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Summary. It is shown that in many cases the Jackknife estima-
tor is the least squares estimator in a convenient linear model;
moreover, under some light assumptions about the distribution of
the observations, this least squares estimator is also the Gauss-
Markov estimator.

1. Imtreduction. Let x =(x,,..., x,) be a sample so that x; is an
observation of a random variable X; whose distribution depends on a real
unknown parameter 6 to be estimated.

T=T(x1,...,x,,),n>1, denotes an estimator of @; for each i
=1, ; denotes the corresponding estimator of 0 based on the
sample where the i-th observation is deleted; T; denotes the Jackknife
estimator defined by

T_

If, for each 0, Eo(T) = 0+46/n, where é is unknown and is constant with
respect to n, then it is well known that T; is a unbiased estimator of 0
(e.g. see [11, [5].

In the following, a slightly more general situation is considered; so the
following definition is introduced: . i

Definition. Tis an a-biased estimator of 0 if a exists, « known and:
strictly positive, so that Ea(T) 0+ 6/n*, where é does not depend on n and
is unknown

2, The Jackknife method and the linear model. T being an «-biased
estimator of 8, let us consider the linear model

(1) T =AB+e, T =(T,T.,,..., T-YeR", N=n+1, =0, ),
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A is the (N x2)-matrix whose columns are 1=(1,...,1) and a, =(1/n",
1(n—1y, ..., 1/(11—1)"‘)’.

Moreover, E[e] =

In the following, E [zc’] is denoted by I' and the subspace of R” spanned
by the vectors 1 and g, is also denoted by A.

THEOREM 1. If Tis a a-biased estimator of 0, the least square estimator of
0 in the linear model (1), defined as

1 (n— 1)“

7] =-';;.“_—(lm(no£ :

ZT

is an unbiased estimator of 0.

In the particular case a =1, 0 = T,.

Proof. The model (1) is a simple linear regression model; so 0
=(A'A)"1 A'7". But a more simple way to calculate 6 is to remark that 4 is
spanned by the vectors e; =(1, 0, . 0)' and e, =(0, 1, ..., 1). Hence the
" orthogonal projection of 7 on A4, say 7 4, with respect to the inner product,
defined by the identity matrix, satisfies:

T=04+6a,, (T-T)e =0 (T—Ty e=0
Then

1 o ;)
N T =40
and YT + P—

T=0+
n

3n| S

from which the expression of 8 follows.

Now it is interesting to examine whether 0 is the best linear unbiased
estimator of 6 in the model (1); to do that it is necessary to make some
additional assumptions: .#y denotes the set of the non-singular (N x N)-
matrices so that

Dy €L v v vve een .y

v U €3 v o1 .Gy

e My<T = e :
€2

e

TreoreM 2. If T is an o-biased estimator of O and if I' belongs to My,
then 0 is the Gauss-Markov estimator of 0 in the linear model (1).

Proof. According to. [2], the least squares estimator and the Gauss-
Markov estimator are identical if and only if '4 < A (this results holds even
if I' is singular). Now this assumption is fulfilled if I belongs to .#y, for, in
this case,
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‘ rel 2(019 Ciy0ens cl)l =ve;+C; EzeA,
Ie, = (”st va+(@m—1)cy, ..., va+(n—1)cy) = ncy e+ v, +(n—1)clce 4.

In the most frequent case X, ..., X, are independent and identically
distributed and Tis a symmetric function of X,,..., X,; hence the assump-
tion Me .#, is fulfilled.

Remark 1. As a consequence of the above propositions, if T; and T,
are some o-biased estimators of respectively 0, and 6,, then the Jackknife
estimator of 6, +0, is 8, +0,.

Remark 2. Let us assume that I" belongs to .#,. It is easy to see that,
for every vector u belonging to A*, the orthogonal complement of A, u = cu
with ¢ = v, —c¢, (c is strictly positive if the correlation coefficient of T_; and
T..,i+#i, is different from 1). Then, following theorem 3 of Kruskall [2],

cl|l7 —APII>-; = $* with §° =Y (T~ T, T=n"'T T, Hence, if T is

, . i i
multinormally distributed, $%/c is independent from B and is Xa-1; then

c(n—1)
Var ()
1 ~1)* )2+l
=f;;-“:(‘ni“iﬁf["2“”l+(—"-—,,)——1’3—2[n(n-1)3=c1+(i_’n._:z}

This result is a generalisation of theorem 3 of Miller [4] concerning the
preservation of normality.

3. A generalisation of the Jackknife. In the following it is assumed that n
is greater than 2. Let T be a biased estimator of 6 so that
6 o
2 Eg[T] =0+ — +—,
"

where « and o are known strictly positive real numbers, « # a'.
‘To obtain an unbiased estimator of 6, let us introduce the random
vector

U= (T; Ty, .., Ty, T-(1,2)= SRR T—(n,n-— 1))Ia

where T ; is the estimator of 6 based on the sample where the i-th and j-th
observations, i #j, are deleted; then the following linear model can be
considered: :

3) U=By+s, UeR",N=n+1, y =(0, 8, &).

8 — Prob. Math. Statist. 8
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B is the (N x3)-matrix whose column vectors are 1, b, and b, with

b = 1 1 1 1 1y
A\ -1 =1 (=27 T (=2 )
n terms wn—1) terms
¢ is a centred random variable and X denotes E[&-¢'].

TueoreM 3. If T fulfills (2), an unbiased estimator of 0 exists, say 0, which
is a linear function of U; moreover if X,,..., X, are independent and
identically distributed and if Tis a symmetric function of X4, ..., X, then 0 is
the Gauss-Markov estimator of 0 in the linear model (3).

Proof. The subspace B of R" spanned by the columns of B is also
spanned by the vectors:

fi=0,0,..,00, fo=0,1,...,1,0,...,00, f5=(0,0,...,0,1,...,1).

r terms wn--1) terms

The orthogonal projection of U on B, say Up, is the solution of:
(U=Ug) /i =0, (U=Up)f=0, (U-Upf3 =0,
Ug = 0146b,+5'b,..

Hence the linear system is to be solved:

- 0 &
0+ 242,

T=0+5+°,

1 " ) &
To=-Y T, =0 ,
I

1 b 5

T —— =0 )
2T -1 Zj T6p 0+(n—2)“+(n—2)“’

EFEf

Clearly there is only one solution.

Moreover, in order to apply Kruskal’s result, let us prove that B < B:
Z=E[U-m)(U-m)] with E[U] = m.

For each vector fi,1=1,2,3,2fi= E[(U—m)(U—m) f]] with

(U—m) fy = T-E(T),
U-m) fo =3 [Ti—E(T_)], (U-m)f,= 22T oy —E(T_p)l.

Each of these three real random variables is centred and is a symmetric
function of X,, ..., X,; hence the last n(n—1) components of the random

]
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variable (U—m)(U —m) f; are identically distributed and the (ns+1)-first
components, except the first, are identically distributed; hence (U—m)(U
—m)’ f; is a linear combination of f,, f; and f;.
In the particular case, « = 1 and o = 2, the Gauss-Markov estimator of
0 is:
~ 1
0= —2—[n2 T-2(n—-1)? T,+(n—-22T];
0 is the estimator given in [7].
The estimator ¢ has a smaller variance than the unbiased estimator
given by Mantel [3]:

0 = T—2n—1)(n—1) L+n—-1)n-2)T.

Remark 3. If (2) holds, it is impossible to get a linear unbiased
estimator of # depending on 7. Indeed, let us consider the linear model in
RN, N=n+1,9 = B*y+e¢, where B* is the (N x3)-matrix whose three
column vectors are 1, a, and a,.: each is a linear combination of ¢; and e,;
hence the range of B* is 2 and it is only possible to estimate the linear
combinations of #, 6 and & belonging to the subspace of R* spanned by the
column vectors of B* B*. This subspace is spanned by (1, 1/#*, 1/n*)’ and
(1, 1/(n—1p, 1/n—1)*Y and the vector (1, 0, 0) does not belong to this
subspace.

Remark 4. In paper [7] the following situation is considered:
T, Ty, ..., T+ are k+1 estimations of 6 such that

E[T] =0+ zk:f,-j(n)bi(ﬂ) G=1,..., k+1)
i=1

and the proposed unbiased estimator of 0 is

tl tz ... tk+1

fll f12 v 'fl,k+l

Ty
I
!

............

If this estimator exists, then it is the Gauss-Markov estimator of 8 in the
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following linear model:

' 6
T\
T = ( . .)=A bi0) 4,
Tl;+1 bk(e)
. with E(¢) =0 and E(eg)=1T.

In effect, if the rank of 4 is k+ 1, the subspace A is R**! and then
T4 < A. :
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