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Abstract. An ordering of decision rules in two-class discrimina-
tion problems is defined. A minimal admissible class of decision rules
according to this order is characterized. Some risk minimization
problems with deferred decision are presented.

1. INTRODUCTION

Two-class discrimination problems considered in the literature include

partial and forced problems in which the risk is minimized according to
various. restrictions. “
. By partial problems we mean problems which allow the deference of
decision while forced problems are those in which the deference is prohibited.
The classical approach to discrimination consists in minimizing risk in
unconstrained forced problems. The partial problems of minimizing risk
under various restrictions were considered, in particular, by Anderson [1]
and Beckman and Johnson [2]. .

In this paper we consider the joint distributions of classified variable
and decision taken according to a partial decision rule. It seems natural to
compare two decision rules according to the strength of dependence in the
assigned distributions. We introduce the class of threshold rules in partial
problems and prove that it is a minimal admissible class for the aforesaid
ordering. Then we show that the solutions of minimum risk problems with
suitable restrictions are threshould rules. Some examples are also presented,
including problems known in the literature.

2. ORDERING ON PARTIAL DISCRIMINANT RULES
Any two-class discriminant problem concerns a pair of random variables

(I, X), where [ is the classified variable and X the observable one. I takes on
values 1 and 2 with probabilities © and 1—mn, respectively. Random variable
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X takes on values in (X, QQ(X)), where X < R™ and #(X) is a o-field of Borel
'subsets of X. Conditional distributions of X|I =i, for i = 1, 2, are absolutely
continuous with respect to a g-finite measure v; the respective densities will
be denoted by f; and f,. We assume that v{f;(x): f2(x) =0} = 0.

In partial discriminant problems three decisions 0, 1, 2 are allowed. A
decision rule é is given by a triple of Borel measurable functions (§¢, 6;, 9,),
where 6;: X —[0,1] for i =0, 1, 2, and d5(x)+d,(x)+8,(x) =1 ae. Given
xe X, dy(x) is the probability of deferred decision and &;(x), for i = 1, 2, the
probability of deciding that I = i.

Let 4 be the set of all rules 5. We have (cf. [3], p. 354):

(2.1) 4 is convex and weakly sequentially compact.

Let

a=[fi(x)6;(x)dv, i=1,2,j=0,1,2, ded,
X

aﬁ = (a‘zla a5215 a?O) a‘;o), A= {aéz 5EA}
By (2.1),
(22) A is a convex compact set in R*.

~The joint distribution of I and the decision taken according to § is given
by a (2 x3)-table '

Qé = (‘I?j)i=1,2;j=0,1,2a
where ¢; = nal;, q5; =(1—-ma};, j=0,1, 2.

The set of (2 x3)-tables can be ordered with respect to the positive
dependence in the following way: '

def .

O0xO0<=q:<q:, Qj=q; I#) i=17'2aj=0, L, 2.
Given (I, X), this implies an order in 4 as follows:
(2.3) ‘ sx5¥oix0°.

Thus, if & <X &', then the positive dependence between I and the decisions
is stronger under &’ than under &. Since, for fixed (I, X), all tables Q° have
identical marginal distributions (i.e. g;0+¢qy1+4q12 = m), (2.3) is equivalent to -

(2.4) : 0 =d>d.
' Therefore

(2.5) 6 is admissible in A with respect to < iff @ is minimal in A.
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3. ADMISSIBILITY OF THRESHOLD RULES

- The ordering (2.3) may be treated as fundamental for partial discrimi-
nant problems. It seems that a solution of any reasonably stated discriminant
problem should be a rule admissible with respect to this ordering. Therefore,
it is important to find the corresponding minimal admissible class.

Let h(x) = f,(3/fi ().

A decision rule & = (4, d,, 8,) is called threshold rule iff either there
exist kq, k,, 0<ky <k, < 400, such that §,(x)=1 for h(x) <k;, 65(x)
+06,(x) =1 for h(x) =ky, do(x) =1 for k; < h(x) <k,, do(x)+35,(x) =1 for
hi{x) =k,, and 9,(x) =1 for h(x)>k,, or there exists a k > 0 such that
§:(x) =1 for h(x) <k and d,(x) =1 for h(x) > k.

Tueorem 1. A decision rule § is admissible in A with respect to < iff 6 is.
a threshold rule.

Proof. Let us prove this theorem under the assumption that k(X) is a
continuous random variable.

Suppose that ded is not a threshold rule. We shall construct a
threshold rule §* better than &: a®° < @, a® # a®. Let k,, k, be defined by

(3.1) | fa()dv = {f(x)d;(x)dv
fh(x) <k g} X

and

(3.2 | fidv = [fi(x)d,(x)dv..
) >kp) X :

In the case k, <k, we shall show that k, and k, may be taken as
thresholds of 6*%. By (3:1),

(3-3) [ (=0 f;(dv= [ 8;0dfa(x)av.

) <ky) B>k}

Obviously,
ke | (1-8,0)fi@dvz | (1-8,(x) (),

h(x) <k} thix) <ky}
and the inequality is strict iff

(3.4 v({xeX; h(x) <k; A S (x) <1})>0.

Similarly,

[ s@fixdvzk, | 6100 fix)dy,

B(x)>ky} hi(x) >k}

and the inequality is strict iff

(35) v({xeX; h(x) > ky A 3, (x) > 0}) > 0.
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Thus, by (3.3),
f (-6, fidv= | 6:(x)fi(x)dv.

f(x) <kq} Bx) >ky)
Therefore

af, = _[ fi(x)dv 2 j'él(x)fl(x)dv=a'i1

th(x) <k q) X

and the inequality is strict iff conditions (3.4) or (3.5) are satisfied.
Similarly we show that a3, > a3,, and the inequality is strict iff

(3.6) v({xeX: (h(x) > ky A 8, (x) <1) v (h(x) <kz A 53(x) > 0)}) > 0.
Since, by (3.1) and (3.2), a3} = a5,, a3 = aj,, we have
aio=1-daly—afy <l-al—al; =als, aSp<al

so that a% < a@°.

As § is not a threshold rule, at least one of conditions (3.4}, (3.5), (3.6)
must be satisfied. Then a® # a® and J is not admissible.

The case k; > k, and v({xeX: k, < h(x) <k,}) = 0 is equivalent to the
case k; = k,.

In the case k; >k, and v({xeX: ky <h{(x) <k,;}) >0 we shall show
~ that k, may be taken as the unique threshold of &*. Obviously, ajy = a3,
=0. By (3.1), a}; = a%,. Since

fi(x)dv >0,
fy <h(x) <kq} ‘
it follows by (3.2) that a®" < a® and a* # 4°. Thus § is not admissible, which
completes the proof of sufficiency. ‘

Now let & be a threshold rule. Assume that 6 is not admissible. Then
there exists a rule ¢’ such that a® < a® and a* # o°; thus 6 <&

If &' is not a threshold rule, then, by just proved part of Theorem 1,
there exists a threshold rule §” such that &' <X§". Therefore, we have 6 <"
for & and &” being different threshold rules, which is obviously impossible.
The same holds if ¢’ is a threshold rule.

The proof for the case of a noncontinuous random variable h(X) is
similar but more technically complicated due to randomization of decisions
at threshold values.

4, MINIMUM RISK DECISION PROBLEMS WITH RESTRICTIONS
TuroreM 2. For any positive vector be R* and any nonempty closed set

B < A such that any minimal element of (B, <) is a minimal element of (4, <),
the rule minimizing b™ a® on {ded: a’e B} exists and is a threshold rule.
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Proof. Suppose that a solution 6* is not a threshold rule. Then, by
Theorem 1, it is not admissible in 4, so that ¢* is not minimal in (4, <)
and, therefore, in (B, <) (since a*’ e B). Thus there exists a rule §' such that
@ eB, a¥ <a® and @ # a”, so b a¥ < b” a”, which contradicts the suppo-
sition. ’

In the sequel we present several risk minimization problems in which
the solution is a threshold rule according to Theorem 2.

(i) Risk minimization without restrictions. Let L;; denote a loss attached
to decision j for I =i. We assume that, fori=1,2and j=0,1,2, L; =0,
and L;; >0 for i #j. The risk to be minimized is defined as
4.1) (1—m) Ly a5y + 7Lz a} 5+ 7Ly afo+(1—7) Lo a3o.

Thus, Theorem 2 may be applied with B = A. The thresholds of the
solution are:

v Ly m(Ly,—Lyo)
= , ky=-————"— for L,o/L Lyo/Llay < 1;
ky (L= (Lsy — Lao) 2 (1= 1) Lo or Lyof/Lyz+ Lyo/Lsy
nL
ky =k, =w(l—n;221 for Lyo/Lys+Layo/Lay = 1.

If Lyo/Lys+Lyo/Lyy > 1, then the solution excludes the deference of
decision. .

(ii) Risk minimization in forced problems. Suppose that risk (4.1) is
minimized when the deferred decision is forbidden, i.e. d,(x) = 0 or, equiva-
lently, af, = a5, = 0. Obviously, the assumptions of Theorem 2 are fulfilled.
The solutions do not depend on L,, and L,, and have the threshold
k =mnLyof(1—m)La;.

@iii) Risk minimization with restrictions imposed on probabilities of misal-
locations (cf. [1]). For given a,, o, &[0, 1] we minimize risk (4.1) for é such
that al, <oy, a5; <a,. It is evident that assumptions of Theorem 2 are
fulfilled for any a«, and a,.

To present the solution of the problem we have to consider a solution of
the corresponding risk minimization problem without restrictions. It is a
threshold rule & with thresholds k, and k, and randomizing constants p; and
p, such that 6, (x) = p, iff h(x) =k, and 6,(x) = p, iff h(x) =k,. Then the
threshold k¥ and randomizing constant pf are as follows:
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and p% is given by
Cfidv+p | fi)dv =«

fh(x)>k2) (x)=k32}
Simiiarly,
if a5y <oy, then k¥ =k, pf =py;
if a3, > «,, then

k¥ =max {k: [ fa(x)dv<a,},
{hix) <k}
and p¥ is given by

f . L(x)dv+p | _ L2()dv =o,.
th(x) <k1}) #x)=k1}

(iv) Risk minimization with restrictions imposed on guotients of probabili-
ties of wrong and correct classification. For given B, and f§, we minimize risk
(4.1) for such that ai,/al, < B, and a},/a3, < B,. These inequalities are
equivalent to

4.2) al(1+Br +alo <1, ah (14BN +az < 1.

If B, and B, are not too small (in particular, if
Bi1 B > inf h(x)- inf (1/h(x)),
xeX xeX

then inequalities (4.2) are consistent and assumptions of Theorem 2 are
satisfied. Explicit formulae for thresholds of the solution are not available.
Beckman and Johnson [2] dealt with similar problem of maximizing the sum
of probabilities of making classification, af,+aj,+a3;+a5,, under cons-
traints equivalent to (4.2).
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