THE JACKKNIFE METHOD AND THE GAUSS-MARKOV ESTIMATION

BY

CHRISTIAN LAVERGNE AND JEAN-RENE MATHIEU (TOULOUSE)

Summary. It is shown that in many cases the Jackknife estimator is the least squares estimator in a convenient linear model; moreover, under some light assumptions about the distribution of the observations, this least squares estimator is also the GaussMarkov estimator.

1. Introduction. Let $x=\left(x_{1}, \ldots, x_{n}\right)$ be a sample so that x_{i} is an observation of a random variable X_{i} whose distribution depends on a real unknown parameter θ to be estimated.
$T=T\left(x_{1}, \ldots, x_{n}\right), n>1$, denotes an estimator of θ; for each i $=1, \ldots, n, T_{-i}$ denotes the corresponding estimator of θ based on the sample where the i-th observation is deleted; T_{J} denotes the Jackknife estimator defined by

$$
T_{J}=n T-\frac{n-1}{n} \sum_{i} T_{-i}
$$

If, for each $\theta, E_{\theta}(T)=\theta+\delta / n$, where δ is unknown and is constant with respect to n, then it is well known that T_{J} is a unbiased estimator of θ (e.g. see [1], [5]).

In the following, a slightly more general situation is considered; so the following definition is introduced:

Definition. T is an α-biased estimator of θ if α exists, α known and strictly positive, so that $E_{\theta}(T)=\theta+\delta / n^{\alpha}$, where δ does not depend on n and is unknown.
2. The Jackknife method and the linear model. T being an α-biased estimator of θ, let us consider the linear model

$$
\begin{equation*}
\mathscr{T}=A \beta+\varepsilon, \quad \mathscr{T}=\left(T, T_{-1}, \ldots, T_{-n}\right)^{\prime} \in \mathbb{R}^{N}, N=n+1, \beta=(\theta, \delta)^{\prime} \tag{1}
\end{equation*}
$$

A is the $(N \times 2)$-matrix whose columns are $\mathbb{1}=(1, \ldots, 1)^{\prime}$ and $a_{\alpha}=\left(1 / n^{\alpha}\right.$, $\left.1 /(n-1)^{\alpha}, \ldots, 1 /(n-1)^{\alpha}\right)^{\prime}$.

Moreover, $E[\varepsilon]=0$.
In the following, $E\left[\varepsilon \varepsilon^{\prime}\right]$ is denoted by Γ and the subspace of \mathbb{R}^{N} spanned by the vectors 1 and a_{α} is also denoted by A.

Theorem 1. If Tis $a \alpha$-biased estimator of θ, the least square estimator of θ in the linear model (1), defined as

$$
\hat{\theta}=\frac{1}{n^{\alpha}-(n-1)^{\alpha}}\left(n^{\alpha} T-\frac{(n-1)^{\alpha}}{n} \sum_{i=1}^{n} T_{-i}\right.
$$

is an unbiased estimator of θ.
In the particular case $\alpha=1, \hat{0}=T_{J}$.
Proof. The model (1) is a simple linear regression model; so $\hat{\theta}$ $=\left(A^{\prime} A\right)^{-1} A^{\prime} \mathscr{T}$. But a more simple way to calculate $\hat{\theta}$ is to remark that A is spanned by the vectors $e_{1}=(1,0, \ldots, 0)^{\prime}$ and $e_{2}=(0,1, \ldots, 1)^{\prime}$. Hence the orthogonal projection of \mathscr{T} on A, say \mathscr{T}_{A}, with respect to the inner product, defined by the identity matrix, satisfies:

$$
\mathscr{T}_{A}=\hat{\theta} 1+\hat{\delta} a_{\alpha}, \quad\left(\mathscr{T}-\mathscr{T}_{A}\right)^{\prime} \cdot e_{1}=0, \quad\left(\mathscr{T}-\mathscr{T}_{A}\right)^{\prime} \cdot e_{2}=0
$$

Then

$$
T=\hat{\theta}+\frac{\hat{\delta}}{n^{\alpha}} \quad \text { and } \quad \frac{1}{n} \sum_{i} T_{i}=\hat{\theta}+\frac{\hat{\delta}}{(n-1)^{\alpha}},
$$

from which the expression of $\hat{\theta}$ follows.
Now it is interesting to examine whether $\hat{\theta}$ is the best linear unbiased estimator of θ in the model (1); to do that it is necessary to make some additional assumptions: \mathscr{M}_{N} denotes the set of the non-singular $(N \times N)$ matrices so that

$$
\Gamma \in \mathscr{M}_{N} \Leftrightarrow \Gamma=\left[\begin{array}{ccccccc}
v_{1} & c_{1} & \cdots & \cdots & \cdots & c_{1} \\
& v_{2} & c_{2} & \cdots & \cdots & \cdots & c_{2} \\
& & \ddots & \cdot & & & \vdots \\
& & & & \ddots & c_{2} \\
& & & & & v_{2}
\end{array}\right]
$$

Theorem 2. If T is an α-biased estimator of θ and if Γ belongs to \mathscr{M}_{N}, then $\hat{\theta}$ is the Gauss-Markov estimator of θ in the linear model (1).

Proof. According to [2], the least squares estimator and the GaussMarkov estimator are identical if and only if $\Gamma A \subseteq A$ (this results holds even if Γ is singular). Now this assumption is fulfilled if Γ belongs to \mathscr{M}_{N}, for, in this case,

$$
\begin{gathered}
\Gamma e_{1}=\left(v_{1}, c_{1}, \ldots, c_{1}\right)^{\prime}=v_{1} e_{1}+c_{1} e_{2} \in A, \\
\Gamma e_{2}=\left(n c_{1}, v_{2}+(n-1) c_{2}, \ldots, v_{2}+(n-1) c_{2}\right)^{\prime}=n c_{1} e_{1}+\left[v_{2}+(n-1) c_{2}\right] c_{2} \in A .
\end{gathered}
$$

In the most frequent case X_{1}, \ldots, X_{n} are independent and identically distributed and T is a symmetric function of X_{1}, \ldots, X_{n}; hence the assumption $M \in \mathscr{M}_{n}$ is fulfilled.

Remark 1. As a consequence of the above propositions, if T_{1} and T_{2} are some α-biased estimators of respectively θ_{1} and θ_{2}, then the Jackknife estimator of $\theta_{1}+\theta_{2}$ is $\hat{\theta}_{1}+\hat{\theta}_{2}$.

Remark 2 . Let us assume that Γ belongs to \mathscr{M}_{n}. It is easy to see that, for every vector u belonging to A^{\perp}, the orthogonal complement of $A, u=c u$ with $c=v_{2}-c_{2}$ (c is strictly positive if the correlation coefficient of T_{-i} and $T_{-i^{\prime}}, i \neq i^{\prime}$, is different from 1). Then, following theorem 3 of Kruskall [2], $c\|\mathscr{T}-A \hat{\beta}\|_{\Gamma^{-1}}^{2}=S^{2}$ with $S^{2}=\sum_{i}\left(T_{-i}-\bar{T}\right)^{2}, \bar{T}=n^{-1} \sum_{i} T_{i}$. Hence, if \mathscr{T} is multinormally distributed, S^{2} / c is independent from $\hat{\beta}$ and is χ_{n-1}^{2}; then

$$
\frac{\hat{\theta}-\theta}{\sqrt{\frac{S^{2} \operatorname{Var}(\hat{\theta})}{c(n-1)}}} \sim t_{n-1}
$$

$\operatorname{Var}(\hat{\theta})$

$$
=\frac{1}{\left[n^{\alpha}-(n-1)^{\alpha}\right]^{2}}\left[n^{2 \alpha} v_{1}+\frac{(n-1)^{2 \alpha} v_{2}}{n}-2[n(n-1)]^{\alpha} c_{1}+\frac{(n-1)^{2 \alpha+1} c_{2}}{n}\right] .
$$

This result is a generalisation of theorem 3 of Miller [4] concerning the preservation of normality.
3. A generalisation of the Jackknife. In the following it is assumed that n is greater than 2. Let T be a biased estimator of θ so that

$$
\begin{equation*}
E_{\theta}[T]=\theta+\frac{\delta}{n^{\alpha}}+\frac{\delta^{\prime}}{n^{\alpha^{\prime}}}, \tag{2}
\end{equation*}
$$

where α and α^{\prime} are known strictly positive real numbers, $\alpha \neq \alpha^{\prime}$.
To obtain an unbiased estimator of θ, let us introduce the random vector

$$
U=\left(T, T_{-1}, \ldots, T_{-n}, T_{-(1,2)}, \ldots, T_{-(n, n-1)}\right)^{\prime}
$$

where $T_{-(i, j)}$ is the estimator of θ based on the sample where the i-th and j-th observations, $i \neq j$, are deleted; then the following linear model can be considered:

$$
\begin{equation*}
U=B \gamma+\varepsilon, \quad U \in \mathbb{R}^{N}, N=n^{2}+1, \quad \gamma=\left(\theta, \delta, \delta^{\prime}\right) \tag{3}
\end{equation*}
$$

B is the ($N \times 3$)-matrix whose column vectors are $1, b_{\alpha}$ and $b_{\alpha^{\prime}}$ with

$$
b_{\alpha}=\left(\frac{1}{n^{\alpha}}, \frac{1}{(n-1)^{\alpha}}, \cdots, \frac{1}{(n-1)^{\alpha}}, \frac{1}{(n-2)^{\alpha}}, \cdots, \frac{1}{(n-2)^{\alpha}}\right)^{\prime}
$$

ε is a centred random variable and Σ denotes $E\left[\varepsilon \cdot \varepsilon^{\prime}\right]$.
Theorem 3. If Tfulfills (2), an unbiased estimator of θ exists, say $\hat{\theta}$, which is a linear function of U; moreover if X_{1}, \ldots, X_{n} are independent and identically distributed and if T is a symmetric function of X_{1}, \ldots, X_{n}, then $\hat{\theta}$ is the Gauss-Markov estimator of θ in the linear model (3).

Proof. The subspace B of \mathbb{R}^{n} spanned by the columns of B is also spanned by the vectors:

$$
f_{1}=(1,0, \ldots, 0)^{\prime}, \quad f_{2}=(0,1, \ldots, 1,0, \ldots, 0)^{\prime}, \quad f_{3}=(0,0, \ldots, 0,1, \ldots, 1)^{\prime}
$$

n terms $n(n-1)$ terms
The orthogonal projection of U on B, say U_{B}, is the solution of:

$$
\begin{gathered}
\left(U-U_{B}\right)^{\prime} \cdot f_{1}=0, \quad\left(U-U_{B}\right)^{\prime} \cdot f_{2}=0, \quad\left(U-U_{B}\right)^{\prime} \cdot f_{3}=0 \\
U_{B}=\hat{\theta} \mathbb{1}+\hat{\delta} b_{\alpha}+\hat{\delta}^{\prime} b_{\alpha^{\prime}} .
\end{gathered}
$$

Hence the linear system is to be solved:

$$
\begin{aligned}
& T=\hat{\theta}+\frac{\hat{\delta}}{n^{\alpha}}+\frac{\hat{\delta}^{\prime}}{n^{\alpha^{\prime}}}, \\
& T_{2}=\frac{1}{n} \sum_{i} T_{(-i)}=\hat{\theta}+\frac{\hat{\delta}}{(n-1)^{\alpha}}+\frac{\hat{\delta}^{\prime}}{(n-1)^{\alpha^{\prime}}} \\
& T_{3}=\frac{1}{n(n-1)} \sum_{\substack{i, j \\
i \neq j}} T_{-(i, j)}=\hat{\theta}+\frac{\hat{\delta}}{(n-2)^{\alpha}}+\frac{\hat{\delta}^{\prime}}{(n-2)^{\alpha^{\prime}}} .
\end{aligned}
$$

Clearly there is only one solution.
Moreover, in order to apply Kruskal's result, let us prove that $\Sigma B \subseteq B$: $\Sigma=E\left[(U-m)(U-m)^{\prime}\right]$ with $E[U]=m$.

For each vector $f_{l}, l=1,2,3, \Sigma f_{l}=E\left[(U-m)(U-m)^{\prime} f_{l}\right]$ with

$$
\begin{gathered}
(U-m)^{\prime} f_{1}=T-E(T) \\
(U-m)^{\prime} f_{2}=\sum_{i}\left[T_{-i}-E\left(T_{-i}\right)\right], \quad(U-m)^{\prime} f_{3}=\sum_{i} \sum_{j}\left[T_{-(i, j)}-E\left(T_{-(i, j)}\right)\right]
\end{gathered}
$$

Each of these three real random variables is centred and is a symmetric function of X_{1}, \ldots, X_{n}; hence the last $n(n-1)$ components of the random
variable $(U-m)(U-m)^{\prime} f_{l}$ are identically distributed and the $(n+1)$-first components, except the first, are identically distributed; hence $(U-m)(U$ $-m)^{\prime} f_{l}$ is a linear combination of f_{1}, f_{2} and f_{3}.

In the particular case, $\alpha=1$ and $\alpha^{\prime}=2$, the Gauss-Markov estimator of θ is:

$$
\hat{\theta}=\frac{1}{2}\left[n^{2} T-2(n-1)^{2} T_{2}+(n-2)^{2} T_{3}\right] ;
$$

$\hat{\theta}$ is the estimator given in [7].
The estimator $\hat{\theta}$ has a smaller variance than the unbiased estimator given by Mantel [3]:

$$
\hat{\theta}^{\prime}=n^{2} T-(2 n-1)(n-1) T_{2}+(n-1)(n-2) T_{3} .
$$

Remark 3. If (2) holds, it is impossible to get a linear unbiased estimator of θ depending on \mathscr{T}. Indeed, let us consider the linear model in $\mathbb{R}^{N}, N=n+1, \mathscr{T}=B^{*} \gamma+\varepsilon$, where B^{*} is the $(N \times 3)$-matrix whose three column vectors are $1, a_{\alpha}$ and $a_{\alpha^{\prime}}$: each is a linear combination of e_{1} and e_{2}; hence the range of B^{*} is 2 and it is only possible to estimate the linear combinations of θ, δ and δ^{\prime} belonging to the subspace of \boldsymbol{R}^{3} spanned by the column vectors of $B^{* \prime} B^{*}$. This subspace is spanned by $\left(1,1 / n^{\alpha}, 1 / n^{\alpha \prime}\right)^{\prime}$ and $\left(1,1 /(n-1)^{\alpha}, 1 /(n-1)^{\alpha^{\prime}}\right)^{\prime}$ and the vector $(1,0,0)^{\prime}$ does not belong to this subspace.

Remark 4. In paper [7] the following situation is considered: $T_{1}, T_{2}, \ldots, T_{k+1}$ are $k+1$ estimations of θ such that

$$
E\left[T_{j}\right]=\theta+\sum_{i=1}^{k} f_{i j}(n) b_{i}(\theta) \quad(j=1, \ldots, k+1)
$$

and the proposed unbiased estimator of θ is

If this estimator exists, then it is the Gauss-Markov estimator of θ in the
following linear model:

$$
\mathscr{T}=\left(\begin{array}{c}
T_{1} \\
\cdots \\
T_{k+1}
\end{array}\right)=A\left(\begin{array}{c}
\theta \\
b_{1}(\theta) \\
\cdots \cdots \\
b_{k}(\theta)
\end{array}\right)+\varepsilon
$$

with $E(\varepsilon)=0$ and $E\left(\varepsilon \varepsilon^{\prime}\right)=\Gamma$.
In effect, if the rank of A is $k+1$, the subspace A is R^{k+1} and then $\Gamma A \subseteq A$.

REFERENCES

[1] B. Efron, Nonparametric estimates of standard error: The Jackknife, the bootstrap, and other methods, Biometrika 68 (1981), p. 589-599.
[2] W. Kruskal, When are Gauss-Markov and least squares estimators identical? A coordinate free approach, Ann. Math. Statistics 39 (1968), p. 70-75.
[3] N. Mantel, Assumption-free estimators using U-statistics and a relationship to the Jackknife method, Biometrics 23 (1967), p. 567-571.
[4] R. G. Miller, Trustworthy Jackknife, Ann. Math. Statist. 35 (1964), p. 1594-1605.
[5] - The Jackknife: A review, Biometrika 61 (1974), p. 1-15.
[6] W. C. Paar, A note on the Jackknife, the bootstrap and the delta method estimators of bias and variance, ibidem 70 (1983), p. 719-722.
[7] W. R. Schucany, H. L. Gray and D. B. Owen, On bias reduction in estimation, J. Amer. Statist. Ass. 66 (1971), p. 524-533.

Laboratoire de Statistique et Probabilités
Université Paul Sabatier
U.A.-C.N.R.S. 745

31062 Toulouse Cedex, France

