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Abstract. Let {X,),"=, be a sequence of i.i.d. random var~ables 
with man 0 and finite, positive variance aZ and let 

Further, let 

where {n,},", is a strictly increasing subsequence of the positive 
integers. Then the set of cluster points of { ~ , , d , / n ,  log log q),"=, equals 
[ - o h ,  afi] a.s. if Sirninfndn,,, z 0, and [ -crz*({nk}) ,  

k - a :  

u&*({n,})] as. if limsupndnk+, < 1. These results are then applied 
k-rw 

to randomly indexed partial sums. 

8 .  Inmrtrodlsctiom. Let (Xk)F= be a sequence of i.i.d. random variables with 
mean Q and finite, positive variance a2 and let S,, rm 2 1, be the sum of the 
Iiirst n terms in this sequence. In 151 we find the first version of the law of the 
iterated logarithm (LIL) for this case and in [8] a more complete formula- 
tion is given, which, in particular, states that the set of cluster points of the 
sequence j~ j J m ) s ,  coincides with c -c$, GJZJ almost surely. 

I 

The fist proof of the LIL in this formulation, that is based only on 
basic prqbability tools, is given in El]. 

Let (n,)gl be a strictly increasing subsequence of the positive integers. 
In [6] it is proved that the cluster set of ( S J , / ~ ] ? = )  equals 
[ -03, a& almost surely if n,, ,/n, has a finite limit as k - CQ, and in [4] 
results for the cases 

limsupnJnk+,<l and liminfnJn,+,>O 
k-a, k-rar, 

are proved in an elementary way. 



Followiilg h e  lines of [I] and using the results in [4] we wilE, in Section 
4, prove that, with probability one, the set of cluster points of the sequence 

{,5',,il!fik log log n,]:; coincides with [ - a { * { if 
3 - 
iln: sup nJn,.+. , < 1 ( k  -+ m) and with [ - ~ ~ 5 ,  n,@] if lirn inf nJn,, , 0 
$ k  3 GO). These res~alts will then be used in Se~tion 6 fo prove an extension, 
of the following theorem, which car1 be cansidered as an Anscornbe theorem 
for :he EIL, and which is contined in [63, [3] and [23: 

'THEOREM 1.1. Lei {X,}&, and (S,),"=, br. as above and let {b,}F=, b e  a 
slricnkiy increasi'ptg sequence of positiue reds,  iracveclsi~zg lo infinity, such that 

Ftrrther, let be a strictly increacrsiilg sequence of positiue, iplleger 
uutued randoprl variables with vl 2 3 and such that vJbk -8 as k -+ ccl, Q < 0 
< x .  

-- -- 
Then, the set o j  cluster points of the sequence {$,JJv, log log v,)g, 

coincides with  j - cr$, D J ~ J  a s .  

2. Results $0. detern~idstic ssbsqanemes. Denote by C(jx,)) the sct of 
cluster points (the cluster set) of the sequence { x ~ ) ? = ~  

THEOREM 2.1 LBF {Xk:{=F be i.i.d. random vrzriabl~s with EX1 = 0 and 
EX: = aZ < m and let 

s,= C X*, n 2  I. 
k =  l 

3;urr&er, let (vl,)F==, be LZ strictly increasing subsequence of' the posbtiue 
ir~tegers ond define c * ( f q ) )  by 

Then 

$ trIr m sup nk/nk,,  < 1 ,  and 
,-+GO 
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For subsequences such that E'' ({n,;) = 0, the normalization 
vh ixg%E is too strong. If we inslead use wm, we have the 
ftA10 wing theorem : 

T H E ~ Z E M  2.2. Lei {X,jFA, artd (SF,):= =I be as in  Theorem 2.1 nnd suppose 
that lim sup n JQ+ < 1. Then 

A - r  

3. Prepasaacsry tlmrems and lemmas, In this section we state some 
results that will be used in the proof of Theorem 2.1. 

THEOREM 3.2. Uizder the assumpiions of R;~leu i '~~t  2.1. we have 

$ ilimsupnk/nk+, < 1. 
k d m  

This theorem, see [43, provides a ckased, finite interval which contains 
the cluster set of ($,/Jn, log log q =, with probability one, in the case 
lirnsup rzk/nk+ < 1. 

k + m  

To show the opposite iaicllusion we need the falbwing two lemmas, 
where the first one is due to de Acosta [I]. 

LEMMA 3.2. Let { X k )  be i.i.d. random vmiables. EXl = 0, EX: = aZ < cc,. 
Let Y R ~ E  Igi, ak > 0, aJmk -+ 0, aZ/jnk --r M. The~z, for every b~ R and E > 0, 

LEMMA 3.3. Let {pl,),"=, be a strictly increasing sequence qf positive inte- 
gers and let E * ( { I ~ ~ ) )  be dejmd by (2.1). Then, for every .fixed integer 
v 3 1 ,  E* ((~2,~))  = E* ((~1~211)). 

Proof. By definition it immediatelly follows that f tE+{(nvk])  < &*(Ink)). It 
thus remains to verify the opposite ineqjuditjr. 

CBzoose E arbitrariiy in the interval 0 < r .< ~"((n,)) and consider the 
identity 

Since the left-hand side is infinite, there must exist j ,  1 < j < v, such that 
00 

C (log n, + j ) - ' 2 / 2  = a. 
k =  0 
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It then folbws from E e m a  3.3 and the definition of ~ " ( { n , , , ) )  that 

From this we obtain (4.3) by applying the Borel-Cantelli Eemtna. 
Next we prove that 

(4.4.) = 0 as .  for every Ibl  BE*{{^^)). 

Choose E > 0 and Ibl < ac*({nk)) arbitrarily, and then let v be so large 
that lbl < 09 ((4)),,/w and d-v'2 (m* (in,))+ i) < E .  By (4.1) we have 

i.e. for each o outside a set of measure zero, there exists a k ,  = ko(o) such 
that 

Thus we have 
Snvk --61$1 S"v(k- 1) 

, a, log log nvk I ,f- Jnv(k- 1, log log %(k- 1, I x 

valid for k > k,. The second inequality above comes from (4.5) and (4.2). 
This, together with (4.31, now yields 

for ~ b (  < O E * ( { ~ ) ) ~ / E F .  Since 

E may be chosen arbitrarily small and Q arbitrarily large, (4.4.) follows. 



To finish off the proof of (2.2) we finally note that it follows Bonn (4.4) 
that 

for every countable dense subset D G ( - a p i ~ ' ~ ( { ~ ) ) ,  ~ ~ " ( j n , ) j ) ,  and, since the 
set of clustcr points is dosed, we have 

[ - o E * ( { ~ ~ ] ) ,  O E * ( { ~ ~ ] ) ]  & 
q log log n, 

with probability onq which colnpldes the proof of (2.2). 
To prove (2.3) we define a strictly increasing subsequence {mk)p= =, of 

( ) m  
i n k l k =  l 

Since the condition limidn,/nka,,,  > 0 provides the existence of L > 1 
such that n, d Ankak_ ,, we have kk < mk < Xkk and mkjmk+ I < ;lkk/(k+ 1)"'", k 
= 1, 2, .. ., which in iurn yields ~*({m,)) = f i  and Emsup(mdm,, ,) < I. 

k + m  

Applying (2.21, we now obtain 

and, since the opposite inclusion is trivial, the proof is finished. 

P roo f  of Theorem 2.2. From Theorem 11.1 in [4] it foflows thai 

C ( { S ~ ~ / ~ = ) )  E [--a$, as. To prove the opposite inchsion we 
use the proof of (2.2) with obvious rnobificztions. 

5. Results far random swbqllaenca. In this section we state correspon- 
ding results concerning randomly index partial sums (cf. [63). 

THEOREM 5.1. k t  (Xk)p= be i.i.d. random ~ariabbs  with E X ,  = Q and 
EX? = ( r2  < oo, and set 

Suppose that rfb,},", is u sequence q,f positive reals, strictly irzcrecasing to 
ivfinity and Iet {v,),"=, be a strictly increasing sequence of positiue, integer 
valued random variables with v, 8 3 and such that 
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Finally, let n, = [Ohk] deaots the integer part of Obk, k = 1, 2, . . . , a d  
let e* ( fnkl )  be defii~ed hiby (2.13. Thm 

i #  liminfb,/b,+, > 0 .  
k - oc 
Remark. Suppose that bJb,+, -, 3, k +  a, O < B 6 I .  Then we have 

E * ( ( [ B ~ , ] } )  = & and we rediscover Theorem 1.1. 
THEOREM 5.2. Under the ~ i ? f ? d i t i ~ l l ~  of Theorem 5.1 we have 

6. hoofs of Theorems 5.1. and 5.2. The proofs in this sedion are based 
on Theorem 2.8, the Lkvy inequality and the foFollowing result (cf. [4], 
Lemma 4.1): 

LEMMA 6.1. Let {Xk)F==l be i.i.d. random variables with E X ,  = O and EX? 
= a2 < m and let {ak)?= be a strictly iacreasing subsequence of the positive 
integers sueis that lim sup pl,/n,, , < 1 .  

k-oo 

Final!y, let e* ((afz)) be defined by (2.2). Then 

m 

P(/S,I > EJZ) < m for ail E > o~*((n,))  
k =  3 

and 
w 

P(1S.J > E,/=) < a for ail E > a,h. 
k =  3 

Pr oof of Theorem 5.1. To prove (5.2) we observe that, if limsup bk/ba+ I 
k-+m, 

< 1, the sequence {nk)?=, is strictly increasing for I large enough and that 
Iim sup q/n,, , < 1. The csnclusion thus follows from (2.2) once we know 

k-m 
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that 

but this in turn follows easjly if we: prove that 

Let y > 0 be given and choose 6 3 0 such that y/261/2 > CE* ({mk)) 
= UE* ((mk)), where m, = n, - [(I -6 )  m,] - 1 and mi = [(I i-6) $1 - iz,, k = 
I, 2,  . . ., and let L be an integer to be determined later. Then 

G k = l  i ~ ( { ~ ~ - I 3 ~ - & - 1 l ~ a ] ) + ~ ( ~ ~ { ~ - ~ ~ ~ ~ ]  lrck jog log #, 

From the definition of mk and mi it follows that there exist ko 
and k, such that 

J ' S - ~ J Z ~  3 (y/au2) J-k-r& 

>, (y/Zd1t2) far all k 2 ko 
and 

Thus, if we choose 1 > rnax(k,, k,), the tnevy inequality (see [7] ,  p. 248) 
yields that the sum in the right most side of (6.3) is bounded by 

which in turn is finite by Lemma 6.1. 
Further, condition (5.1) implies that 
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and hence i t  follows from (6.3) that 

Since y is arbitrary, (6.2) f~llaws. 
To prove (5.31, we define r n ~  = min Q: [Bbj] > kk), k = 1, 2, . .. Since 

lim sup bylbmk,,  < 1 and e* (([Bbmk]J) = $, 
A-o3  

(5.3) follows from (5.2) applied to the sequence jsVIII,i Jm5~=~ jcf. 
the proof of (2.3)). 

Proof af T heo r em 5.2. Theorem 5.2. follows from Theorem 2.2 once 
we know that c ( ( s , J @ o ~ ~ ) )  = C ( { S ~ J , , / ~ ] )  as.,  and to prove this 
we use proof of (5.2) with obvious modifications. 
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