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CENTRAL LIMIT THEOREM
FOR SOME DEPENDENT RANDOM ELEMENTS OF D[O, 1]

BY
KRZYSZTOF TOPOLSKI (WrocLAaw)

Abstract. This paper gives conditions which imply that the m-
dependent sequence and the martingale difference sequence of ran-
dom elements of D[0, 1] satisfy the central limit theorem in
D0, 1]. Obtained resulis are an extension of results of Hahn [3].

1. Introduction. Let D = D[0, 1] be the space, endowed with the Skoro-
hod topology, of real-valued functions on [0, 1] which are right continuous
and have the left-hand limits (for details of D and the basic properties of the
Skorohod topology, see [2]).

The sequence {X,} = {X,, n > 1} of D-valued random elements satisfies
the central limit theorem (CLT) in D if there exists a Gaussian random
element Z in D which is the limit in distribution of the sequence of random
elements

Z,=n"12% (X,—EX).
i=1

This convergence is denoted by Z,,B»Z, and we call Z the limiting
Gaussian element. ' :

In [3] Hahn gave sufficient conditions for the sequence of independent
identically distributed random elements to satisfy CLT in D. This result is
included in the following

Tueorem 1. Let {X,} be the sequence of independent identically distribu-
ted random elements of D such that, for all 1[0, 1], EX, () = 0 and EX?(2)
< 0. Assume there exist nondecreasing continuous functions G and F on
[0, 1] and numbers o > 1/2, f > 1 such that, for all 0<s<t<u<l1,

® - E(X(W-X@®) <(Gw-GOF,
@ E(X@)-XOP(XO-X) < (F@)-F@©).

Then {X,,} satisfies the CLT in D and the limiting Gaussian element is
distributed on C[0, 1], the space of real-valued continuous functions on [C, 1].
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Taking this theorem as the starting point we formulate sufficient condi-
tions for the m-dependent sequence and martingale difference sequence of
random elements of D to satisfly CLT in D.

Types of dependence of random elements are the transposition of the
corresponding types of dependence of random variables and are defined in
the following way: ‘

A sequence {X,} of random elements is m-dependent if, for all je N, ie N

and ke N, the random vectors (X;, X;, 1, ..., Xj) and (Xy1p, Xysnt1, o000 Xi)
are independent whenever n > m.
. We say that {(X,, #,)} = {(X,. #,), n> 1} is the martingale difference
sequence if {X,} is the sequence of random elements adapted to o-fields &
= {&,, n>1} such that, for every neN and every te[0, 1], EX,(z) < o0
and E(X,(t)|F,-1)=0.

i 2. CLT for the sequence of dependent random elements. In this section we
give a proposition of CLT for the m-dependent sequence and martingale
difference sequence of D-valued random elements.
' Tueorem 2. Let {X,} be a strictly stationary sequence of m-dependent
random elements of D such that, for all te[0, 1],

(3) o EX, (t) =0,

) | * EX2(1) < o.

Assume there exist nondecreasing continuous functions G and F on [0, 1]
and numbers a > 1/2, f > 1 such that, for all 0<s<t<u<l,

3 E(X;()—-X; () <(GO)-GB),
6 E(X, )~ X, 9)*(Xe@)— X, 0P <(F@—F@©)f fork=1,2,..,m.

Then {X,} satisfies the CLT in D and the limiting Gaussian element is
distributed on C..

THEOREM 3. Let {(X,, F 2} be a martingale difference sequence of random
elements of D such that, for all s,te[0, 1] and all neN,

™ E (maxn™ 2 X, ()|)? - 0,
1 n
- @® N -3 X0 X0 >C, 9,

where C(t,s) is a function of two variables with finite values. _
Assume there exist nondecreasing continuous functions G and F on [0, 1] .
and numbers o0 > 1/2, f > 1 such that, for all neN and all 0 <s<t<u<l,

©) - EX,0- X, (X)X, (t))}2< (F@)—F(©)Y,
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(10) - E{X,0-X,f|Fu-1} < (GO~ GO)F as.

Then {X,} satisfies the CLT in D and the limiting Gaussian element is
distributed on C.

2. Proofs. For the proof of Theorems 2 and 3 we show the convergence
of finite-dimensional distributions of the sequence {Z,} to the corresponding
finite-dimensional distributions of the Gaussian random element, and the
tightness of the sequence {Z,} in D.

Proof of Theorem 2. Convergence of finite-dimensional distributions
of the sequence {Z,} is the consequence of Theorem 20.1 of [2] and Cramer-
Wold technique (Theorem 7.7 of [2]).

We verify the tightness of the sequence {Z,}. Let

Y,= ) X;.
i=m{n—-1)+1

Since the sequence {X,} is m-dependent, it follows that {Y,,, n> 1} and
{Y,,_1,n =1} are sequences of independent random elements. We verify
that conditions (1) and (2) of Theorem 1 hold.

From condition (5) of the theorem we get the estimation

E(Y,(0)- %()* < (m(G(0)~-G )

and condition (1) of Theorem 1 is satisfied by the sequence {Y,} with the
function G replaced by m¥*G.

Now we verify condition (2) of Theorem 1 for the sequence {Y,}, using
condition (6} and the Schwarz inequality:

E (Y, () — %) (Y, () - Y, ()

: —E{ ¥ Y o (X=X )X - X;@)F

i=mn—1)+1j=mn—-1)+1

<m? E % E(X;0)—X; )P (X;w—X; )

i=mn—+1 j=m(n—1)+1

< m*(F () —F (s).

The function, the existence of which is assumed in (2), Theorem 1, is
m*? F. Thus {Y,,} and {Y,,_,} are sequences of independent random
elements which satisfy conditions (1) and (2) of Theorem 1. Hence we infer
that the sequences

A.ﬂ Bﬂ
Z,= n-12 Z Yo, Z)= n-1? Z Yai-1,
i=1 i=1

10 ~ Prob. Math. Statist. 8
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where A, = [n/2m], B, = [(n+ 1)/2m], converge in distribution and the limi-
ting elements are distributed on C. Let

R, —n‘l/2 Z X;, where an[;nn—j,+1.

We can notice that R,,—»O. Since, moreover, Z, = Z,+Z"+R,, the
sequence {Z,} is tight.

Proof of Theorem 3. The convergence of finite-dimensional distribu-
tion of the sequence {Z,} to the corresponding finite-dimensional distribution
of the Gaussian random element follows from Theorem 3.2 of [4] and
Theorem 7.7 of [2]. According to Theorem 15.6 of [2] it suffices to verify
that, for all neN and all 0<s<t<u<l1,

( n(t)_Zn(S)) (Z,,(M)—Zn(t)) s(B(u)—B(s))",

where y>1 and B is a nondecreasing continuous function on [0, 1].
Without loss of generality we may assume |[F(1)] <1, |G(1)| <1 for all
te[0, 1]. We have

n .

E[n!/? Z (X, ()X, (s)]*[n~ 12 Z (X;(w)—X; )]

i=1

= n"'E[_Z (X: () — X (9)) (X () - X; (1)) + Z (X; (t)_Xi(S))(Xj(u)“"Xj(t))]z

=2 2[E {;Z'I (%, (0)— X, (9) (X, () — X, ()12 +
+E {3 (6,0~ X,6) (X, - X,0))].
By the Schwartz inequality and assjumptlon (9) we get
n"2E [i; (X: () - X (I)(X: ()~ X;(0))]* < (F@)—F (s)).

Let us remark that sequences {(U,, #,), n> 1} and {(W,, #,), n> 1},
defined as

U, = (X0~ X,(9) ¥ (X~ X,(0),

W, = (X, = X,00) 3, (X:0)~ X,(9),

i=1

create the sequences of martingale difference. This remark, the Schwartz
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inequality and assumption (10} imply

E[Y (X, 00— X:(9) (X, ) — X, )]

i#j

[i U; +m)]2s2[i EU? + Z EW,.Z]

i=1

[E ['Z (X; ()~ X; (0P E {(X: () — X:(9)) IJ’,-;}]-F

-~

M=

<2
[ gl (Xj(f)'“Xj(S))ZE {(Xi(u)_ﬂXi(t))z ,%—1}]]
<4 i (l-—l)(G(u) G(t))“(G(t) G(s))

J

NII

2n% (G (u) — G (s))*.
Thus

E (Zu (t) - Zn (S))z (Zn (u) - Zn (t))z
2(Fw—F()f +4(Gw)—-Gs)* < (Bw—B (s])",‘

where B = 2" F 447G, y = min(2x, f).

Applying Theorem 5.3. of [2] to the sequence {(Z,(t)—Z,(s))*} we see
that E(Z(t)—Z(s))> <(G()—G(s)f and, hence, the Gaussian random ele-
ment Z is sample-continuous (Theorem 1 of [3]).

4. Example. Consider the system of theory of reliability (see [1]) which
consists of n+1 eclements and has the structure function @
= @(X; X3, X3 X3, -.., X, Xp+1), Where x;, x,, ..., X,+; arc binary values of
elements and @ is a “k out of n” structure function. In the case of renewed
- elements we assume that x; = X;(t) are independent binary processes. Then

D=1y, +..+v,260
I

where Y, = X; X,H(: =1, 2, ..., n). In that way the asymptotic behaviour of
the survwal function of the system can be brought to the study of the sum of
2-dependent binary processes. The CLT for independent binary processes
was studied in [5]. If X, are independent copies of a binary process fulfilling
assumptions of Theorem 3 from [5], then the sequence {Y,} satisfies CLT in
D[O0, o), the space of all real-valued right continuous functions on [0, co)
which have left-hand limits in (0, o), endowed with the Lindvall metric. As
in [5], it is enough to verify that {Y} satisfies CLT in DO, ¢] for all c>0,
Corollary 1 from [5] and the estimation
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E(Y,(0-EY,()= L ()+EY, ()] <E(Y(O)- %)
= P(X,(t) Xps1 (1) # X, () X1 1 (5))
S P(X,(t) # Xo(8), Xoe1 () = D)+ P(X,(0) = 1, X1 (1) # X1 (5))
<2P(X1 (1) # X1(9)
imply the existence of a continuous nondecreasing function G such that
E(Y,(0-Y,(5)) <(G(®—G(s) forallt,se[0, c].
Theorem 2 and Lemma 3 from [5] and the estimation
E(%(0- %O (%L0)- Y0
= P(Xo(0) Xos 1 () # X(8) X1 (8), X () Xy 1 (4) # Xy (8) X s 1 (1)
< PX, (1) # X,(9), Xa(w) # X, (0)+P(X0(0) # Xu(8), Xoo 1 () # Xyt )+
+P(Xp 1 () # Xps 1 (9, X1 (@) # X1 (0)+ P (X, (1)
# Xu(8), Xpy1(8) # Xys1(9))
S 2P(X (1) # X1 (5) = X, (w)+2P (X, (1) # Xl‘(s))P(Xl ) # X, (1)
impiy the existence of a continuous nondecreasing function F such that
 E(%(0)-EY,()~ %) +EY,()(% 0~ EY, @~ %,()+EY, ()
‘ < (F(w—F(s)’, wheref>1.
. | By analogy,
E(%,() =B, (0~ () + EX () (Yar 1 () —E¥p s (@) — Yy y (9 + EYyy ()2
<(Fw—F9)p.
Now, by Theorem 2, we conclude that {Y¥,} satisfies CLT in D[O0, c].
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