subsequence n; <n, <...
We begin with auxiliary results on generalized convolutions with finite
exponent. A

LemMa 2.1. Suppose that x < oo and peP. If the set {t: fi(t) = 1} has
positive Lebesgue measure, then u = 8.
. Proof. Taking a probability measure v with the support contained in
{t: fi(t) = 1} and absolutely continuous with respect to the Lebesgue measu-
re on R, we have, by Lemma 3.11, Propositions 3.3 and 3.4, and Theorem
4.1 in [4],

2.1) lim #(t) = 0.

t-*m
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Further, by Corollary 4.1 in [4],

w

22 gamy“mn=§mawwq=1 n=1,2,..).

Suppose that u # do. Then, by (1.2), u°" — §,, and, consequently, by the
continuity of ¥ and (2.1),

w0

gﬁmu“unqo

which contradicts (2.2). Thus u = §,.
LemmMmA 2.2. Suppose that x < o, ve Py and v # dy. Then, for every a > 0,

sup {\‘i(t): t=za} <1.

Proof. Suppose the contrary Since, by Lemma 3.11, Propositions 3.3
and 34, and Theorem 4.1 in [4],

lim 7() = v({0}) < 1

and, by Lemma 4.4 in [4], [#()] < 1, the continuity of ¥ yields the existence
of a number u > a such that ¥(u) = 1. Using formula (1.1) we get the equality
0,(x) = 6, (ux) = 1 for v-almost all x. But this contradicts Lemma 21 which
completes the proof.

LemMma 2.3. Suppose that ® < 0. Ifng <ny, <...and i * (k = 1, 2,..)is
convergent in P, then py, — 6.

Proof. By Corollary 2.3 in [5] the sequences p, and u.* " (n, 77
=1, 2,..) are conditionally compact in P. Passing to a subsequence if

necessary we may assume without loss of generality that y, * — A, , — v and

:(”k_') —V,, where 4, v, v,eP (r =1, 2, ...). Then, of course, v ov, =4 (r

=1, 2,..) and, by Corollary 2.3 in [5], the sequence v°" is conditionally
compact in P. Comparing this with (1. 2) we conclude that v = §,, which
completes the proof. ‘

LemMa 2.4. Suppose that x < 0. If ny <n, <...and w,*— A in P, then
A(t) > 0 my-almost everywhere.

Proof. Applying Lemma 2.3 we obtain uk—>50 Let s be a positive -
integer and p, the integral part of n,/s. Write n, = sp,+r,, where 0 <r, <s,
v =0 if 1, =0 and v, = y; © otherwise. Then v, — 8, and 1* = (i, %) o v,
(k=1,2,...). Hence, by Corollary 2.3 in [5], it follows that the sequence

wrk s conchtlonally compact in P. Let 4, be its cluster point. Then

2.3) =1 (s=1,2,..)
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and, consequently, 1, (2)* = Z(t) my-almost everywhere. This yields the inequa-
lity 1(£) > 0 my-almost everywhere. Moreover, for odd indices s, 4,(t) = 1()'*
mq-almost everywhere. Put E = {t: 1(f) = 0}. Then, for odd s, () = 0 m,-
almost everywhere on E. We have to show that my(E) = 0. Contrary to this
let us assume that mg,(E) > 0. Taking a measure ¢ from P, with the support
contained in E we get

24) Be@d)=0 (=1,2,..).

c'-:S

Since, by (2.3) and Lemma 2.3, i, — J, and, by Lemma 4.1 in [4], AO )
=1 (teR,), we have

j'l Be(d)—1 as s— 0.

But this contradicts (2.4), whlch completes the proof.
LeMMA 2.5. Suppose that ny <n, <... and pg ¥ — 4 in P. Then

tim m, gy [(b, 00)) < o0
k=

if either x = o0 and A([0, b)) >0 or x < oo and b > 0.

Proof. First consider the case » = oo. Then o is the max-convolution
and, consequently,

e ([0, b)) — A([0, b))

for all continuity points b of 4. Hence, by standard calculations, we get the
assertion of the Lemma.

Suppose now that » < co. From Lemma 2.3 it follows that u, — &g.
Passing to a subsequence if necessary and applying Lemma 1.1 we may
assume without loss of generality that

2.5) *"" .y
and
(2.6) B—1

mg-almost everywhere. By Egorev Theorem ([2], Section 21, Theorem 1)
there exists a Borel subset B of R, with my(B) > 1 such that, in view of
Lemma 24, 1 is bounded from below by a positive number on B and
convergences (2.5) and (2.6) are uniform on B. This yields

2.7 lim m, (1—f (8) = —log ()

k—+a0
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uniformly on B. Since my(B) > 1, we can find a measure ¢ from P, other
than J,, with the support contained in B. Then, by (2.7),

a0

@8 lim 7, j( — () e(@d) < .

k-

Observe that, by Corollary 4.1 in [4],
[B@®e@d) = [o@Om@) (k=1,2,..).
0 0 .

Given b > 0, we have, by Lemma 2.2,- the inequality

¢ =inf{1-§(t): t > b} >0,
which yields '

[(1-A0)el) > (D, @) (=1.2..)

Now the assertion of Lemma 2.5 is an 1mmed1ate consequence  of
inequality (2.8).

To state the next result we introduce some new notation.

Given pe P, by A(y) we denote the set of all norming sequences {a,} for
which the inclusion G({a,}, ¥} = P\{d,} is true. Two sequences {a,} and {b,}
of non-negative numbers are said to be equivalent, in symbols {a,} ~ {b,}, if

0< IimEE and 'lim&<oo.
n—+oo Yy n— Yp

Let {a,}cA(y). Put
b({a,}, u) = inf {b: A([0, b)) > O for all AeG({a,}, u)}.

By the compactness of G({a,}, ) the inequality b({a,,} #) < oo is true.
LemMMA 2.6. Let {a }eA(u) and I(b) = sup {nu*" ([ba,*, ©)): n, r
=1,2,. ’
Then I(b) < oo if either » = o0 and b > b({a,}, p) or % <oc and b > 0.
Proof. Suppose that b fulfils the conditions of the Lemma. Let (n,, r)
be a sequence of pairs for which
I(b) = lim my .u ([bankrk: ))

k= o

If the sequence {n,} is bounded, then the inequélity I(h) < 0 is obvioﬁs.

Otherwise we may assume without loss of generality that n, <n, <...
Moreover, we may also assume that the sequence ’I,’,nk”k uo"""‘ is convergent

in P. Setting

ory

=T, pn

Gmyry




96 K. Urbanik

we conclude that the sequence p;

(b, 00)) = g™ ([bayk, ) (k=1,2,..).

Applying Lemma 2.5 we get the inequality I(b) < co, which completes
the proof. »
Lemma 2.7. Let {q,,}eA(u). Then

is convergent in P and

lim a, N,(u°") < ©©
Jor sufficiently small p.

Proof. Passing, by Lemmas 1 and 2 in [7], to an equivalent sequence -
we may assume without loss of generality that {a} is monotone non-
increasing and b({a,}, p) < 1.

First consider the case lim g, > 0. Then, by Lemma 3 in [7], o is the

max-convolution and y°" — §,, where 0 < ¢ < co. It is easy to verify that the
support of u°" is contained in [0, c]. Thus N,(¢°") < c for all p >0, which
yields the assertion of the Lemma.

Suppose now that lim a, = 0. Since, by Corollary 1 in [7], {a,,} ~ {az,,}

n—*a

‘we can find a positive number g such that

(2.9) gt P @m=1,2,..).
Aoy
Put u(k,m)=ay *k=0,1,..;n=1,2,..). Cleatly u(k,n)<u(k
+1, n), limu(k,n)= o0 and, by (2.9), u(k, n) < 2"a,'. Moreover, taking

k—wm-

into account the inequality b({a} @) <1 and applying Lemma 2.6, we
obtain the inequality 4

d = sup {2 p>"([utk, m), ©)): k=0,1,...;n=1,2,...} <o0.

Thus, for every‘ p>0

u(k +1,n)
| X u(dx) <u(k+1, n? e ([ulk, n), o))
ullc,n)
L2kt g-po-kg  (k=0,1,...;n=1,2,..)
and

#(0,n)
j X poMdx) <u(0,mP =a;? (n=1,2,..).

' For p fulfilling the condition 0 <p < ¢! the above inequalities imply,
by a routine computation,
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d.2‘1P
on -p —
MP(u V< a, (1+——-——‘*1_2qp_1) n=1,2,..),

which yields the assertion of the Lemma.

3. Main results. We are now in a position to establish a necessary and
sufficient condition for u to belong to the domain of attraction of a compact
subset of P\{de} in terms of the asymptotic behaviour of N,(u™) (n-
=1, 2,..). We begin with the following result:

TreoreM 3.1. If u belongs to the domain of attraction of a compact subset
of P\{8o}, then {N,(u"")"'}eA(p) and {N,(u")} ~ {Mu°")} for sufficiently
small p.

Proof. By Theorem 1 in [7] the sequence {c,(u)}, defined in Section 1,
belongs to A(p). Consequently, by Lemma 2.7,

lim ¢, () N, (u°") < o0

n—ro

whenever p is small enough. Further, the obvious inequality
1
EJWP(N°") <SM,p™ @®m=1,2,..)

for all p > 0 yields
| Tim ¢, (4) N, (™) 3 277

Thus {N,(u"") "'} ~ {c,(¥)} which, by Lemma 1 in [7], implies the
assertion of the Theorem.

ProrosiTioN 3.1. If K (1) < o for an index p < x, then p belongs to the
domain of attraction of a compact subset of P\{do}.

Proof. It follows from the assumption that 0 < N,,(u*) <o (n
=1,2,..). Put b,=N, (0™ ' (n=1,2,..). Then

tim M, (T,, 1) = K, ()" < co.

Hence it follows that G({b,}, ) = P and, for g < 2p, the function x? is
uniformly integrable with respect to all measures A from G({b,}, u) and
T, p" (n=1,2,..). Consequently, the equalities M (T, p)=1 (n
=1,2,..) imply M,(A)=1 for all AeG({b,}, n), which shows that
G({b,}, W) = P\{do}. This completes the proof.
TueoreMm 3.2. The following conditions are equivalent:
(i) p belongs to the domain of attraction of a compact subset of R\{};

(i) p# 8o and {N,(u"} ~ {Mu°"} for suﬁic;ently small p;
(iif) K,(u) < oo for an index p <.

7 — Prob. Math. Statist. 8
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Proof. By Theorem 3.1 the implication (i) — (ii) is true. Suppose that 0
< g <x» and (ii) holds for p <gq. Taking 2p < g we have the equivalence
{Ny,(u°™} ~ {N,(p°"}, which yields (iii). Finally, Proposition 3.1 yields the
implication (iii) — (i), which completes the proof.

Lemma 3.1. Suppose that {b,} is monotone non-increasing and {b,} e A {1}
for a positive integer s. Then {b,}e A(p).

Proof. Let p, be the integral part of n/s. From Lemmas 1 and 4 in [7]
it follows that {bsp"} ~ {b,}. Since sp, < n < sn, we have the inequalities
by, > b, = by, which yield {b,} ~ {b,,}. Now our assertion is an immediate
consequence of Lemma 1 in [7].

A generalized convolution o is said to be regular if the set P with the
operation o and the operations of convex combinations admits a non-
constant continuous homomorphism into the algebra of real numbers with
the operations of multiplication and convex combinations. From Theorem 3
in [3] and Lemma 4.5 in [4] it follows that o is regular if and only if for
every ueP the weak characteristic function [ is equal to a continuous
function [I my-almost everywhere on R, . This continuous version u— [ is
called a characteristic function of o. The weak convergence u, — p is equiva-
lent to the uniform convergence fi, — [ on every compact subset of R, . We
note that regular generalized convolutions have always finite exponent.

Let o be a regular generalized convolution and u # é,. Put

B, = {r: ;n(l—-}ﬁ(tx)dx) =1} (n=1,2,..).

Since fi(0) =1 and [ is not identically equal to 1, we infer that there
exists an index n, such that B,=Q if n <n, and B, # @ if n>ny. Put
by() =mmn B, if n=ny and b,(w) = b, (W) if n <n,. Of course, b,(n) >0
and

(3.1 b,(w) < a if n(1 —}ﬁ(ax)dx) > 1.
0

~ Hence, in particular, it follows that the sequence {b,()} is monotone
non-increasing. .
Lemma 3.2. Suppose that © is regular and pu # 8. Then 8o ¢ G ({by, (1), 1))
for any positive integer n. ‘
Proof. Suppose, on the contrary, that there exist a positive integer s
and a subsequence n; <n, <...such that T, ™ — 8, where d, = ey, (1) (k
=1,2,..). Then :

(3.2 o B )™ — 1
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uniformly on every compact subset of R, . By the continuity of jI there exist
real numbers ¢, satisfying the conditions 0 <t, < 1 and

1
[E@x)dx =ty (k=1,2,..).
0

Consequently,

" 1 Y*

ﬁ(dktk)k=(1—_) (k= 13 23"')9
Sty

which contradicts (3.2). The Lemma is thus proved.

LemmA 3.3. Suppose that o is regular and p + 6o.. There exists then a
positive integer s such that bg,(u) < c,(u) for sufficiently large n.

Proof. First we shall prove the inequality

(3.3) tim n(1— 15 fi(ca(p) x)dx) > 0.
0

Contrary to this let us suppose that there exists a subsequence n; < ny
<... with the property

(3.4) | m(1— (;) i (ca, (W) x)dx) — 0

‘We may assume without loss of generality that- the sequence v,
=T, Pl where d; = ¢, (1), converges in P, say to v. From (3.4) it follows
that

1

(§ (e, () x)dx)™ — 1

0

which, by virtue of the inequality 0 < u(t) <1 for ¢ small enough ([3],
Theorem 5), yields '

(=1

A (e (1) %) dx — 1
or, equivalently, C

1
[P(x)dx — 1.
4]

Denotmg by @ the uniform distribution on the interval [0, 1] and
applying Corollary 4.1 in [4] we have

8

(3.5) [ (dx) —1.

[~
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Since, by Lemma 3.11, Propositions 3.3 and 3.4 and Theorem 4.1 in [4],

lim &(x) =0

X~

we infer, by (3.5), that ve P and

8

jax)v(dx) =1,

o

which, by Lemma 2.2, yields v = J,. But, in view of (1.3), M(v,) = d, M(u"™)
= 1 for sufficiently large k, which implies M (d,) > 1. Thus we have reached
the desired contradiction. Inequality (3.3) is thus proved. As its immediate
consequence we get the existence of a positive intéger s for which the
inequality

sn(1-}ﬁ(cn(ﬂ)x)dx) >1
(1]

is true for sufficiently large n. Now, applying (3.1), we get the assertion of the
Lemma.

THeoREM 3.3. Let o be a regular generalized convolution. Then a measure
1 belongs to the domain of attraction of a compact subset of P\{,} if and only
if p# 6o and

. b2n(ﬂ)
36 im0

If it is the case, then {b,(1)}e A(y).
Proof. Necessity. Suppose that u belongs to the domain of attraction
of a compact subset of P\{§,}. Then, of course, u # J, and, by Theorem 1 in

[7], {ca()} € A(p). Since, by Lemma 3.3, b, (1) < c, () for a positive integer s
and sufficiently large n, we have the inclusion

G({be(W}, W) = {T,4: 0<a< 1, AeG({c, (1), p)} < P,

which, together with Lemma 3.2, yields G({bs,,(p)} #) = P\{6o}. In other
words, {b,,(u)} € A(y). Since the sequence {b, (1)} is monotone non-increasing,
we have, by Lemma 3.1, {b,(#)}eA(y). Further, by Corollary 1 in [7],
{b. (1)} ~ {b;, (1)}, which implies condition (3.6). :

Sufficiency. Suppose that p s d, and condition (3.6) is fulfilled. By
Lemma 3.3 there exists a positive integer s such that b, (u) <c,(u) for
sufficiently large n. Since, by (3.3),

fim basn(1)
now Den(11)

> 0.

>0,
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we have, by Lemma 6 in [6], the inclusion G({b, (1)}, 1) = P, which,
together with Lemma 3.2, shows that u belongs to the domain of attraction
of a compact subset of P\{§,}. The Theorem is thus proved.
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