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Ah~lract. An ordering of decimon rules in two-class discrimina- 
tion problems is defined. A minin~al admissible class of decision rules 
wording to this ordcr is characterized. Some rhk minimization 
problems with defared decision arc presented. 

Twoclass discrimination problems considered in the literature indude 
partial and forced problems in which the risk is minimized according to 
various restrictions. 

By partial probiems we mean problems which allow the deference of 
decision whilef~rced problems are those in which the deference is prohibited. 
The cIassical approach to discrimination consists in minimizing risk in 
unconstrained forced problems. The partial problems of minimizing risk 
under various restrictions were considered, in particular, by Anderson [I] 
and Beckman and Johnson [2]. 

In this paper we consider the joint distributions of classified variable 
and decision taken according to a partial decision rule. It seems natural to 
compare two decision rules according to the strength of dependence in the 
assigned distributions. We intraduce the class of threshold rules in partial 
prabIems and prove that it is a minimal admissible class for the aforesaid 
ordering. Then we show that the solutions of minimum risk problems with 
suitable restrictions are theshould rules. Some examples are also presented, 
including problems known in the literature. 

Any two-class discriminant problem eoncerns a pair of random variables 
( I ,  X), where I is the classified variable and X the observable one. I takes on 
values 1 and 2 with probabilities n and l-n, respectively. Random variable 
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X takes on ~a lues  in (X, ~ ( X J ) ,  where X c R'" and &'(.X) is a a-field of Bord 
subsets of X. Conditional distributions of XII = i, for i = 1, 2, are absolutely 
~oiltinuous with respect Lo a 0-finite measure v ;  the respective densities will 
be denoted by f, a11d f, . We assume that v (J; (x) .,f, (x) = 01 = 0. 

In partial discriminant problems lhree decisions 0, 1, 2 are allowed. A 
decision rule 6 is given by a triple of Borel measurable functions (6,,  6,, a,), 
where Si: X -+ 10, 11 far i = 0, 1, 2, and 6 ,  (x) + 6, (x) + 6, (x) = 1 a.c. Given 
x E X, So (x) is the probability of deferred decision and 6, tx), for i = 1, 2, the 
probability of deciding that 1 9 ii. 

Let d be the set of all rules 6. We have (cf. [3], p. 354): 

(2.1) A is convex and weakly sequentially compact. 

Let 

(2.2) A is a convex compact set in R4 

The joint distribution of I and the decision taken according to 8 is given 
by a (2 x 3)-table 

where qt j  = m;j, q i j  = (1-n)a&, j = 0, 1, 2. 

The set of (2 x3)-tables can be ordered with respect to the positive 
dependence in the following way: 

Given (I, X), this implies an order in A as follows: 

(2.3) '7 <64%Q* <Q6'. 

Thus, if 6 < 8, then the positive dependence between I and the decisions 
is stronger under 6' than under 6. Since, for fixed (1, X), all tables Qb have 
identical marginal distributions (is. q , ,  + q , ,  + q , ,  = n), (2.3) is equivalent to 

Therefore 

(2.5) 6 is admissible in A with respect to < iff ad is minimal in A. 



3. ADMSHBQEHTV OF THRESHOLD R U M  

The ordering (2.3) inay be treated as fundamental for partial discrimi- 
nant problems. It seems that a solution of any reasonably stated discrirslil~ant 
problem should be a rule admissibIe with respect to this ordering. Therefore, 
it is important to find the correspcsndi:~g ininirnal admissible class. 

Let h  (4 =. f2 e2xIlf1 (XI. 
A decision rule 5 = (So, S,, 6,) is calkd threshold rule iff either there 

exist k ,  , k , ,  0 < kl < k2 G + m, such that 6 ,  (4 = 1 for h(x)  < k , ,  6,Cx) 
+6,(x) = 1 for h(x )  = kl, 6 , (x)  = 1 for k ,  < h(x)  < k,, 6,(x)+6,(x) = 1 for 
h (x) = k,, and ij2 ( X I  1 for h ( x )  > k2 ,  or there exists a k 3 ::CP such that 
6, (XI = 1 far h(x)  < k and 6 , ( x )  = 1 for h(x)  > k.  

THEOREM I .  A decision rule 6 is admissible irz d with respect to 6 $6 is 
a threshold rule. 

Proof .  Let us prove this theorem under the assumption that h ( X )  is a 
contjnuous random variable, 

Strppose that d ELI is not a threshold rule. We shall constr~icl a 
threshold rule S* better than S : a'* G ad, a" a'. Lei k t ,  k, be defined by 

(3.1) 

and 

(3.2) 9' fi (XI dv = j-fi (4 8 2  (4 dv.  
INx) > k 2 }  X 

In the case k ,  ,< k ,  we shaIl show that kl and k2  may be taken as 
thresholds of S*. By (3.11, 

(3.31 J ( 1 - 6 1 ~ x , ) f z ( x ) d v =  j- 6 1 ( ~ ) f 2 @ ) d v .  
< k d  1 @(XI >'kl f 

Obviously, 

and the inequality is strict iff 

Similarly, 

1 a ~ ( x ) f i ( . U ) d v B k l  5 J ~ ( ~ ) f i ( ~ ) d v ,  
Ih(x) >k11 M x ) > k l l  

and the inequality is strict iff 
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Thus, by (3.3, 

f ( r - 6 , C d ) f i ( x ) d v ~  >, hl(J4Sl(~)dv.  
@[x)'<kl 1 C ( 3 > k l )  

Therefore 

@a* 1 1 -  - f 1 ( ~ ) d y a j 8 1 ( ~ ) f i ( ~ ) d v = a d l t  
Ul(x) < k t )  X 

and the inequality is strict iff csnditiom (3.4) or (3.5) are satisfied, 
Similarly we show that aP2 2 ad,,, a d  the inequality is strict iff 

(3.6) v({xE%: ( h ( x ) >  k2 *d2(x) < I )  v ( h ( x )  < kz A 6 , ( ~ )  >0)))>0. 
, Since, by (3.1) and (3.21, a& - a:l, = af2, we have 

d $ b = l - a ~ - a ~ ~ < l - a I z - a ~ , - a ~ o ,  a & < a i o  

so that ad* G a'. 
As S is not a threshold rule, at least one sf eanditlans (3.41, (3.51, (3.6) 

must be satisfied, Then ad* # ad. and S is not admissiMe. 
The case k ,  3 k2 and v ( ( x ~ X :  k ,  < h(x)  < k t ) )  = 0 is quivalent to the 

case k l  = kZ. 
In the case k ,  > k, and v ( ( x  E %: kz  < h(x)  < k , ] )  > 0 we shall show 

that k, may be taken as the unique tkreshold of a*. Obviously, = 

= 0. By (3.1131, a g  = a;, . Since 

j- f i ( ~ ) d ~ > O ,  
Cz c h ( " ) < k l )  

it follows by (3.2) that a8' ,< ad a~ld ad': # ad. Thus 6 is not admissible, which 
completes the proof of sufficiency. 

Now let 6  be a threshold rule. Assume that 6  is not admissible. Then 
there exists a rule St such that a*' < a%nd a'' # a*; thus 6  < 6'. 

lif 6' is not a threshold rule, then, by just proved part of Theorem I, 
there exists a threshold rule 6" such that 6' $6". Therefore, we have 6 < 6" 
for S and 6" being different threshold rules, which is obviously impossible. 
The same holds if 6' is a threshold rule. 

The proof for the case of a noncontinuous random variable h ( X )  is 
similar but more technically complicated due to randohat ion  of decisions 
at threshold values. 

THEOREM 2. For any positive vector b € R 4  a d  any nonempty closed set 
B c A such that any minimal cbment oj(l3, <) is a minimal dement of(& <), 
the rule miFaimiziq bTa8 on {&€A: a%B) exists and is a th~esk~ild rub .  
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Proof. Suppose that a solution S* is not a threshold rule. Then, by 
Thearein 3 ,  it is not admissible in d, so that a5' is not minimal in [A,  G )  
and, therefore, in (B, 6) (since aS'*~l?). Thus there exists a rule 8' such that 
a'' E B, d' < ad and a' f ad', so hT ad" bT a'-, which contradicts the suppo- 
sition. 

In the sequel we present several risk minimization problems in which 
the solution is a threshold rule according to Theorem 2. 

0) Msk mirni~zation witboolt omtrkti~m~ Let Ltj denote a bss attached 
to decision j for I = i. We assume that, for i = 1, 2 and j = 0, 1, 2, Lii = 0, 
and LCj > O for i f j. The risk to be minimized is defined as 

(4.1) 
d ~ 1 - n ) L , , a ~ l i - ~ L , ~ a ~ 2 f  ~ ~ ~ o ~ ' : ~ + I ~ - ~ ~ c ) L ~ ~ u z o .  

Thus, Theorem 2 may be applied with B = A. The thesRoMs of the 
solution are: 

1c1 = 
rL,o k* = rr(Ln-L1o) 

for L,o,L,,+L,o/L,, < I ;  
( 1  - ( ~ 2 1 -  L2d7 (1 - ~1 L20 

kl = kz = 
EL, 2 

for Llo/Ll,+L,o/L2a 2 1.  
(1 - n) L;: 

If LIOJL12+ LZO/Ld2, > 1, then the solution excludes the defemnce of 
decision. 

(fi) %sk ~ ~ & a ~ s n  in fore& problem. Suppose that risk (4.1) is 
minimized when the defend dacision is forbidden, i.e. dO(x) E O or, equiva- 
lently, = ad,, = 0. Obviously, the assumptions of Theorem 2 are fulfilled. 
The solutions do not depend on L,, and L,, and have the threshold 
k=TCLl2/ (1-~)LZ1.  

(Gi) E& hihzah ion  with res&ktiom imp& on phbilikies of ~sma1- 
Iwations (cf. [I]). For given a,,  a 2 ~  [OF 1) we minimize risk (4.1) for 6 such 
that a; < al , a:, < a2.  It is evident that assmptions of Theorem 2 are 
fulfiIled for any a, and az. 

To present the solution of the problem we have to consider a solution of 
the corresponding risk minimization problem without restrictions. It is a . . 
threshold rule 6 with thresholds k, and k2 and rando ng constants p,  and 
p2 such that 6,(x) = pl iff h(x)  = k, and 6,(x) = p, iff h(x) = k2.  Then the 
threshold k: and randomizing constant pf are as fallows: 
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and pf is given by 

1 fi(~)nv+!J; j- ,.S,lx)dv=~11. 
MxE k i l  {sr(x)=k;l 

Similarly, 
if a;, < E,, then k: = k , ,  p: = pl;  
if a:, > IX,, then 

k: = ma.x (k: [ fi (x) dv $ a, 1, 
lh(xi .ckl 

and pT is given by 

(iv) Risk h & ~ ~ a t i o l ~  with nrgstrictiarras imps& on quatien@ of probabiE- 
~ e e i  af wrong a ~ d  carrat cla~ikicr~lirraa For given P ,  and 8, we hninimke risk 
(4.1) for such that a: Ja;, < 8, and ai,/ai, G f i 2 .  These inequallities are 
equivalent to 

If and 8, are not too small (in particular, if 

Dl Pz > inf h ( x f .  i d  ( l / h  (x)), 
XLX xex 

then inequalities (4.2) are consistent and assumptions of Theorem 2 are 
satisfied. Explicit formulae for thresholds of the soilution are not available. 
Beckman and Johnson [2] dealt with similar problem of maximizing the sum 
of probabilities of making classification, ad,, + ad,, + a: 6,, + la:, , under cons- 
traints equivalent to (4.2). 
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