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Abstract. The purpose of the present paper is to prove some 
33 

convergent criterions for random series a(n)r, and random inte- 
a= 1 

m 

gral S act) d&, where a(.): R, -+ R+ is a strictly decreasing function 
0 

and (53, t c R + ,  a homogeneous process with independent incre- 
ments. In patti~ular, we obtain an extension of the logarithmic 
criterion due to Zakusilo [3]. 

Let q , ,  r2, . . . be a sequence of i.i.d. nonnegative random variables (r.v.'s) 
with F (ql = 0)  < 1 and a(.): R ,  = LO, oo] -t R+ be a strictly decreasing 
function. 

In the first part of this paper we shall be concerned with the convergen- 
ce of the following series: 

where 

and E and D denote the expectation and variance, respectively. 
We start the study by proving the following result: 



LEMMA 1. Series (1) is convergent wirh B.1 if and orliy if series (4) is 
m 

convergent a d  a (n) < f m . 
I t =  1 

Proof.  First of all, by virtue of the Three-Series Theorem ([2], Theorem 
8, p. 323) it follows from the convergence of series (I)  that series (21, (3), and 
(4) are convergent. It also follows from the convergence s f  series (1) that 
there exists a positive number c such that P { q ,  G c) = 1. Then 0 < Egl 

m 

< m ,  which together with the convergence of series (2) implies a In) < co. 
n= 1 

Conversely, if series (4) is convergent, then it follows from f ie  Borel- 
CanteEli Lemma (EZJ, Lemma 4, p. 320) that there exists a c > O such that 
P (q ,  6 c )  = 1. Hence Eql < co and Dg, < a, which together with a (n) 

a= 1 

< ca implies the convergence of series (2) and (3). Now, it is sufkient b 
apply the Three-Series Theorem once more to get the convergence of (1). 
Thus the proof is complete. 

Next, let b( . )  denote the inverse function d 1/cr(.). Then we get 
LEMMA 2. Series (4)  is convergent $ and only $ E(b(vl)) < m. 
Proof.  We have 

and 

which completes the proof of Lemma 2. 
As a conseqtrexlce of Lemmas 1 and 2 we obtain the following theorem: 

00 

THEOREM 5 .  The series a(n)qn converges with P.1 if and only 

Let cl, e2, . . . be a sequence of i.i.d. random variables with P {c, = 0)  
< 1. Applying the above results we get 

m 

LEMMA 3.  The series a(n)?)ltnl converges with P.1 if and only $ 
m 2 a(n) < m and C a(n) t, converges with P.1. 

n= 1 n= l 
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Proof. It is easy to show that if the series a(n)/t.I converges with 
a= 1 

m OD 

P.1, then a(n) < oo and a(n) ( ,  converges with P.1. 
n= 1 n= 1 

a, c(] 

Conversely, if aln) < cc and 2 a(n) t, converges with P.1, then, 
n= 1 n= 1 

by the Borel-Cantelli Lemma, it folIows that 
m 

C P(aIn)lS*I 2 1) < m. 
a= 1 

m 

By virtue of Lemma 1, the series a (n) ltnl converges with P.1. Thus 
the proof is completed. n= 1 

Now, by Lemmas 1, 2, and 3 we get the following extension of the 
logarithmic criterion obtained by Zakusilo [3] (putting a(n)  = en, 0 < c < 2):  

w 52 

THEOREM 2. If a { ~ )  < m,  then a(n)cn converges with P.1. i f  and 
n= I 

only y Eb(lt,I) < an.=' 
In the rest of this paper we consider some random integrals. 
Let { ~ ( t ) ,  t 3 0 )  be a nonnegative random process with nonnegative, 

independent and stationary increments, and P fr(0) = 0 )  = 1, P { r ( l )  = 0) 
< 1 .  

By Theorem 1 and by the fact that 

where r ] ,  = 0, q, = z (n)- z (n - 1), n = 1, 2 ,  . . . , one can prove the following 
UD 

THEOREM 3. Tke integral 5 a ( t )  dz ( t )  converges with P.l if and only if 
0 

m 

Sa(t)dt < oo and Eb(z(1))  < oo. 
0 

Finally, let (( (t), t 2 0) be a random process with independent and 
stationary increments and P ( 5  (0) = 0 )  = 1, P {{ (1) = 0 )  < 1. Applying Lem- 
ma 3 and Theorem 3 we get the following result, which is an extension of 
that in [I] (when putting a ( t )  = e-tlf',  a > 0): 

00 m 

THEOREM 4. If 1 a (t)  dt < ao, then the integral J a( t )  d t  (t) converges with 
0 0 

P.1 and o ~ d y  if E ~ ( I { ( I ) ~ )  < cc. 
Note. All the results in this pages can be extended to the case of 

Banach space valued random sequences and processes. 
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