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Abstract. The aim of this paper is to characterize in terms d 
characteristic functionals the intersection of semi-stable and self 
decarnposabls; measures on a separable Banach space. These are 
subdasses of infinitely divisible measures the chracterization of 
which on a Nilbed space has already been done in 141. Here the 
proof is bas& on Urbanik's method which exploits Ghoquct's 
theorem on extreme points. 

1. Introduc~am. Let Y be a topological space. B(Y) denotes the dass of 
Borel measurable subsets of Y. M ( Y )  stands for the class of all probability 
measures on B(17). 

Let (Y, B(Y) ,  y) be a probability space and Z be a topologicaI space. 
Then, for a measurable function f: Y -+ Z, we define the measure fp on B ( Z )  
by fp(A)  = p ( f l  A) for each A E B ( Z ) .  

Let X be a separable Banach space with a norm IJ - 1 1  and with the dual 
space X*. For ~ E M ( X )  the characteristic functional is defined as follows: 

j.i (y)  = J k*sx> p (dx), where y E X* 
X 

A measure ~EMCX) is called injnitely divisible if, for each n, there 
exists a pne M I X )  such that ptn = p, where the power *n is taken in the 
sense of cccnvolution. 

Tortrat [9], p. 311 (see also [2]$, proved the following analogue of the 
Levy-Kkinchine representation of infinitely divisible laws: 

PRQPQSITION 1. A probability meuswe p on X is infinitely divisible ifl p 
= exZ(M), where Q is a symmetric Gaussian measure and M is a generalized 
Poisson exponent of Z(n/r). Moreouar the decomposition is unique. 

The characteristic functionals of these measures are: 



where D is a ball which is a set of continuity sf the measure M and X ~ E  X 
([33, Th. 2.3); 

where R is a covariance operator and  EX* ([?I], p. 173). 
Let us add that A4 is finite: on the complements of nelgbbourhoods of 

zero in X and that M ( { O ] ) = Q .  
The family of all generaked Poisson exponents will be denoted by 

P(X)- 
Remark. If 

then the characteristic fun~tional of the measure e"(M) can be written in an 
analogous way as on the Hilbert space: 

T, will stand for the operator of multiplying by the scalar h.  By pc we 
denote the measure having the characteristic functional ,4(y)C. It is well- 
known that for infinitely divisible p such a measure exists, 

Def in i t ion  1. p~ MQX) is called semi-stable iff there are h ,  c ~ ( 0 ,  1) and 
X ~ E X  such that 

(2) pc = ~ 8 8 , ~ .  

The family of semi-stable measures on X will be denoted by S ( X ) .  
PROPOS~TION 2. Let p be a  on-degenerate measure on X satigying (2) and 

a be a unique r e d  sohtion of the equation b" = c. Then 
(a) 0 < a  < 2; 
(b) a = 2 ty p is a Gaussian measure; 
(c) 0 < a  < 2 iflp = Z(M) for some MEP(X) and, moreover, %A4 = CM 

([6] ,  Prop. 4.2 and 4.1). 

The proof of Proposition 2 is an immediate consequence of the follow- 
ing statement: if p. is a semi-stable measure on X,  then yp is a semi-stable 
measure on the real line for all y E X * .  

LEMMA 1. If p€S(X) and p = e"(M), then 

1 llxl[2 M(dx)  < i- a. 
IlrlJ 4 1 

P r o  of. By Proposition 2 (c) we have b2 < c and T, A4 = c M .  Let 

A, = {x: b"" < IIxI[ d bR) (n = 0, I, 2, . ..). 



M(Ao) < + m as M is finite on complements of the neigl~bourhoods of 
zero. This completes the proof of Lemma 1. 

It follows from Lemma 1 and from the Remark that the charactefistic 
functional of a semi-stable measure may be written in the form d (1). 

D efi n i t  i a n 2. A measure y is salled self-beccsnaposuble if it is infinitely 
divisible and if M 2 T,M for each c ~ ( 0 ,  11, where y = @*Z(JLI) (see Propsi- 
tion I). 

Original definitions of semi-stable and self-decomposable measures can 
be found in [7] and [8]. Our definitions 1 and 2 are, in fact, the well-known 
chartracterizations. 

The family of self-decomposable measures on X will be denoted by 
-wfl= 

2. Gharacterizakioe csf the elms L(X) n SIX). 
THEOREM. v E L(X) n S (XI ij" 

where x,, E X, Q is Q symmetric Gaussian measure, y E X*, or 

(ii) v^(y) = exp [ i  (y, xo)+ 

w h e r e ~ ~ ~ X , y ~ X * , a ~ ( O ,  2),b~(O, I), 1;1 = -Inb, U i  = {xEX: 0 < llxll < q ) ,  A 
is a Jiaite Bore1 measure on the cbsed ball of radius q such that A ( ( 0 ) )  = O 
and $, is given by the formula 

1 f o r t ~ [ l , e " ) ,  
$ r ( t~  = { b for t ~ [ e ~ , b - ' ) , r € ( o , ~ ] .  

We precede the proof of this theorem by introducing some notions and 
notation. 

U ,  U, and S will denote the unit ball, the ball of radius q and the unit 
sphere, respectively. 

Let X, = X \, [O ) ,  R + = (0, KO) and Q = U x [O, a]. Q is a separable 



metric space. Let h: X, + Q be the mapping given by the formula h ( x )  
==(x/llxll, Ilxll). h is a homeomorphism of Xo onto S x R + .  For q = ( x ,  ~ ) E Q  
let PIS put llqll = r and, for ~ E R ,  bq =(x, br); then Ilh(x)F/ = lixll aid h(bx) 
= bh(x) .  

The measure v is infinitely divisible, thus v =.Q*~(M) (see hops i t ion  1). 
Let po be such a measure that dpa = IlxllZ/(l + llxl12) d M .  

From Lemma 1 and f r ~ m  the finiteness of M on the complements d 
neighbourhoods of zero it easily follows that p, is finite on X. Let us put 
ma,, = hp,,. This measure is concentrated at S x R ,  . We shall consider m, on" 
S xK,, where R+ = 10, oo]. With these assumptions the following holds: 

for each B f B ( Q )  and each c ~ ( 0 ,  1); 

for each BE B (Q), some b E (0, 1) and some ol G (0, 2). 
This follows the rendering of the conditions of Lemma 1 and Definitions 

1 and 2 with the usage of m,. The justification of (3) and (4) is in fact the 
same as in the case of the Hilbert space [4]. 

LEMMA 2. For the above-mentioned memure moathere exists a pairwise 
a 

disjoint ,family of .compact subsets K, of the sphere S such that ma = m,, for 
n= 1 mn = mol~, ,  x ~ +  

The proof of Lemma 2 is similar to that of Lemma 5.4 in [10]. One uses 
in the proof the tightness of the measure mo on Q. 

In the sequel by K ,  we shall understand sets as those given in Lemma 2. 
kiet us denote by N(X, x R + )  the set of all finite Bore1 measures of 
supports included in K ,  xR,. Similarly, M ( K ,  x R + )  denotes the s d  of 
probabilistic measures of supports in K, xR,. This is a compact metric 
space with the topology of weak convergence. Let N,,,(K, x E,) be the set of 
all measures m E N ( K n  x R + )  such that (3) and (4) hold if m, is substituted by 
na therein. Finally we put 

On K,,, ( K ,  x R,)  we consider the topobgy induced from M ( K ,  x R,) .  
LEMMA 3. The set Kb, , (Kn xE,) is compact and conuex. 
The proof is analogous to that of Lemma 1 in [ 5 ] .  To apply in the 

sequel Choquet's theorem we have to h d  the set e(K, , , (K,  x R + ) )  of extreme 
points of the set K,,, ( K ,  x E , ) .  
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For E E B (K,) the sets E x ( O ) ,  E x R ,  , E x { O ,  m ) are invariant under 
multiplication by elements of R , .  Hence, far r n ~ n T , ~ , , K ,  x R + ) ,  the restric- 
tion of m to any of these sets is again in Nb,,(K, x R,). Thus we see that 
each extreme point of K,, , (K,  x a+) has to be a measure cancenbated either 
at a point .z E K, x {a, m ] or at {x] x R ,  for x~ K,. Moreover, the measure 
wl concentrated at {x) x R ,  is an extreme point of K,,, ( K ,  x K,) iff ,  being 
considered in a natural way as a measure. on R, it is an extreme point of 

( R )  concentrated at R + . 
PRO~SITION 3 [5]. The extreme points of the set (R) are of the firm 

where 

T E ( O ,  and $, is dc$ned in the s'tatement of the Theorem. 
From the reasoning above we get a description of ~ ( K , , ~ ( K ,  x R + ) ) .  
Let Z ,  = K ,  x([O, q ]  u {a)), q = -1nb. For z = (x, P ) E K ,  x (0, a) let 

nlz = 6, and, for z = (x, rj E M, x (0, g ] ,  let 

where B E B ( K ,  xR+) .  
it: is chosen to make m, probabilistic. A, is a Lebesgue measure on 

{x) x R+ . Hence we obtain 
LEMMA 4. The set e (Kb,, (K, x R+))  coincides with the set (m,: z E 2,). 

Moreover, the mappi~zg w: Z ,  -, ( K ,  x R,)), dejwd by w (2) = %, is a 
homeomorphism of these sets. 

LEMMA 5. With the above-formulateti assumptions abour the masure m,, 
for any bounded and continuous function 8 S x K, -t R there exists a finite 
Borel measure 5, comacentrated at S x LO, q ] ,  such that 

P r o  of, Choquet's theorem [I] says that "'if X is a linear lacally convex 
space and K is a compact and convex subset of X, then for each X , E K  there 

m 
(') Obviously, the function f f (q)m,(dq) is defined only on IJ K, x[O, q] but, as we 

3 x[O,vl n= l 

shall see in the proof, the measure [ vanishes outside this set, which justifies the notation. 
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exists a probabibstic measure v on e ( K )  such that 01, xo> = 1 +, x) v(dx)  
e(W 

for each y E XS". 
By Lemma 3 the set K,.,(K, x R , )  is compact and convex in the space 

of aII signed measures which is Pocdly convex. The restriction of m,, i.e. 

belongs to K,,m(K, x R+) since the set Kn r R+ is invariant under multiplioa- 
tion by scalars. 

By Choquet's theorem, applied to the functional 

{m", .) = 1 4'14)(')(d4), 
K, xR, 

there exists a probabilistic measure r,, concentrated at ( ? ( K ~ $  (K,, x 8+)), such 
that 

idfor w see Lemma 4), where z", = w- l T, is a finite measure conce~atsated at 
Zn = K, x(0, q ]  . Multiplying by mo (K, x W ,) the first and the last integrals 
in I*), we obtain 

where TI, = rno(K,, xa+)2",. 
Taking the sum over n on both sides of (4)  and taking Lemma 2 into 

QJ 

account, we obtain (61, where 5 = zk. 
n= l 

To complete the proof it is enough to s b w  the finiteness of measure 5. 
Substituting f (q )  = 1 in (7), we obtain m,(K, x l?i+) = T; (K, x (0, q ] ) .  Tak- 
ing on both sides the sum over n, we get + m  > mo(S x R , )  = i ( X  x(O, q ] ) .  

3. Roof of the TCamaem. Since mo is concentrated at S x R , ,  we obtain 
(6) in the form 

where h: Xo -.S x R + ,  h(x) = z,T(y)  = f (y/llyil, Ilyll) and %= h - l i .  
k t  us denote the measure h-I m,(,, by pX. It is concentrated at R+ x. 

If we consider the mapping tx -+ t, we infer that the inner integral on the 
fight-hand side of (8) has the bran 
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(9) j J(Y) pX(dy) = j' T(tx)(x-' gLX)(dt), 
Xo R +  

where x-' px(F) = px({ tx :  ~EI;)) for FEB(W+). 

By (5)  we get 

The last equality follows from the ob~ervation that if g = h(tx) E h (Fx), 
then llqll = Ilh(tx)ll = Il(tx/tllxll, tllxll)ll = t llxll and that x-' h-lLx,llsll is the 
Lebesgue measure multiplied by flxll. Indeed, 

Now taking (9) a d  (10) into acmunt we write (8) in the hllowing form: 

In order to calculate the characteristic functional of the measure v let 
us put 

Now (11) assumes the form 

In (12) the function 8/11,11 can be omitted, for it is Bore1 measurable and 
bounded. Finally, multiplyilag both sides by ei",xo> we obtain the desired 
representation. 
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