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Abstract. The aim of this paper is to characterize in terms of
characteristic functionals the intersection of semi-stable and self-
decomposable measures on a separable Banach space. These are
subclasses of infinitely divisible measures the characterization of
which on a Hilbert space has already been done in [4]. Here the
proof is based on Urbanik’s method which exploits Choquet’s
theorem on extreme points.

1. Introduction. Let Y be a topological space. B(Y) denotes the class of
Borel measurable subsets of Y. M(Y) stands for the class of all probability
measures on B(Y). _

Let (Y, B(Y), p) be a probability space and Z be a topological space.
Then, for a measurable function f: Y — Z, we define the measure fu on B(Z)
by fu(4) = u(f~ ! 4) for each AecB(Z). _

Let X be a separable Banach space with a norm |}-|} and with the dual
space X*. For pe M(X) the characteristic functional is defined as follows:

i) = [ u(dx), where ye X*.
X

A measure pe M(X) is called infinitely divisible if, for each n, there
exists a pu,e M(X) such that u¥" = u, where the power #n is taken in the
sense of convolution.

Tortrat [9], p. 311 (see also [2]), proved the following analogue of the
Levy-Khinchine representation of infinitely divisible laws: ‘

ProposiTioN 1. A probability measure p on X is infinitely divisible iff u
= p+&(M), where ¢ is a symmetric Gaussian measure and M is a generalized
Poisson exponent of é(M). Moreover the decomposition is unique.

The characteristic functionals of these measures are:

E(M) () =exp{i (v, Xo)+ [[€00 —1—iy, x> 1p(x)] M (dx)},
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Where D is a ball which is a set of continuity of the measure M and x,e X
([31, Th. 2.3);

a(n) = exp(—3 <y, Ry)),

where R is a covariance operator and ye X* ([11], p. 173).

Let us add that M is finite on the complements of neighbourhoods of
zero in X and that M({0}) =0.

The family of all generalized Poisson exponents will be denoted by
P(X).
~ Remark. If

{ x> M(dx) < + o0,
=l <1 .
then the characteristic functional of the measure &(M) can be written in an
analogous way as on the Hilbert space:

(M) EM) =exp {i s x>+ j[e“m ~1- f1-<—y—x-3] M(dx)}.
X +{[xll
T, will stand for the operator of multiplying by the scalar b. By u° we
denote the measure having the characteristic functional fi(y)°. It is well-
known that for infinitely divisible u such a measure exists.
Definition 1. pe M(X) is called semi-stable iff there are b, c€(0, 1) and
xo€ X such that

¥ K= Ty pxd.

The family of semi-stable measures on X will be denoted by S(X).

ProposiTioN 2. Let p be a non-degenerate measure on X satisfying (2) and
o be a unique real solution of the equation b* = c. Then

(@ 0<a<2;

(b) o =2 iff u is a Gaussian measure;

() 0 <o <2 iff u==e(M) for some Me P(X) and, moreover, T, M = cM
([6], Prop. 4.2 and 4.1).

The proof of Proposition 2 is an immediate consequence of the follow-
ing- statement: if u is a semi-stable measure on X, then yu is a semi-stable
measure on the real line for all ye X*.

Lemma 1. If ueS(X) and y = e(M), then

O IPM@dY) < +co.

lIxff =1

Proof. By Proposition 2 (c) we have b* < ¢ and oM =cM. Let
4, =" <Xl <b"} (n=0,1,2,..).
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We have
[ lIxl* M (dx)

=l <1

= [ IxPM@»< f b2 M (b" Ap) = f b2 " M(Ap) < + 0.
n=0

n=0

M(Ap) < +0o0 as M is finite on compiements of the neighbourhoods of
zero. This completes the proof of Lemma 1.

It follows from Lemma 1 and from the Remark that the charactenstlc
functional of a semi-stable measure may be written in the form of (1).

Definition 2. A measure y is called self~decomposable if it is infinitely
divisible and if M > T, M for each ce(0, 1), where u = g+€(M) (see Proposi-
tion 1). ‘
 Original definitions of semi-stable and self-decomposable measures can
be found in [7] and [8]. Our definitions 1 and 2 are, in fact, the well-known
characterizations.

The family of self-decomposable measures on X will be denoted by
L(X).

2. Characterization of the elass L(X)NS(X).

THeOREM. ve L(X) nS(X) iff

(] 7(y) = e exp(i s xo)),

where xo€ X, ¢ is a symmeiric Gaussian measure, ye X*, or

(i) V() =exp{iy, xo>+

it(y,x)_l
sy ;[e _ 19 ">] S by, o (Bl deA(d),

0Ky t 1+ 2 Ixl1? f4=
Uy

where xoe X, ye X*,ae(0, 2),be(0, 1),n = —Inb, U) = {xe X: 0 <||x|| <n}, 4
is a finite Borel measure on the closed ball of radius n such that A({0}) =0
and , is given by the formula

(1 for te[l, &),
!Jbr(t) - {b fO" te[er, b_l), I‘G(O, ’1] )

We precede the proof of this theorem by introducing some notions and
notation.

U, U, and S will denote the unit ball, the ball of radius # and the unit
sphere, respectlvely

Let Xo= X\{0}, R, =(0, ) and Q = U x[0, c0]. Q is a separable
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metric space. Let h: X, — Q be the mapping given by the formula h(x)
= (x/]|xll, l|x]]). h is a homeomorphism of X, onto S xR, . For g =(x, r)eQ
let us put [lgl| =r and, for be R, bq = (x, br); then ||h(x)|| = ||x|| and h(bx)
= bh(x).

The measure v is infinitely divisible, thus v =.¢+&(M) (see Proposition 1).
Let po, be such a measure that du, = ||x]|2/(1+]|x||>) dM.

From Lemma 1 and from the finiteness of M on the complements of
neighbourhoods of zero it easily follows that u, is finite on X. Let us put
mg = hu,. This measure is concentrated at S x R, . We shall consider m, on
SxR,, where R, =[0, 0]. With these assumptions the following holds:

ligl®+1
) mey (B)—c? —————my(dg) = 0
0B~ | Ty cijap ™0
for each Be B(Q) and each ce(0, 1);
1+ [|g]? 1+]iq]1?
4 my(dg) = b* mo (dg)
@ T e =Y g

for each Be B(Q), some be(0, 1) and some ae(0, 2).

This follows the rendering of the conditions of Lemma 1 and Definitions
1 and 2 with the usage of m,. The justification of (3) and (4) is in fact the
same as in the case of the Hilbert space [4].

LeMMA 2. For the above-mentioned measure m, there exists a pairwise

o

disjoint family of compact subsets K, of the sphere S such that my = ), m, for

— n=1
m, = mOIKn xRy~

The proof of Lemma 2 is similar to that of Lemma 5.4 in [10]. One uses
in the proof the tightness of the measure m, on Q.

In the sequel by K, we shall understand sets as those given in Lemma 2.
Let us denote by N(K,xR,) the set of all finite Borel measures of
supports included in K,xR,. Similarly, M(K,xR,) denotes the set of
probabilistic measures of supports in K, xR,. This is a compact metric
space with the topology of weak convergence. Let N, , (K, x R.;) be the set of
all measures me N (K, x R.) such that (3) and (4) hold if m, is substituted by
m therein. Finally we put

Kb,rz(Kn XR+) = Nb,n:(Kn XR+) N M(Kn XR-i-)-

On K, (K, xR,) we consider the topology induced from M (K, xR.,).
LemMa 3. The set K, ,(K,xR.) is compact and convex.

The proof is analogous to that of Lemma 1 in [5]. To apply in the
sequel Choquet’s theorem we have to find the set (K, , (K, x R.)) of extreme
points of the set K,,(K,xR,).
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For EeB(K,) the sets E x {0}, E xR, ; E x{0, o} are invariant under
multiplication by elements of R, . Hence, for me N,,(K, xR,), the restric-
tion of m to any of these sets is again in N,,(K,xR.). Thus we see that
each extreme point of K, ,(K, x R.) has to be a measure concentrated either
at a point ze K, x {0, oo} or at {x} xR, for xeK,. Moreover, the measure
m concentrated at {x} xR, is an extreme point of K, ,(K,xR.,) iff, being
considered in a natural way as a measure.on R, it is an extreme point of
K,,,,(R) concentrated at R, .

ProrosiTioN 3 [5]. The extreme points of the set K,,a(R) are of the form

p(F) =V, [l (Q+e3)7" Z b*y, (b [t dt,
F

k=— a0

where

FeB(R), V,={[lfl(1+)~" ¥ b=y, (b lthadt} ",
R k=— a0
re(0, n] and , is defined in the statement of the Theorem.
From the reasoning above we get a description of e(K;, (K, x R.)).
Let Z, =K, x([0, n]u {©}), n = —Inb. For z = (x, )eK, x {0, o0} let
m, =3, and, for z = (x, r)e K, x(0, n], let

@

) mz(B)f—“V,IIIQII(HIIQHZ)"‘ 2 Yy llql) 4. (dg),

k=—o
where Be B(K, xR,).
.V, is chosen to make m, probabilistic. 1, is a Lebesgue measure on
{x} xR,. Hence we obtain

LemMma 4. The set e(K,,(K,xR.,)) coincides with the set {m,:zeZ,)}.
Moreover, the mapping w: Z,— e(K, (K, xR.)), defined by w(z) =m,, is a
homeomorphism of these sets.

LemMMA 5. With the above-formulated assumptions about the measure my,
for any bounded and continuous function f: S xR, — R there exists a finite
Borel measure {, concentrated at S x[0, n], such that
© [ | flom @l = [ fl@dmo(dy) ().

Sx{0,1]5 xR 4 SxR,

Proof. Choquet’s theorem [1] says that “if X is a linear locally convex

space and K is a compact and convex subset of X, then for each x,e K there

(!) Obviously, the function f f(@)m.(dq) is defined only on |J K, x[O0, 7] but, as we
S x[0,n] n=1

shall see in the proof, the measure { vanishes outside this set, which justifies the notation.
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exists a probabilistic measure v on e(K) such that {y, xo> = | <y, x>v(dx)
e(K)
for each ye X*”.
By Lemma 3 the set K, ,(K, x R,) is compact and convex in the space
of all signed measures which is locally convex. The restriction of my, ie.

m, = mO(Kn ><‘R+)m1 'ma,K,,X§+’

belongs to K, ,(K, xR,) since the set K, xR, is invariant under multiplica-
tion by scalars.
By Choquet’s theorem, applied to the functlonal
m*,>= [ fl@(dg),
Ky xRy
there exists a probabilistic measure 7, concentrated at e(K,, (K, x R.)), such
that

@ | f@mde) = my= | m*, myT.(dm)
Kann e(Kb m(K XR+))
= [ {m*, mywi,(dm) = f(m* myt,dz) = | | fla)m,(dg)7,(dz)
w(Z,) zZ, ZK,*xR,

(for w see Lemma 4), where T, =w ', is a finite measure concentrated at
Z, =K, x(0, n]. Multiplying by my(K, xR.) the first and the last integrals
in (*), we obtain

™ | fgym,dg) = jff@mwmm

Kn*xR" Z K, xR

where 1, = mo(K, x R,)%,.
Taking the sum over n on both sides of (7) and taking Lemma 2 into
-
account, we obtain (6), where { = ) 1.
n=1

To complete the proof it is enough to show the finiteness of measure {.
Substituting f(g) =1 in (7), we obtain m,(K,xR,) = 7,(K, x(0, n]). Tak-
ing on both sides the sum over n, we get + 0 > my(S xR.) = {(X x(0, n]).

3. Proof of the Theorem. Since m, is concentrated at S xR, , we obtain
(6) in the form
8) § Fpo@x) = [ [FO)B P my)(dy) T (d),

Xo ’ ud X
where h: Xo— S xR, h(x) =z, F() =S /Iy, Iy} and {=h""L.
Let us denote the measure h™ ' my,, by p*. It is concentrated at R, x

If we consider the mapping tx —t, we infer that the inner integral on the
right-hand side of (8) has the form
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© [FO)w@y = | Fx)(x~ p)(@n),
X5 R4

where x~ 1 p*(F) = ,u"({tx: teF)) for FeB(R,).
By (5) we get »
(10)  (x~'p)(F) = x"Hh™ P my ) (F) = Mg xi =iy (ROEX))

=Viey [ lal@+1gl®)™Y Y =y B*llgl) Ay < (do)
h(Fx) k=~

-]

= Mjtllxl!(1+r2l!xllz)“ Z b*= oy BF t{1x1) || ]} e
F

k=-—w

The last equality follows from the observation that if g = h(tx)eh(F x),
then [lgl| = 1)l = iex/e 1, ¢llxiD || = t|lx]] and that x~* k™1 Ay is the
Lebesgue measure multiplied by ||x||. Indeed,

X7 R Ay (00, BD)
=h! flxmxu (Lo, ﬁx]} = ‘lx/[].xn ({x/”x“l} x [0, BlIxII]) = Bl

Now taking (9) and (10) into account we write (8) in the following form:

(1) [7(x) po(dx)
X

7 2
-1t D Vi 3 B Gl L@,
U + =—o00

In order to calculate the characteristic functional of the measure v let

us put
o1 PG, x>)1+r1xn2
T = ( T IR

Now (11) assumes the form

12)  [70)poldx)
. Xo

it(y,x)_l .
= f(e —1:22"]);;2) I Z ¥ (B 1)) dil (d).

OR, t k=— o0
Uﬂ

In (12) the function ¥, can be omitted, for it is Borel measurable and
bounded. Finally, multiplying both sides by e'“*0> we obtain the desired
representation.
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