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Abstract. The aim of this paper is to examine the notion of 
random operators from a Fr&het space into a Banach one. Charac- 
teristic function, convergence and decomposabitity of random opera- 
tors are studied. 

Suppose, in decribing an experiment, that X, A and Y stand for the set 
of inputs, the set of actions to be performed and the set of possible outcomes, 
respectively. A x  denotes the outcome corresponding to the input x and the 
action A. There are many situations, however, in which even the exact 
knowledge of inputs and actions does not allow to predict the outcome 
exactly. Under such circumstances, instead of considering Ax as an element 
in I: we shall consider A x  as a Y-valued random variable. 

A correspondence that associates to each element x in X a Fvalued 
random variable A x  is called the random mapping from X into Y: 

The aim of this paper is to examine the notion of random operators 
from a Frkchet space into a Banach space. Section 1 contains the definition, 
examples and some general theorems on random operators. Section 2 is 
devoted to the notion of the characteristic function of random operators. 
Theorem 2.3 gives a necessary and sufficient condition for a function to be 
the characteristic function of some random operator. In Section 3 we define 
four modes of convergence of random operators and study their relation- 
ships. 

Up to now, the important problem of extendibility to Radon measures of 
cylindrical measures has been studied by several authors (cf. [4], [ 5 ] ,  [6], 
[I31 and references therein). This problem can be stated in terms of the 
decomposability of certain random linear functionals. In Section 4 the notion 

* Partially written during the author's visit at the Institute of Mathematics of the 
Wrodaw University in the last quarter of 1985. 
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of dwompr~sabiIity is extended to random operators. Theorem 4.5 shows tbat 
there is the difference between the case d random linear ftlnctio~~als and that 
of random operators taking the values in an infinite-dimensional Banach 
space. 

The author expresses his gratitude to Professor Kazirslielrz Urbanik for 
his kind invitation to the Institute of Mathematiltics of the Wrodaw University 
and for his attention to this work. The author is also grateful to Professor 
Aleksander Weron ifor valuable xzrnarks concerning the manuscript. 

Throughout this paper P denotes a Banach space with the dual I". 
Let (a, 9, p3 be a probability space. A Y-valued randorn variable is a 

measurable mapping from S1 into V: L,(Q, li) denotes the set of all Ylvalued 
r.v.'s. L,.(9, Y) is a Frdchet space with the F-norm IlpII, = Ellrpll/(l +IJyl(j). 

The convergence in L,(LR, Y) is equivalent to the convergence in proba- 
bility. By 9 (yl) we denote the distribution'of the Y-valued r.v, iy and by 
9 (ql,. . ., (a,) - the distribution of the Pn-valued r.v. (cp,, . . ., (p,,). The cha- 
racteristic function of a Y-valued r.v. p is defined by 

1.1. Definition. Let X be a Frichet space. A linear mapping A from X 
into L,(O, Y) is called a random linear mapping from X into ZI: A linear 
continuous mapping from X into L,(L?, Y) is called a random operator from 
X into 1 

A random operator from X into the real line R is called a random linem 
functionaI on X .  

1.2. E xam ples. (a) If the Y-valued r.v. Ax is concentrated at a point for 
all x, then the random operator A is the non-random ordinary linear 
operator. 

(b) Let L(X, Y) be the space of Iinear continuous operators from X into 
k: Then with every L(X,  PI-valued r.v. B we may correspond a random 
operator A from X into Y be setting 

(1.1) Ax (a) = B (o) x . 

We say that the random operator A in (1.1) is generated by an L(X,  Y)- 
valued r.v. B or A is decomposable. 

There exist random operators which are not decomposable. The prob- 
lem of decomposability of random operators will be discussed in Section 4. 

(c) Especially interesting examples of random operators are given by 
random integrals of Banach-valued functions. Let us recall the definition of 
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random integral (see [9]). Let (T E, p) be a finite measurable space. A 
random mapping M: 2 -+ R is called the rarulom measure on E, 14) if for 
every sequence A,,  A,,  ... of disjoint sets from C the random variables 
A4 ( A  ,), Ad (A,) ,  . . . are independent and 

M (  U A,) = M{AJ P-as. 
n= 1 n= 1 

n 

Let f: T-- Y be a simple Jirnction, i.e. J =  xi l,,, where A, s.E are 
i=  1 

pairwise disjoint and xi E f: For every BE l: we set 

A function 8 T-. Y is said to be integrable with respect to M (shortjy: 
M-integrable) if there exists a sequence ff,) of simple functions such that 
f, -+fin p-measure and for each B E  2' the sequence of Y-valued r.v.'s {Sf, d M ]  

8 

converges in probability. Then we put 

The set of all Y-valued M-integrable functions is denoted by Y ,(M). 
Set l l l f l l l o  -/l.fl/,,+l/jfdM/lo, where I l . I l o  denotes the F-norms in 

T 
Lo(T Y) and Lo (a, Y), respectively. By the definition, (9 fnn-), /II-l l lo) forms 
a Fre'chet space. 

Define a random mapping A from .2',(iW) into Y by means of Af 
= j f d M .  It is easy to see that A is a random operator from PS(A4) into Y 

T 

13. Some general  theorems. By definition, a random operator from 
X into Y is a Iinear continuous operator from X into L,(Q, T). Because X 
and L0(Q, Ir') are Frkchet spaces, the theory of finear continuous operators 
in Frkhet spaces becomes available for the study of random operators. The 
following theorems are consequences of the corresponding theorems in the 
theory of linear continuous operators in Frkhet spaces (cf. e.g. [8]). 

1.3a. THEOREM. Let A be a random linear mappivlgfmm X into Y: Then A 
is a random operator i f  and only if 

lim sup P {I[Axl) > t )  = 0. 
t+ml /x ) i  61 

1.310. THEOREM (Closed graph theorem for random operators). Let A be a 
random h e a r  mapping froin X into Y .  Then A is a random operator i f  a d  only 
iJ; for every sequence (x,,) c X such that x, + x in X and Ax, --+ rp in 
probability, we have Ax = q P-a.s. 
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I&. THEOREM (Principle of uniform boundedness for random operators). 
Let [Ailid be o family of random operators from X into Y such h a t ,  for mch 
X E  X, 

lim sup sup P { [ /A ,  xll > t i  = 0. 
r -m \[a13 <1 id 

P3d. THEOREM (Theorem of Banach-Steinhaus for random operators). 
Let (Ad be randam operators ,from X into Y such that, for each nE X, R,x 
converges in pobability. E%en the random mapping A fiorn X into ): given by 
Ax = P-lim A, x ,  is a raadom operator. 

Let us recall the concept of the tensor product of vector spaces E and F 
(see C'71). 

Given two vector spaces E and F let E D F  be a vector space whcse 
elements are iinite formal linear combinations G a, (x,, yk), xk E E and y, E F . 
Let N denote the subspace of E DF spanned on all vectors of the form 

The tensor product EOF is defined as the quotient space EOF 

= E r g e  the restriction of the canonical map $ : E  F - E O F  to the 
space E x F. Then q ( x ,  y )  will be denoted by (xQy). The role of the tensor 
product is emphasized by the fact that it enables us to replace a bilinear b: E 
x F -, W from the Cartesian product E x F into a linear space W by a linear 

map I: EOI; -. W such that b (x, y) = E(x m y ) .  
Now suppose that A is a random operator from X into V.  Define the 

map b, from ;K x Y' into L, (a, R) by b, (x, y) = (Ax, y).  It is evident that bA 
is bilinear. Hence, by the property of the tensor product, b, determines a 
unique linear map iA : X @ Y' -. Lo (a, R) such that lA (x By)  = b, (x, y) 
= (Ax, Y ) .  

2.1. Defini t ion.  Let A be a random operator from X into Z Then the 
characteristic function (ch. f.) of A is a function with the domain XOY' and 
range G. It is defined by 
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Two random operators A and B are said to be equivalent (denoted by 
A-B) if, for every finite sequence (xi) in X, 9 ( A x I ,  Ax2, ..., AxJ 
= 9 (Bxl, B x z ,  . . . , Bx,,). 

The following proposition explains why the function 2 is called charac- 
teristic. 

2.2 PROPOSITION. Let A a d  B be two random operators from X into I? 
?hen A and B are equivalent if and only if they have the s m e  churmteristic 

function. 
Proof .  By definition, A - B  if and only if 

II n 

E exp { i  z t k  (Ax,, yk)] = ~ X P  (i tk (Bxk, Y,)) 
k =  1 k =  1 

for all L t l ,  t 2 ,  . . ., t , ~  R and (x,, yl), . . ., (x,, y , ) ~  X x I". Since every element 
n 

 EXB BY' has the form h = C &(xkOyk) and 
k= 1 

Ah = E exp ( i  tk (Axk,  y&] if h = z t k  IxE~@&), 
k =  1 k =  1 

it follows that A - B  if and only if Ah = fib for all h E X@ Y' 
The following theorem gives the criterion for a function from Y@Y' into 

G to be the characteristic function of a random operator, 

2.3. THEOREM. For a jknction ,f: X@Y'-+ C to be the characteristic 
function of a random operator it is necessary and sufficient that it satisj'ies the 
following conditions: 

6) f (0) = 1 ; 
(ii) f is positive definite; 
(iii) the fulaction B(x, y) = f(x@y) is contiramus on X x Y'; 
(iv) for each X E X  the function N,: Y' -, C, given by H,(y) = f(x@y), is 

the ch. J: of some probability measure on P.: 
Proof.  Suppose that A is a random operator from X into Y.  For 

el, c2, . . . , C, E C and h, , h2, . . . , h, E X@ Y' we have 

z ci x(hi - hj) = C ci Ej E exp (il, (hi - hj)) 
i.j iJ 

n 

= ci EjE exp {ilA (&I] exp {iEA (hj)] = E I ci exp {ilA (hi)jI2 2 0, 
i,.i i =  1 

hence 2 is positive definite. 
Since ~ ( A X , ,  y,) = (Ax, y) in probability as (x,, y,,) + (x, y), it follows 
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limAl(x,@yA = lim E exp {i(Ax,, y,J} = E. exg { i  (Ax, Y ) )  = X ( ~ O Y )  
as (x,, -yH)-r(x, y). Hence H(x,  y) = A^(X@~JI)  is continuous. The function 
Ha 01) = A (x@y) = E exp  AX, y)) is the ch. f. of Y (Ax). 

Conversely, suppose that$ X@Y' 3 6= is a function satisfying conditions 
(i)-(iv). For each finite set I = [(x,, y,), .. ., (x,, y,J) we define a function 
F(t l ,  t z ,  .. ., t,) on R" by 

In view of (i) + (iii), E; is positive definite and continu~us with 
F(0, 0, ..., 0) - 1. By the Bochner theorem, a measure ,u, on R" with ch. f. 
(2.1) is defined. The family ( h j  is consistent and by the Kolmogorov 
theorem there mists a random function B(x,  y) on X x I" such that 

B ( x ,  y) is bilinear. Indeed, for example we have 

= f [t(xl  +x2)@y-t(x,Qy)-t(xz@y)] = f[O] - I for all ~ E R .  

This shows that B(xl + x,, y) = B(x,, y)+ B(x2, y) P-a.s. 
B is continuous by (iii). By (iv), for each x € X Y  the random linear 

function y -, B(x ,  y) is decomposed b y  a Y-valued random variable denoted 
by Ax, i.e., for all y E Y', B (x ,  y )  = (Ax,  y) P-a.s. 

The decomposition of r.v. Ax is uniquely determined. So the random 
mapping x -, Ax is well-defined. To complete the proof it only remains to 
show that A is linear and continuous. 

A is linear. Let x,, x ,EX.  We have B(x,+x2, y): = B(x,,  y)+B(x,, y) 
= (Ax,, y) +(Ax,, y) = (Ax, + Ax2, y) P a s .  for all y E Y'. This shows that 
A(xl i-x,) = Ax, +Ax2 P-as. 

A is continuous. Suppose that x, -+ x in X and Ax, -+ rp in probability. 
Then B(x ,  y) = P-lim B (x,, y) = P-Em(Ax,, y) = (cp, y) for all y E Y", which 
shows that rp = Ax (P-a.s.1. By Theorem 1.3b we conclude that A is conti- 
nuous. 

3. GSCPNVERGENIE OF W 

Let {A,),,, be random operators from X into E: We define four modes 
of convergence of the sequence (A,) as follows: 



XI. Definition. (1) We say that A, converges to A, if, for each 
XEX,  A,x--+ A O x  in probability. 

(2) We say that A, -cotnuerge weakly to A, if, for each pair (x, y) in 
X x Y', (AR xI y) + (AO X ,  y) in probability. 

(3) We say that A, con~erges to A,, in distribution if, for each ~ E ' N  and 
x, ,  x,, ..., xk in X ,  we have 

z ( A ,  , A, xz, = - . , All xk) * Y;P(Ao X I  AO ~ 2 ,  . - -, An xk)- 

(4) We say that A, conumges weakly to AO in distribution if, for each k E M 
and Cx,, ~11, ( ~ 2 5  ~ 2 1 7  -. -, (x,, Y,S in X x Y'? 

YiBC(Aax1, ~ l h  m a .  ? CAnxk, Y,)I +YiB~Aoxt ,  Y,), . . . Y  (Aox, ,  YAI. 
The following impgcations are obvious: 

convergence * weak convergence 
U U 

mnvergense weak convergence convergence * * 
in distribution in distribution of their ch. t ' s  

The convergence in dstsibution implies the convergence in the folbwing 
sense: 

3.2. THEOREM. Let {A , ] , gO  be random operatorsfirn a separable Frkhet  
s p e  X into Y a d  suppose A, converge to A,, in distribution. %en there exist 
random operators B,, a 2 0, such that A,-B,, for each n 2 0 and B, converge 
to B,. 

P r o  of. Let Z = (xi) be the countable set dense in X. Consider. the 
Tam-valued r.v.'s: X ,  = [ A n ~ i ] , 2 1 ,  n = 0, I, 2, . .. 

k a u s e  operators A, converge to A, in distribution, it follows that 
9 ( X 3  => A?(X,). By Skorokhod theorem [l l j  there exist Irm-valued r.v.'s 
Xfi = [xc,")]gl, n = 0, 1, 2, ..., such that ~ ( X J  = 9(x& for each n >  0 and 
8, converge to X, in probability. This implies that 

(i) for each i = 1, 2, . . ., 3;) converge to Wg) in probabitPility; 
(ii) p(zC,"< . . . , 8:'" = 9 { A ,  x , ,  . . . , A,xk) for each n 2 0 and each 

k 2 a .  
For each la 2 0 we define a random mapping B, from Z into Il by means 

of B,xk = ~ ~ " ' ,  k = 1, 2 ,... 
B, can be extended over the entire space X. Indeed, kt X E X  and 

be a sequence in Z such that xk.- x .  Since A,xk converge to A,x in 
&(O, V )  as k -t CQ by (ii), (&,xk)? is a Cauchy sequence in L,(rld, Y). Hence 
Lim B, xk exists in Lo (a, Y )  . 

k-+m 

It is not difkult to show that A,-B,. This fact implies that B, is a 
random operator. It remains to prove that B8, converge to B,. As Y ( & , , x )  
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converges weakly for each x, by hakhorov theorem we have 

By Theorem 1 . 3 ~  it follows that 

lim sup sug P (I]Blt xi] > t )  = 0. 
i + m  [ x / l  $1 nS 

Given XE X, we choose a sequence (h-,) in Z converging to x. For each 
6 > 0 we have 

Let n -. m. Then k -. rn and we get 

which proves the Theorem. 

33.  THEOREM. Let {An),,, he random operators from a sepw~ble  F r i c k t  
space X into a Bar~uch space with the seywuble dual Y'. Suppose that A, 
converge weakly to A,  in distribution. Then there exist random operators 
B,, n > 0, suck that A,-B, and B, converge weahIy to 13,. 

Proof.  Let Z = ((xi, y,)),",, be the countable set dense in X x I". 
Because -4, coilverge weakly to A, in distribution, by wing Skorokhod 
theorem and the same arguments as in the proof of the preceding theorem, 
we find random functions U,(x, y),  n 2 0, on X x Y' such that 

I 

(i) for each PZ 2 0 the random function U,(x, y)  is equivalent to the 
random function (A, x, y);  

(ii) for each 12 2 4) and for each (x, y )eZ ,  U,,(x,  y) -E Uo(x, yj in proba- 
bility. 

By (ij and arguments similar to those in the proof of Theorem 2.1 we 
find that there exist random operators B,, n = 8, 1, 2, . . . , such that, for each 
n 2 0, U, (x, 1') = (B, x, yj P-ass. far all (x, y) E X x P'. 

Clearly, A,-&. Now we show that B, converge weakly to B,. Because 
f!, x, y)  converges weakly for each (x, Q) E X x Y', we have 

lim su B (#B, x, y)l > t ) = 0. 
I-00 

Fix Y E  Y'. Using the principle of the uniform bou~iddness for random 
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hear  fvnctionals ( B , x ,  y), we get 

Trn sup sug P {I(B.r, y)l z r j  = 0. 
f - + m  llxll 6 1  nB 

Again, using the principle of the unifepsrn boundcdness for the family 
{(Bn X, y) ,  n 2 0, llxll 6 I)  of random functionals, we get 

Sim sup srm P { l ( ~ ,  x,  yjl > 1). = 0. 
t - r m  / / y / /  6 1  ils.YE1 . a t  

Given (x, y ) ~  X x Yr, we cl~oose a squeme {(xk, Y k ) }  c Z convmgi~~g 10 
(x, y ) .  Then, for each 6 > 0, ~ 7 e  have 

-I- sue sup su 
~~x~~ -1 l /yl l  61 rfa 

< 2 sup sup sup P 
l lxl l  4 1  1 1 ~ 1 1  6 1  n2.o  "+ 

+ 2 sup sup sup P 
Ilxll <l llyll 61 nao 6 1 1 x 1 1  li~k-yll Y+ 

Let n - m .  Then k + o o  a d  we get l i m P { l ( B , x , y ) - ( B , x , y ) / > 6 )  
n - a ,  

= 0, as desired. 

4.1. Defini t ion.  Let X be a Banach space. A random operator A from 
X into Pis said to be decomposable if there exists an L ( X ,  Y)-valued random 
varikble B such that, for all X E  X, P (o: Ax(m) = B(w) X )  = 1. 

This definition is a natural extension of the notion of decomposability of 
random linear functionals to random operators. The decomposability d 
random linear furaetionals has been s tdied in many contexts (cf. for 
example [4] and [12])1. 

In this section we always assume that X and Y are separable. 



4.2. PROPOSITION. For each decasnposable random operator A the decom- 
position vj" the random variable B is uniquely determined. 

Proof.  Suppose that B, and B, are L(X,  IT)-valued r.v.k such that, for 
each x E X, Ax (w) = Bl (w) x and Ax (w) = B,  (w) x P-a.s. 

If Z is the countable linear subspace dense in X, then there exists a 
measurable set D, with P(D) = 1 ,  such that B,  (co) x = B2 (w) x for all w E D 
and for all x G 2. Whence it follows that Bl (m) x =; B, (w) x for all w E D and 
for all XEX,  i.e. I?, = B, P-a.s. 

Now we are going to find criteria which determine the decomlposability 
of a random operator. 

4 3 .  THEOREM. A random operator A from X into Y' is decoplrposrable 
Sf and oaIy %for wery bozaded sequence {x,} in X ,  we have supilAx,,ll < rn 

n% 1 

P-a.s. 
P r o o f .  Necessity. Suppose that A is desomgosable. Then there exists 

an L(X, Y)-valued r.v. B such that, for all x e X ,  Ax(o) = B(w)n P-a.s. 
Let {x , )  be a sequence in X such that llxRll G 1. Then there exists a 

measurable set D with P i l l )  = 1 such that Ax,(w) = B ( 0 )  x, for all x, and all 
w E B .  Therefore, for each w ED, supl/Ax, (w)(l = sup llB (w) x,ll 6 IlB(w)H 
< m, i.e. supEIAx,Jl < ca P-a.s. 

Suff ic iency.  Suppose that Q is a countable set, dense in X, and Z is a 
linear space spanned over the field of rational numbers of Q. Z is also 
countable, 

Put S, = ( ~ E Z :  llzll Q I), N(o) = supllAz(w)ll. 
z d  

From the assumption it follows that there exists a measurable set D of 
probability 1 such that, for each w E D, we have N(w) < oo, A(r, x + r ,  y)(m) 
= r ,  Ax(m)+r2Ay(w) for all x, y in Z and r , ,  r, - rational numbers. 

For each CL) E D define a mapping B(co): Z -. Y by B (a) z = Az (o). 
The mapping B(m) is linear and uniformly continuous on Z .  Indeed, the 

linearity of 86w) is obvious. Let now x, ~ E Z  and r, be a sequence of 
rational numbas such that r,lllx-yll. Then I!B(w)x-Bjo)yll = IIAx(o) 
-Ay(C(E) = EIA(x-y)(w)(( = IlrnA(x-y)/rJ[m)11 < mN(w) .  Let n-. a. We get 
(/B(w) x - B (o) y(l G N (w) Jlx - yll, showing the uniform continuity of B(w) .  
Hence B ( o )  can be extended to a linear continuous operator B ( o )  on X. 

To complete the proof of the Theorem, it remains to prove that, for 
each x, Ax(w) = B(o)x P-a.s. Indeed, let {x,] be a sequence in Z converging 
to x. Then Ax,, (4 = B (o) x, for all x, and for all w E D. Since B (0) x, 
-t B(w) x for each w E D, it follows that Ax, (a) -. B jw) x P-as. On the other 
hand, Ax, -. Ax in probability, Consequently, B (w) x = Ax (oj P-a.s., as 
desired. 

4.4. PROPOSITI~N. Let X be a Banach space with the Schmder basis (en) 
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a d  A:  X -+ Y be a random operator. Raen A is decomposable i j  and only if 
there exists a rneastrrabla set D of probubility 1 such that, for a13 w E D and ,for 

CO 

X G  X, the series (x, e,;) Ae, (w) converges in Y: 
n= 1 

Proof.  IF is decomposable by an L ( X ,  Y)-valued rev. B, then there 
exists a measurable set D of probability I such that Ae,(w) = B ( o )  en for all 
e, and OED. Then, far each X E X  and WED, we have z ( x ,  sJAe,(m) 
= C(X: en)B(m)ee, = B ( o . I ) ~ I ( x ,  e,)en = B ( w ) x ,  

Conversely, for each o E D we define a mapping B (o): X -. Y by B (a) x 
= ( x ,  e,) Ae, (w). By  the Banach-Steinhaus theorem, B(w) E LIX, Y). Since 
x = C (x, en) e,, we have Ax = z ( x ,  e,J Ae,(co) in probability. Hence Ax(w) 
= $I (to) x P a s .  

$5. THEOREM. Let X = EI, (1 < p < m) with the standard Schader basis 
(e3 a d  A: 1,- Y be a random. operutor. Then the convergence a.s. of t h  series 
1 IIAt;fll"l/p+ 1/q = 1 )  is a sufficient corzditr'onfor A to be decomposable. 'This 
condition is necessary if and only if Y is  ,finite-dimensional. 

Proof .  Suppose that IIAe,(lq < GO P-a.s. Put 

Then, for each w E D and x  G d,, x [/(x, e,,) As,  (o)\j < co , which implies 
the convergence of the series x ( x ,  eJAe,(o).  By Proposition 4.4, A is 
decomposable. 

Now suppose that A is decomposable. Consider first the case Y =  R. 
There exists an I,-valued r.v, cp such that, for all X E  l,, A x ( a )  = ( ~ ( m ) ,  x) P- 
a.s. Hence there exists a set D of probability I such that ken(@) = (qo(w), en)  
for all en and W E D .  Consequently, /lAen(co)llq = 1 I{q (o), e.Iq < o~ for 
COED, i.e. C IIAe,llq < m P-a.s. 

Now let P= RR andf,, f,, .. .,S, be the standard basis in Rk. Then, for 
each j = 1 ,  2, . . . , k, the random linear functional [AX, Jj:) is decomposable. 
Hence 

To complete the proof of the Theorem, we give an example showing 
that in the case Y is infinite-dimensional the convergence a.s. of the series 
zIIAe,llq is not necessary for A to be decomposable. 

Let r, ,  r2 ,  . .. be independent Gaussian real-valued r.v.'s with mean 0 
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and Var& =sf  such that sups; < m. We define a random operator 
A: I, -. I ,  by means of 

It is not difficult to check that A is well-defined and that it is a random 
operator. We shall show thitt A is decomposable if and only if 

Indeed, if R is decomposable, then, by Theorem 4.3, 

Conversely, if P {sup < GO) = I ,  then put N(w) = sup 15.(co)19 
Since the series (x, en) Ae, (w) = (x, B,) e,, 5, converges in I2 for all x 

in I ,  and w S D  = [ro: N(m) m), A is, by Proposition 4.4, decomposable. 
By Vakhania's theorem [16], condition (4.1) is equivalent to 

m 

C exp{--t/s,2)<m for some r 3 0 .  
11= 1 

On the other hand, the series E I I A ~ , ~ ~ ~  = / < , I 2  converges a.s. if 
and only if z s i  < CQ. So, if (s,2) is a sequence such that zs: = a, but 
1 exp {-  t/si,2 < co for some t > 0, then A is decomposable but IIAe,ll = 

co P-a.s. 
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