PROBABILETY
AND
MATHEMATICAL STATISTICS
Vol. 8 (1987), p. 89-101

DOMAINS OF ATTRACTION AND MOMENTS

BY
K. URBANIK (Wroclaw)

Abstract

The limit behaviour of scalar modifications of powers of probability measures under a generalized convolution is considered. In particular, some necessary and sufficient conditions in terms of moments and medians for a probability measure to belong to the domain of attraction of a compact set consisting of non-degenerate at the origin measures are established.

1. Notation and preliminaries. Generalized convolutions were introduced in [3]. We recall some basic definitions. Let P denote the set of all Borel probability measures on the positive half-line $R_{+}=[0, \infty)$. The set P is endowed with the topology of weak convergence. For $\mu \in P$ and $a>0$ we define the map T_{a} by setting $\left(T_{a} \mu\right)(E)=\mu\left(a^{-1} E\right)$ for all Borel subsets E of R_{+}. By δ_{c} we denote the probability measure concentrated at the point c.

A continuous in each variable separately commutative and associative P-valued binary operation \circ on P is called a generalized convolution if it is distributive with respect to convex combinations and maps $T_{a}(a>0)$ with δ_{0} as the unit element. Moreover, there exist a sequence $\left\{c_{n}\right\}$ of positive norming constants and a measure $\gamma \in P$ other than δ_{0} such that $T_{c_{n}} \delta_{1}^{o n} \rightarrow \gamma$, where $\delta_{1}^{\circ n}$ is the n-th power of δ_{1} under o. The measure γ is called the characteristic measure of o. By Propositions 4.4 and 4.5 in [4] it is defined uniquely up to a scale change $T_{a}(a>0)$ and fulfils the equation

$$
T_{a} \gamma \circ T_{b} \gamma=T_{g_{x}(a, b)} \gamma \quad(a, b>0)
$$

where $0<\varkappa \leqslant \infty, \quad g_{x}(a, b)=\left(a^{x}+b^{\chi}\right)^{1 / x} \quad$ if $0<\chi<\infty \quad$ and $\quad g_{\infty}(a, b)$ $=\max (a, b)$. The constant x is called the characteristic exponent of o . By Proposition 4.5 and Lemma 2.1 in [4], $x=\infty$ if and only if \circ is the maxconvolution.

Let m_{0} be the sum of δ_{0} and the Lebesgue measure on R_{+}. By P_{0} we shall denote the subset of P consisting of all absolutely continuous with
respect to m_{0} measures. It has been proved in [4] (Theorem 4.1 and Corollary 4.4) that each generalized convolution o admits a weak characteristic function, i.e. a one-to-one correspondence $\mu \leftrightarrow \hat{\mu}$ between measures μ from P and real-valued functions $\hat{\mu}$ from $L_{\infty}\left(m_{0}\right)$ such that the functions $\hat{\lambda}$ are continuous for $\lambda \in P_{0},(c \mu+(1-c) v) \hat{\prime}=c \hat{\mu}+(1-c) \hat{v}(0 \leqslant c \leqslant 1),\left[T_{a} \mu\right] \hat{\gamma}(t)$ $=\hat{\mu}(a t)(a>0)$ and $[\mu \circ v]^{\hat{}}=\hat{\mu} \hat{v}$ for all $\mu, v \in P$. Moreover, the weak convergence $\mu_{n} \rightarrow \mu$ is equivalent to the convergence $\hat{\mu}_{n} \rightarrow \hat{\mu}$ in the $L_{1}\left(m_{0}\right)$-topology of $L_{\infty}\left(m_{0}\right)$. The weak characteristic function is uniquely determined up to a scale change and for any $\mu \in P$

$$
\begin{equation*}
\hat{\mu}(t)=\int_{0}^{\infty} \widehat{\delta}_{1}(t x) \mu(d x) \tag{1.1}
\end{equation*}
$$

m_{0}-almost everywhere.
For our purpose it is convenient to describe the weak convergence of measures in terms of the m_{0}-almost sure convergence of their weak characteristic functions.

Lemma 1.1. Let $\mu_{n}, \mu \in P(n=1,2, \ldots)$. Then $\mu_{n} \rightarrow \mu$ if and only if each subsequence of indices contains a subsequence $n_{1}<n_{2}<\ldots$ such that $\hat{\mu}_{n_{k}} \rightarrow \hat{\mu}$ m_{0}-almost everywhere.

Proof. Suppose that $\mu_{n} \rightarrow \mu$. Then, by Proposition 2.4 in [5], $\mu_{n} \circ \mu_{n}$ $\rightarrow \mu \circ \mu$ and $\mu_{n} \circ \mu \rightarrow \mu \circ \mu$. Consequently, for every $\lambda \in P_{0}$,

$$
\int_{0}^{\infty} \hat{\mu}_{n}^{2}(t) \lambda(d t) \rightarrow \int_{0}^{\infty} \hat{\mu}^{2}(t) \lambda(d t)
$$

and

$$
\int_{0}^{\infty} \hat{\mu}_{n}(t) \hat{\mu}(t) \lambda(d t) \rightarrow \int_{0}^{\infty} \hat{\mu}^{2}(t) \lambda(d t)
$$

which yields

$$
\int_{0}^{\infty}\left(\hat{\mu}_{n}(t)-\hat{\mu}(t)\right)^{2} \lambda(d t) \rightarrow 0 .
$$

Taking a measure λ equivalent to m_{0} we get the condition in question. Conversely, this condition and the boundedness of weak characteristic functions ([4], Lemma 4.4) imply the convergence

$$
\int_{0}^{\infty} \hat{\mu}_{n}(t) \lambda(d t) \rightarrow \int_{0}^{\infty} \hat{\mu}(t) \lambda(d t)
$$

for every $\lambda \in P_{0}$. Thus $\hat{\mu}_{n} \rightarrow \hat{\mu}$ in the $L_{1}\left(m_{0}\right)$-topology of $L_{\infty}\left(m_{0}\right)$ which yields $\mu_{n} \rightarrow \mu$. This completes the proof.

It has been shown in [5], Chapter 2, that the generalized convolution \circ can be extended to the space \bar{P} of all Borel probability measures on the
compactified half-line $\bar{R}_{+}=[0, \infty]$. Since the space \bar{P} is compact in the topology of weak convergence, this enables us to use compactness arguments and, therefore, is a useful tool in the study of generalized convolutions. We identify the space P with the subspace of \bar{P} consisting of measures with zero mass at ∞. By Theorem 4.2 and Corollaries 3.2 and 3.5 in [5], for any $\mu \in P$ other than δ_{0} we have

$$
\begin{equation*}
\mu^{o n} \rightarrow \delta_{c} \text { in } \bar{P}, \tag{1.2}
\end{equation*}
$$

where $0<c \leqslant \infty$. Moreover, $c=\infty$ whenever $x<\infty$.
Given $\mu \in P$ and a norming sequence of positive numbers $\left\{a_{n}\right\}$, by $G\left\{\left\{a_{n}\right\}, \mu\right)$ we shall denote the set of all cluster points in \bar{P} of the sequence $T_{a_{n}} \mu^{\circ n}$. Of course, the set $G\left(\left\{a_{n}, \mu\right)\right.$ is compact in \bar{P}.

We say that μ belongs to the domain of attraction of a compact subset of $P \backslash\left\{\delta_{0}\right\}$ if $G\left(\left\{a_{n}\right\}, \mu\right) \subset P \backslash\left\{\delta_{0}\right\}$ for a norming sequence $\left\{a_{n}\right\}$. For the symmetric convolution this compactness property was introduced and studied by W. Feller in [1]. The aim of this paper is to give a necessary and sufficient condition for μ to belong to the domain of attraction of a compact subset of $P \backslash\left\{\delta_{0}\right\}$ in terms of the moments of $\mu^{\circ n}$. Another condition in terms of medians of $\mu^{\circ n}$ is contained in [7].

Given $\lambda \in \bar{P}$, by $m(\lambda)$ and $M(\lambda)$ we shall denote the lowest and the greatest median of λ, respectively. It is clear that the functions $\lambda \rightarrow m(\lambda)$ and $\lambda \rightarrow M(\lambda)$ are lower and upper semicontinuous respectively and

$$
\begin{equation*}
m\left(T_{a} \lambda\right)=a m(\lambda), \quad M\left(T_{a} \lambda\right)=a M(\lambda) \quad(a>0) . \tag{1.3}
\end{equation*}
$$

Moreover, by (1.2), $\lim _{n \rightarrow \infty} M\left(\mu^{\circ n}\right)>0$ for $\mu \in P$ other than δ_{0}.
Denoting by r the greatest index for which $M\left(\mu^{\circ}\right)=0$, we put

$$
c_{n}(\mu)=M\left(\mu^{\circ n}\right)^{-1} \quad(n>r)
$$

and

$$
c_{n}(\mu)=1 \quad(1 \leqslant n \leqslant r) .
$$

By (1.2) we have

$$
\begin{equation*}
c_{n}(\mu) \rightarrow 0 \quad \text { if } x<\infty . \tag{1.4}
\end{equation*}
$$

For $p>0$ we shall also use the notation

$$
M_{p}(\mu)=\int_{0}^{\infty} x^{p} \mu(d x) \quad \text { and } \quad N_{p}(\mu)=M_{p}(\mu)^{1 / p} .
$$

It is evident that

$$
\begin{equation*}
M_{p}(c \mu+(1-c) v)=c M_{p}(\mu)+(1-c) M_{p}(v) \quad(0 \leqslant c \leqslant 1) . \tag{1.5}
\end{equation*}
$$

Our next result lies somewhat deeper.

Lemma 1.2. Suppose that $0<p<\chi$. If $M_{p}\left(\mu^{o k}\right)<\infty$ for a positive integer k, then $M_{p}\left(\mu^{\circ n}\right)<\infty$ for all positive integers n.

Proof. Let $\lambda, v \in P$. By Lemma 4.4 in [4] we have the inequalities $|\hat{\lambda}(t)| \leqslant 1$ and $|\hat{v}(t)| \leqslant 1 m_{0}$-almost everywhere. Consequently, $1-[\lambda \circ v]^{\hat{~}}(t)$ $+1-\hat{v}(t) \geqslant 1-\hat{v}(t) m_{0}$-almost everywhere. Since, for $0<p<x$,

$$
\int_{0}^{\infty} \frac{1-\hat{\varrho}(t)}{t^{1+p}} d t=d_{p} M_{p}(\varrho) \quad(\varrho \in P)
$$

where $0<d_{p}<\infty$ ([6], formula (5)), we get the inequality

$$
\begin{equation*}
M_{p}(\lambda) \leqslant M_{p}(v)+M_{p}(\lambda \circ v) \quad \text { for all } \lambda, v \in P \tag{1.6}
\end{equation*}
$$

Suppose now that $M_{p}\left(\mu^{\circ \gamma}\right)<\infty$ and $r>1$. Since in the case $\mu=\delta_{0}$ the Lemma is obvious, we may assume that $\mu \neq \delta_{0}$. There exists then a positive number b such that $0<\mu([0, b))<1$. Setting $c=\mu([0, b)), \quad \mu_{1}(E)$ $=c^{-1} \mu(E \cap[0, b)), \quad \mu_{2}(E)=(1-c)^{-1} \mu(E \cap[b, \infty)), \quad$ we have $\mu=c \mu_{1}+$ $(1-c) \mu_{2}, \quad M_{p}\left(\mu_{1}\right)<\infty$ and, by (1.5), $M_{p}\left(\mu^{\circ(r-1)} \circ \mu_{1}\right)<\infty$. Substituting $\lambda=\mu^{\circ(r-1)}$ and $v=\mu_{1}$ into (1.6) we get the inequality $M_{p}\left(\mu^{\circ(r-1)}\right)<\infty$. An inductive repetition of this argument leads to the inequality $M_{p}(\mu)<\infty$. Applying Lemma 1 in [6] we obtain the inequality $M_{p}\left(\mu^{\circ n}\right) \leqslant n M_{p}(\mu)$ for every n, which completes the proof.

Given $0<p<\chi$, we put

$$
K_{p}(\mu)=\left\{\begin{array}{l}
\varlimsup_{n \rightarrow \infty} \frac{N_{2 p}\left(\mu^{\circ n}\right)}{N_{p}\left(\mu^{\circ n}\right)}, \quad \text { whenever } 0<N_{p}(\mu)<\infty \\
\infty \quad \text { otherwise }
\end{array}\right.
$$

Observe that, by Lemma 2.3 in [5], $N_{p}\left(\mu^{\circ n}\right)>0$ for all n provided $N_{p}(\mu)>0$. This fact and Lemma 1.2 show that the above definition makes sense.
2. Norming sequences. In order to discuss properties of norming sequences we have to make a brief digression to describe the behaviour of tails of μ_{k} under the assumption that $\mu_{k}^{\circ n_{k}}$ is convergent for a subsequence $n_{1}<n_{2}<\ldots$ We begin with auxiliary results on generalized convolutions with finite exponent.

Lemma 2.1. Suppose that $x<\infty$ and $\mu \in P$. If the set $\{t: \hat{\mu}(t)=1\}$ has positive Lebesgue measure, then $\mu=\delta_{0}$.

Proof. Taking a probability measure v with the support contained in $\{t: \hat{\mu}(t)=1\}$ and absolutely continuous with respect to the Lebesgue measure on \boldsymbol{R}_{+}we have, by Lemma 3.11, Propositions 3.3 and 3.4, and Theorem 4.1 in [4],

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \hat{v}(t)=0 \tag{2.1}
\end{equation*}
$$

Further, by Corollary 4.1 in [4],

$$
\begin{equation*}
\int_{0}^{\infty} \hat{v}(t) \mu^{\circ n}(d t)=\int_{0}^{\infty} \hat{\mu}^{n}(t) v(d t)=1 \quad(n=1,2, \ldots) \tag{2.2}
\end{equation*}
$$

Suppose that $\mu \neq \delta_{0}$. Then, by (1.2), $\mu^{\circ n} \rightarrow \delta_{\infty}$ and, consequently, by the continuity of \hat{v} and (2.1),

$$
\int_{0}^{\infty} \hat{v}(t) \mu^{\circ n}(d t) \rightarrow 0
$$

which contradicts (2.2). Thus $\mu=\delta_{0}$.
Lemma 2.2. Suppose that $\varkappa<\infty, v \in P_{0}$ and $v \neq \delta_{0}$. Then, for every $a>0$,

$$
\sup \{\hat{v}(t): t \geqslant a\}<1
$$

Proof. Suppose the contrary. Since, by Lemma 3.11, Propositions 3.3 and 3.4, and Theorem 4.1 in [4],

$$
\lim _{t \rightarrow \infty} \hat{v}(t)=v(\{0\})<1
$$

and, by Lemma 4.4 in [4], $|\hat{v}(t)| \leqslant 1$, the continuity of \hat{v} yields the existence of a number $u \geqslant a$ such that $\hat{v}(u)=1$. Using formula (1.1) we get the equality $\hat{\delta}_{u}(x)=\hat{\delta}_{1}(u x)=1$ for v-almost all x. But this contradicts Lemma 2.1, which completes the proof.

Lemma 2.3. Suppose that $x<\infty$. If $n_{1}<n_{2}<\ldots$ and $\mu_{k}^{\mathrm{on}}(k=1,2, \ldots)$ is convergent in P, then $\mu_{k} \rightarrow \delta_{0}$.

Proof. By Corollary 2.3 in [5] the sequences μ_{k} and $\mu_{k}^{o\left(n_{k}-r\right)}\left(n_{k}>r ; r\right.$ $=1,2, \ldots$) are conditionally compact in P. Passing to a subsequence if necessary we may assume without loss of generality that $\mu_{k}^{\circ n_{k}} \rightarrow \lambda, \mu_{k} \rightarrow v$ and $\mu_{k}^{\circ\left(n_{k}-r\right)} \rightarrow v_{r}$, where $\lambda, v, v_{r} \in P(r=1,2, \ldots)$. Then, of course, $v^{\circ r} \circ v_{r}=\lambda(r$ $=1,2, \ldots$) and, by Corollary 2.3 in [5], the sequence $v^{\circ r}$ is conditionally compact in P. Comparing this with (1.2) we conclude that $v=\delta_{0}$, which completes the proof.

Lemma 2.4. Suppose that $x<\infty$. If $n_{1}<n_{2}<\ldots$ and $\mu_{k}^{o n_{k}} \rightarrow \lambda$ in P, then $\hat{\lambda}(t)>0 m_{0}$-almost everywhere.

Proof. Applying Lemma 2.3 we obtain $\mu_{k} \rightarrow \delta_{0}$. Let s be a positive integer and p_{k} the integral part of n_{k} / s. Write $n_{k}=s p_{k}+r_{k}$, where $0 \leqslant r_{k}<s$, $v_{k}=\delta_{0}$ if $r_{k}=0$ and $v_{k}=\mu_{k}^{u r_{k}}$ otherwise. Then $v_{k} \rightarrow \delta_{0}$ and $\mu_{k}^{n_{k}}=\left(\mu_{k}^{\circ p_{k}}\right)^{\circ s} \circ v_{k}$ $(k=1,2, \ldots)$. Hence, by Corollary 2.3 in [5], it follows that the sequence $\mu_{k}^{\mathrm{o} p_{k}}$ is conditionally compact in P. Let λ_{s} be its cluster point. Then

$$
\begin{equation*}
\lambda_{s}^{o s}=\lambda \quad(s=1,2, \ldots) \tag{2.3}
\end{equation*}
$$

and, consequently, $\hat{\lambda}_{s}(t)^{s}=\hat{\lambda}(t) m_{0}$-almost everywhere. This yields the inequality $\hat{\lambda}(t) \geqslant 0 m_{0}$-almost everywhere. Moreover, for odd indices $s, \hat{\lambda}_{s}(t)=\hat{\lambda}(t)^{1 / s}$ m_{0}-almost everywhere. Put $E=\{t: \hat{\lambda}(t)=0\}$. Then, for odd $s, \hat{\lambda}_{s}(t)=0 m_{0}-$ almost everywhere on E. We have to show that $m_{0}(E)=0$. Contrary to this let us assume that $m_{0}(E)>0$. Taking a measure ϱ from P_{0} with the support contained in E we get

$$
\begin{equation*}
\int_{0}^{\infty} \hat{\lambda}_{s}(t) \varrho(d t)=0 \quad(s=1,2, \ldots) \tag{2.4}
\end{equation*}
$$

Since, by (2.3) and Lemma 2.3, $\lambda_{s} \rightarrow \delta_{0}$ and, by Lemma 4.1 in [4], $\hat{\lambda}_{0}(t)$ $=1\left(t \in R_{+}\right)$, we have

$$
\int_{0}^{\infty} \hat{\lambda}_{s}(t) \varrho(d t) \rightarrow 1 \quad \text { as } s \rightarrow \infty
$$

But this contradicts (2.4), which completes the proof.
Lemma 2.5. Suppose that $n_{1}<n_{2}<\ldots$ and $\mu_{k}^{\circ n_{k}} \rightarrow \lambda$ in P. Then

$$
\varlimsup_{k \rightarrow \infty} n_{k} \mu_{k}[(b, \infty))<\infty
$$

if either $\varkappa=\infty$ and $\lambda([0, b))>0$ or $\varkappa<\infty$ and $b>0$.
Proof. First consider the case $x=\infty$. Then \circ is the max-convolution and, consequently,

$$
\mu_{k}^{n_{k}}([0, b)) \rightarrow \lambda([0, b))
$$

for all continuity points b of λ. Hence, by standard calculations, we get the assertion of the Lemma.

Suppose now that $x<\infty$. From Lemma 2.3 it follows that $\mu_{k} \rightarrow \delta_{0}$. Passing to a subsequence if necessary and applying Lemma 1.1 we may assume without loss of generality that

$$
\begin{equation*}
\hat{\mu}_{k}^{n_{k}} \rightarrow \hat{\lambda} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{\mu}_{k} \rightarrow 1 \tag{2.6}
\end{equation*}
$$

m_{0}-almost everywhere. By Egorev Theorem ([2], Section 21, Theorem 1) there exists a Borel subset B of R_{+}with $m_{0}(B)>1$ such that, in view of Lemma 2.4, $\hat{\lambda}$ is bounded from below by a positive number on B and convergences (2.5) and (2.6) are uniform on B. This yields

$$
\begin{equation*}
\lim _{k \rightarrow \infty} n_{k}\left(1-\hat{\mu}_{k}(t)\right)=-\log \hat{\lambda}(t) \tag{2.7}
\end{equation*}
$$

uniformly on B. Since $m_{0}(B)>1$, we can find a measure ϱ from P_{0}, other than δ_{0}, with the support contained in B. Then, by (2.7),

$$
\begin{equation*}
\lim _{k \rightarrow \infty} n_{k} \int_{0}^{\infty}\left(1-\hat{\mu}_{k}(t)\right) \varrho(d t)<\infty \tag{2.8}
\end{equation*}
$$

Observe that, by Corollary 4.1 in [4],

$$
\int_{0}^{\infty} \hat{\mu}_{k}(t) \varrho(d t)=\int_{0}^{\infty} \widehat{\varrho}(t) \mu_{k}(d t) \quad(k=1,2, \ldots) .
$$

Given $b>0$, we have, by Lemma 2.2 , the inequality

$$
c=\inf \{1-\varrho \widehat{\varrho}(t): t \geqslant b\}>0,
$$

which yields

$$
\int_{0}^{\infty}\left(1-\hat{\mu}_{k}(t)\right) \varrho(d t) \geqslant c \mu_{k}([b, \infty)) \quad(k=1,2, \ldots) .
$$

Now the assertion of Lemma 2.5 is an immediate consequence of inequality (2.8).

To state the next result we introduce some new notation.
Given $\mu \in P$, by $A(\mu)$ we denote the set of all norming sequences $\left\{a_{n}\right\}$ for which the inclusion $G\left(\left\{a_{n}\right\}, \mu\right) \subset P \backslash\left\{\delta_{0}\right\}$ is true. Two sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ of non-negative numbers are said to be equivalent, in symbols $\left\{a_{n}\right\} \sim\left\{b_{n}\right\}$, if

$$
0<\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \quad \text { and } \quad \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}<\infty .
$$

Let $\left\{a_{n}\right\} \in A(\mu)$. Put

$$
b\left(\left\{a_{n}\right\}, \mu\right)=\inf \left\{b: \lambda([0, b))>0 \text { for all } \lambda \in G\left(\left\{a_{n}\right\}, \mu\right)\right\} .
$$

By the compactness of $G\left(\left\{a_{n}\right\}, \mu\right)$ the inequality $b\left(\left\{a_{n}\right\}, \mu\right)<\infty$ is true.
Lemma 2.6. Let $\left\{a_{n}\right\} \in A(\mu)$ and $I(b)=\sup \left\{n \mu^{\circ r}\left(\left[b a_{n r}^{-1}, \infty\right)\right): n, r\right.$ $=1,2, \ldots\}$.

Then $I(b)<\infty$ if either $x=\infty$ and $b>b\left(\left\{a_{n}\right\}, \mu\right)$ or $x<\infty$ and $b>0$.
Proof. Suppose that b fulfils the conditions of the Lemma. Let $\left(n_{k}, r_{k}\right)$ be a sequence of pairs for which

$$
I(b)=\lim _{k \rightarrow \infty} n_{k} \mu^{\circ r_{k}}\left(\left[b a_{n_{k} r_{k}}^{-1}, \infty\right)\right)
$$

If the sequence $\left\{n_{k}\right\}$ is bounded, then the inequality $I(b)<\infty$ is obvious. Otherwise we may assume without loss of generality that $n_{1}<n_{2}<\ldots$ Morreover, we may also assume that the sequence $T_{a_{n_{k} n_{k}}} \mu^{o{ }^{n} k^{r} r_{k}}$ is convergent in P. Setting

$$
\mu_{k}=T_{a_{n_{k} r_{k}}} \mu^{o r_{k}}
$$

we conclude that the sequence $\mu_{k}^{o n_{k}}$ is convergent in P and

$$
\mu_{k}([b, \infty))=\mu^{\circ r_{k}}\left(\left[b a_{n_{k} r_{k}}^{-1}, \infty\right)\right) \quad(k=1,2, \ldots)
$$

Applying Lemma 2.5 we get the inequality $I(b)<\infty$, which completes the proof.

Lemma 2.7. Let $\left\{a_{n}\right\} \in A(\mu)$. Then

$$
\varlimsup_{n \rightarrow \infty} a_{n} N_{p}\left(\mu^{\circ n}\right)<\infty
$$

for sufficiently small p.
Proof. Passing, by Lemmas 1 and 2 in [7], to an equivalent sequence we may assume without loss of generality that $\left\{a_{n}\right\}$ is monotone nonincreasing and $b\left(\left\{a_{n}\right\}, \mu\right)<1$.

First consider the case $\lim _{n \rightarrow \infty} a_{n}>0$. Then, by Lemma 3 in [7], \circ is the max-convolution and $\mu^{\circ n} \rightarrow \delta_{c}$, where $0<c<\infty$. It is easy to verify that the support of $\mu^{\circ n}$ is contained in [$\left.0, c\right]$. Thus $N_{p}\left(\mu^{\circ n}\right) \leqslant c$ for all $p>0$, which yields the assertion of the Lemma.

Suppose now that $\lim _{n \rightarrow \infty} a_{n}=0$. Since, by Corollary 1 in [7], $\left\{a_{n}\right\} \sim\left\{a_{2 n}\right\}$, we can find a positive number q such that

$$
\begin{equation*}
a_{2}^{-1} \leqslant 2^{q}, \quad \frac{a_{n}}{a_{2 n}} \leqslant 2^{q} \quad(n=1,2, \ldots) \tag{2.9}
\end{equation*}
$$

Put $u(k, n)=a_{2 k_{n}}^{-1}(k=0,1, \ldots ; n=1,2, \ldots)$. Clearly $u(k, n) \leqslant u(k$ $+1, n), \lim _{k \rightarrow \infty} u(k, n)=\infty$ and, by (2.9), $u(k, n) \leqslant 2^{k q} a_{n}^{-1}$. Moreover, taking into account the inequality $b\left(\left\{\mathrm{a}_{n}\right\}, \mu\right)<1$ and applying Lemma 2.6 , we obtain the inequality

$$
d=\sup \left\{2^{k} \mu^{\circ n}([u(k, n), \infty)): k=0,1, \ldots ; n=1,2, \ldots\right\}<\infty
$$

Thus, for every $p>0$,

$$
\begin{aligned}
\int_{u(k, n)}^{u(k+1, n)} x^{p} \mu^{\circ n}(d x) & \leqslant u(k+1, n)^{p} \mu^{\circ n}([u(k, n), \infty)) \\
& \leqslant 2^{(k+1) q p} a_{n}^{-p} 2^{-k} d \quad(k=0,1, \ldots ; n=1,2, \ldots)
\end{aligned}
$$

and

$$
\int_{0}^{u(0, n)} x^{p} \mu^{o n}(d x) \leqslant u(0, n)^{p}=a_{n}^{-p} \quad(n=1,2, \ldots)
$$

For p fulfilling the condition $0<p<q^{-1}$ the above inequalities imply, by a routine computation,

$$
M_{p}\left(\mu^{\circ n}\right) \leqslant a_{n}^{-p}\left(1+\frac{d \cdot 2^{q p}}{1-2^{q p-1}}\right) \quad(n=1,2, \ldots)
$$

which yields the assertion of the Lemma.
3. Main results. We are now in a position to establish a necessary and sufficient condition for μ to belong to the domain of attraction of a compact subset of $P \backslash\left\{\delta_{0}\right\}$ in terms of the asymptotic behaviour of $N_{p}\left(\mu^{\circ n}\right)$ (n $=1,2, \ldots)$. We begin with the following result:

Theorem 3.1. If μ belongs to the domain of attraction of a compact subset of $P \backslash\left\{\delta_{0}\right\}$, then $\left\{N_{p}\left(\mu^{\circ n}\right)^{-1}\right\} \in A(\mu)$ and $\left\{N_{p}\left(\mu^{\circ n}\right)\right\} \sim\left\{M\left(\mu^{\circ n}\right)\right\}$ for sufficiently small p.

Proof. By Theorem 1 in [7] the sequence $\left\{c_{n}(\mu)\right\}$, defined in Section 1, belongs to $A(\mu)$. Consequently, by Lemma 2.7,

$$
\varlimsup_{n \rightarrow \infty} c_{n}(\mu) N_{p}\left(\mu^{\circ n}\right)<\infty
$$

whenever p is small enough. Further, the obvious inequality

$$
\frac{1}{2} M^{p}\left(\mu^{\circ n}\right) \leqslant M_{p}\left(\mu^{\circ \eta}\right) \quad(n=1,2, \ldots)
$$

for all $p>0$ yields

$$
\lim _{n \rightarrow \infty} c_{n}(\mu) N_{p}\left(\mu^{\circ n}\right) \geqslant 2^{-1 / p} .
$$

Thus $\left\{N_{p}\left(\mu^{\circ n}\right)^{-1}\right\} \sim\left\{c_{n}(\mu)\right\}$ which, by Lemma 1. in [7], implies the assertion of the Theorem.

Proposition 3.1. If $K_{p}(\mu)<\infty$ for an index $p<\chi$, then μ belongs to the domain of attraction of a compact subset of $P \backslash\left\{\delta_{0}\right\}$.

Proof. It follows from the assumption that $0<N_{2 p}\left(\mu^{\circ n}\right)<\infty$ (n $=1,2, \ldots)$. Put $b_{n}=N_{p}\left(\mu^{\circ n}\right)^{-1}(n=1,2, \ldots)$. Then

$$
\varlimsup_{n \rightarrow \infty} M_{2 p}\left(T_{b_{n}} \mu^{\circ n}\right)=K_{p}(\mu)^{2 p}<\infty
$$

Hence it follows that $G\left(\left\{b_{n}\right\}, \mu\right) \subset P$ and, for $q<2 p$, the function x^{q} is uniformly integrable with respect to all measures λ from $G\left(\left\{b_{n}\right\}, \mu\right)$ and $T_{b_{n}} \mu^{\circ n}(n=1,2, \ldots)$. Consequently, the equalities $M_{p}\left(T_{b_{n}} \mu^{\circ n}\right)=1$ (n $=1,2, \ldots)$ imply $M_{p}(\lambda)=1$ for all $\lambda \in G\left(\left\{b_{n}\right\}, \mu\right)$, which shows that $G\left(\left\{b_{n}\right\}, \mu\right) \subset P \backslash\left\{\delta_{0}\right\}$. This completes the proof.

Theorem 3.2. The following conditions are equivalent:
(i) μ belongs to the domain of attraction of a compact subset of $R \backslash\left\{\delta_{0}\right\}$;
(ii) $\mu \neq \delta_{0}$ and $\left\{N_{p}\left(\mu^{\circ n}\right)\right\} \sim\left\{M\left(\mu^{\circ n}\right)\right\}$ for sufficiently small p;
(iii) $K_{p}(\mu)<\infty$ for an index $p<\chi$.

Proof. By Theorem 3.1 the implication (i) \rightarrow (ii) is true. Suppose that 0 $<q<x$ and (ii) holds for $p<q$. Taking $2 p<q$ we have the equivalence $\left\{N_{2 p}\left(\mu^{\circ n}\right)\right\} \sim\left\{N_{p}\left(\mu^{\circ n}\right)\right\}$, which yields (iii). Finally, Proposition 3.1 yields the implication (iii) \rightarrow (i), which completes the proof.

Lemma 3.1. Suppose that $\left\{b_{n}\right\}$ is monotone non-increasing and $\left\{b_{s n}\right\} \in A\{\mu\}$ for a positive integer s. Then $\left\{b_{n}\right\} \in A(\mu)$.

Proof. Let p_{n} be the integral part of n / s. From Lemmas 1 and 4 in [7] it follows that $\left\{b_{s p_{n}}\right\} \sim\left\{b_{s n}\right\}$. Since $s p_{n} \leqslant n \leqslant s n$, we have the inequalities $b_{s p_{n}} \geqslant b_{n} \geqslant b_{s n}$, which yield $\left\{b_{n}\right\} \sim\left\{b_{s n}\right\}$. Now our assertion is an immediate consequence of Lemma 1 in [7].

A generalized convolution \circ is said to be regular if the set P with the operation \circ and the operations of convex combinations admits a nonconstant continuous homomorphism into the algebra of real numbers with the operations of multiplication and convex combinations. From Theorem 3 in [3] and Lemma 4.5 in [4] it follows that \circ is regular if and only if for every $\mu \in P$ the weak characteristic function $\hat{\mu}$ is equal to a continuous function $\tilde{\mu} m_{0}$-almost everywhere on R_{+}. This continuous version $\mu \rightarrow \tilde{\mu}$ is called a characteristic function of o. The weak convergence $\mu_{n} \rightarrow \mu$ is equivalent to the uniform convergence $\tilde{\mu}_{n} \rightarrow \tilde{\mu}$ on every compact subset of R_{+}. We note that regular generalized convolutions have always finite exponent.

Let \circ be a regular generalized convolution and $\mu \neq \delta_{0}$. Put

$$
B_{n}=\left\{t: n\left(1-\int_{0}^{1} \tilde{\mu}(t x) d x\right)=1\right\} \quad(n=1,2, \ldots)
$$

Since $\tilde{\mu}(0)=1$ and $\tilde{\mu}$ is not identically equal to 1 , we infer that there exists an index n_{0} such that $B_{n}=\varnothing$ if $n<n_{0}$ and $B_{n} \neq \emptyset$ if $n \geqslant n_{0}$. Put $b_{b}(\mu)=\min B_{n}$ if $n \geqslant n_{0}$ and $b_{n}(\mu)=b_{n_{0}}(\mu)$ if $n<n_{0}$. Of course, $b_{n}(\mu)>0$ and

$$
\begin{equation*}
b_{n}(\mu) \leqslant a \text { if } n\left(1-\int_{0}^{1} \tilde{\mu}(a x) d x\right) \geqslant 1 \tag{3.1}
\end{equation*}
$$

Hence, in particular, it follows that the sequence $\left\{b_{n}(\mu)\right\}$ is monotone non-increasing.

Lemma 3.2. Suppose that \circ is regular and $\mu \neq \delta_{0}$. Then $\delta_{0} \notin G\left(\left\{b_{s n}(\mu), \mu\right)\right)$ for any positive integer n.

Proof. Suppose, on the contrary, that there exist a positive integer s and a subsequence $n_{1}<n_{2}<\ldots$ such that $T_{d_{k}} \mu^{\circ n_{k}} \rightarrow \delta_{0}$, where $d_{k}=b_{s n_{k}}(\mu)(k$ $=1,2, \ldots$). Then

$$
\begin{equation*}
\tilde{\mu}\left(d_{k} t\right)^{n_{k}} \rightarrow 1 \tag{3.2}
\end{equation*}
$$

uniformly on every compact subset of R_{+}. By the continuity of $\tilde{\mu}$ there exist real numbers t_{k} satisfying the conditions $0 \leqslant t_{k} \leqslant 1$ and

$$
\int_{0}^{1} \tilde{\mu}\left(d_{k} x\right) d x=\tilde{\mu}\left(d_{k} t_{k}\right) \quad(k=1,2, \ldots)
$$

Consequently,

$$
\tilde{\mu}\left(d_{k} t_{k}\right)^{n_{k}}=\left(1-\frac{1}{s n_{k}}\right)^{n_{k}} \quad(k=1,2, \ldots),
$$

which contradicts (3.2). The Lemma is thus proved.
Lemma 3.3. Suppose that \circ is regular and $\mu \neq \delta_{0}$. There exists then a positive integer s such that $b_{s n}(\mu) \leqslant c_{n}(\mu)$ for sufficiently large n.

Proof. First we shall prove the inequality

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} n\left(1-\int_{0}^{1} \tilde{\mu}\left(c_{n}(\mu) x\right) d x\right)>0 . \tag{3.3}
\end{equation*}
$$

Contrary to this let us suppose that there exists a subsequence $n_{1}<n_{2}$ $<\ldots$ with the property

$$
\begin{equation*}
n_{k}\left(1-\int_{0}^{1} \tilde{\mu}\left(c_{n_{k}}(\mu) x\right) d x\right) \rightarrow 0 \tag{3.4}
\end{equation*}
$$

We may assume without loss of generality that the sequence v_{k} $=T_{d_{k}} \mu^{\circ n_{k}}$, where $d_{k}=c_{n_{k}}(\mu)$, converges in \bar{P}, say to v. From (3.4) it follows that

$$
\left(\int_{0}^{1} \tilde{\mu}\left(c_{n_{k}}(\mu) x\right) d x\right)^{n_{k}} \rightarrow 1
$$

which, by virtue of the inequality $0<\mu(t) \leqslant 1$ for t small enough ([3], Theorem 5), yields

$$
\int_{0}^{1} \tilde{\mu}^{n_{k}}\left(c_{n_{k}}(\mu) x\right) d x \rightarrow 1
$$

or, equivalently,

$$
\int_{0}^{1} \tilde{v}_{k}(x) d x \rightarrow 1 .
$$

Denoting by ω the uniform distribution on the interval $[0,1]$ and applying Corollary 4.1 in [4] we have

$$
\begin{equation*}
\int_{0}^{\infty} \tilde{\omega}(x) v_{k}(d x) \rightarrow 1 \tag{3.5}
\end{equation*}
$$

Since, by Lemma 3.11, Propositions 3.3 and 3.4 and Theorem 4.1 in [4],

$$
\lim _{x \rightarrow \infty} \widetilde{\omega}(x)=0
$$

we infer, by (3.5), that $v \in P$ and

$$
\int_{0}^{\infty} \tilde{\omega}(x) v(d x)=1
$$

which, by Lemma 2.2 , yields $v=\delta_{0}$. But, in view of (1.3), $M\left(v_{k}\right)=d_{k} M\left(\mu^{\circ n_{k}}\right)$ $=1$ for sufficiently large k, which implies $M\left(\delta_{0}\right) \geqslant 1$. Thus we have reached the desired contradiction. Inequality (3.3) is thus proved. As its immediate consequence we get the existence of a positive integer s for which the inequality

$$
\operatorname{sn}\left(1-\int_{0}^{1} \tilde{\mu}\left(c_{n}(\mu) x\right) d x\right) \geqslant 1
$$

is true for sufficiently large n. Now, applying (3.1), we get the assertion of the Lemma.

Theorem 3.3. Let o be a regular generalized convolution. Then a measure μ belongs to the domain of attraction of a compact subset of $P \backslash\left\{\delta_{0}\right\}$ if and only if $\mu \neq \delta_{0}$ and

$$
\begin{equation*}
\varliminf_{n \rightarrow \infty} \frac{b_{2 n}(\mu)}{b_{n}(\mu)}>0 \tag{3.6}
\end{equation*}
$$

If it is the case, then $\left\{b_{n}(\mu)\right\} \in A(\mu)$.
Proof. Necessity. Suppose that μ belongs to the domain of attraction of a compact subset of $P \backslash\left\{\delta_{0}\right\}$. Then, of course, $\mu \neq \delta_{0}$ and, by Theorem 1 in [7], $\left\{c_{n}(\mu)\right\} \in A(\mu)$. Since, by Lemma 3.3, $b_{s n}(\mu) \leqslant c_{n}(\mu)$ for a positive integer s and sufficiently large n, we have the inclusion

$$
G\left(\left\{b_{s n}(\mu)\right\}, \mu\right) \subset\left\{T_{a} \lambda: 0 \leqslant a \leqslant 1, \lambda \in G\left(\left\{c_{n}(\mu), \mu\right)\right\} \subset P\right.
$$

which, together with Lemma 3.2, yields $G\left(\left\{b_{s n}(\mu)\right\}, \mu\right) \subset P \backslash\left\{\delta_{0}\right\}$. In other words, $\left\{b_{\text {sn }}(\mu)\right\} \in A(\mu)$. Since the sequence $\left\{b_{n}(\mu)\right\}$ is monotone non-increasing, we have, by Lemma 3.1, $\left\{b_{n}(\mu)\right\} \in A(\mu)$. Further, by Corollary 1 in [7], $\left\{b_{n}(\mu)\right\} \sim\left\{b_{2 n}(\mu)\right\}$, which implies condition (3.6).

Sufficiency. Suppose that $\mu \neq \delta_{0}$ and condition (3.6) is fulfilled. By Lemma 3.3 there exists a positive integer s such that $b_{s n}(\mu) \leqslant c_{n}(\mu)$ for sufficiently large n. Since, by (3.3),

$$
\varliminf_{n \rightarrow \infty} \frac{b_{2 s n}(\mu)}{b_{s n}(\mu)}>0,
$$

we have, by Lemma 6 in [6], the inclusion $G\left(\left\{b_{s n}(\mu)\right\}, \mu\right) \subset P$, which, together with Lemma 3.2, shows that μ belongs to the domain of attraction of a compact subset of $P \backslash\left\{\delta_{0}\right\}$. The Theorem is thus proved.

REFERENCES

[1] W. Feller, On regular variation and local limit theorems, Proceedings of the Fifth Berkeley Symposium on Math. Statist. and Prob., Vol II, Part I, Probability Theory (1967), p. 373-388.
[2] P. R. Halmos, Measure theory, New York 1950.
[3] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), p. 217-245.
[4] - Generalized convolutions IV, ibidem 83 (1986), p. 57-95.
[5] - Quasi-regular generalized convolutions, Coll. Math. (in print).
[6] - Limit behaviour of medians, Bull. of the Polish Acad. of Sciences, Mathematics 33 (1985), p. 413-419.
[7] - Compactness, medians and moments, Lecture Notes in Math. - Probability measures on groups VIII (1985), Springer Verlag, 1986, p. 163-173.

