SEMI-STABLE AND SELF-DECOMPOSABLE MEASURES ON SEPARABLE BANACH SPACES
 BY
 RYSZARD KOMOROWSKI (Wroclaw)

Abstract

The aim of this paper is to characterize in terms of characteristic functionals the intersection of semi-stable and selfdecomposable measures on a separable Banach space. These are subclasses of infinitely divisible measures the characterization of which on a Hilbert space has already been done in [4]. Here the proof is based on Urbanik's method which exploits Choquet's theorem on extreme points.

1. Introduction. Let Y be a topological space. $B(Y)$ denotes the class of Borel measurable subsets of $Y . M(Y)$ stands for the class of all probability measures on $B(Y)$.

Let $(Y, B(Y), \mu)$ be a probability space and Z be a topological space. Then, for a measurable function $f: Y \rightarrow Z$, we define the measure $f \mu$ on $B(Z)$ by $f \mu(A)=\mu\left(f^{-1} A\right)$ for each $A \in B(Z)$.

Let X be a separable Banach space with a norm $\|\cdot\|$ and with the dual space X^{*}. For $\mu \in M(X)$ the characteristic functional is defined as follows:

$$
\hat{\mu}(y)=\int_{X} e^{i\langle y, x\rangle} \mu(d x), \quad \text { where } y \in X^{*} .
$$

A measure $\mu \in M(X)$ is called infinitely divisible if, for each n, there exists a $\mu_{n} \in M(X)$ such that $\mu_{n}^{* n}=\mu$, where the power $* n$ is taken in the sense of convolution.

Tortrat [9], p. 311 (see also [2]), proved the following analogue of the Levy-Khinchine representation of infinitely divisible laws:

Proposition 1. A probability measure μ on X is infinitely divisible iff μ $=\varrho * \tilde{e}(M)$, where ϱ is a symmetric Gaussian measure and M is a generalized Poisson exponent of $\tilde{e}(M)$. Moreover the decomposition is unique.

The characteristic functionals of these measures are:

$$
\hat{\tilde{e}}(M)(y)=\exp \left\{i\left\langle y, x_{0}\right\rangle+\int_{X}\left[e^{i\langle y, x\rangle}-1-i\langle y, x\rangle 1_{D}(x)\right] M(d x)\right\}
$$

where D is a ball which is a set of continuity of the measure M and $x_{0} \in X$ ([3], Th. 2.3);

$$
\widehat{\varrho}(y)=\exp \left(-\frac{1}{2}\langle y, R y\rangle\right),
$$

where R is a covariance operator and $y \in X^{*}$ ([11], p. 173).
Let us add that M is finite on the complements of neighbourhoods of zero in X and that $M(\{0\})=0$.

The family of all generalized Poisson exponents will be denoted by $P(X)$.

Remark. If

$$
\int_{\|x\| \leqslant 1}\|x\|^{2} M(d x)<+\infty
$$

then the characteristic functional of the measure $\tilde{e}(\tilde{M})$ can be written in an analogous way as on the Hilbert space:

$$
\begin{equation*}
\hat{\tilde{e}}(M)(y)=\exp \left\{i\left\langle y, x_{0}\right\rangle+\int_{X}\left[e^{i\langle y, x\rangle}-1-\frac{i\langle y, x\rangle}{1+\|x\|^{2}}\right] M(d x)\right\} . \tag{1}
\end{equation*}
$$

T_{b} will stand for the operator of multiplying by the scalar b. By μ^{c} we denote the measure having the characteristic functional $\hat{\mu}(y)^{c}$. It is wellknown that for infinitely divisible μ such a measure exists.

Definition 1. $\mu \in M(X)$ is called semi-stable iff there are $b, c \in(0,1)$ and $x_{0} \in X$ such that

$$
\begin{equation*}
\mu^{c}=T_{b} \mu * \delta_{x_{0}} \tag{2}
\end{equation*}
$$

The family of semi-stable measures on X will be denoted by $S(X)$.
Proposition 2. Let μ be a non-degenerate measure on X satisfying (2) and α be a unique real solution of the equation $b^{\alpha}=c$. Then
(a) $0<\alpha \leqslant 2$;
(b) $\alpha=2$ iff μ is a Gaussian measure;
(c) $0<\alpha<2$ iff $\mu=\tilde{e}(M)$ for some $M \in P(X)$ and, moreover, $T_{b} M=c M$ ([6], Prop. 4.2 and 4.1).

The proof of Proposition 2 is an immediate consequence of the following statement: if μ is a semi-stable measure on X, then $y \mu$ is a semi-stable measure on the real line for all $y \in X^{*}$.

Lemma 1. If $\mu \in S(X)$ and $\mu=\tilde{e}(M)$, then

$$
\int_{\|x\| \leqslant 1}\|x\|^{2} M(d x)<+\infty .
$$

Proof. By Proposition 2 (c) we have $b^{2}<c$ and $T_{b} M=c M$. Let

$$
A_{n}=\left\{x: b^{n+1}<\|x\| \leqslant b^{n}\right\} \quad(n=0,1,2, \ldots) .
$$

We have

$$
\begin{aligned}
& \int_{\|x\| \leqslant 1}\|x\|^{2} M(d x) \\
& \quad=\int_{\substack{\infty \\
n=0}}\|x\|^{2} M(d x) \leqslant \sum_{n=0}^{\infty} b^{2 n} M\left(b^{n} A_{0}\right)=\sum_{n=0}^{\infty} b^{2 n} c^{-n} M\left(A_{0}\right)<+\infty
\end{aligned}
$$

$M\left(A_{0}\right)<+\infty$ as M is finite on complements of the neighbourhoods of zero. This completes the proof of Lemma 1.

It follows from Lemma 1 and from the Remark that the characteristic functional of a semi-stable measure may be written in the form of (1).

Definition 2. A measure μ is called self-decomposable if it is infinitely divisible and if $M \geqslant T_{c} M$ for each $c \in(0,1)$, where $\mu=\varrho * \widetilde{e}(M)$ (see Proposition 1).

Original definitions of semi-stable and self-decomposable measures can be found in [7] and [8]. Our definitions 1 and 2 are, in fact, the well-known characterizations.

The family of self-decomposable measures on X will be denoted by $L(X)$.
2. Characterization of the class $L(X) \cap S(X)$.

Theorem. $v \in L(X) \cap S(X)$ iff

$$
\begin{equation*}
\hat{v}(y)=\widehat{\varrho}(y) \exp \left(i\left\langle y, x_{0}\right\rangle\right) \tag{i}
\end{equation*}
$$

where $x_{0} \in X, \varrho$ is a symmetric Gaussian measure, $y \in X^{*}$, or
(ii) $\hat{v}(y)=\exp \left\{i\left\langle y, x_{0}\right\rangle+\right.$

$$
+\int_{U_{\eta}^{0}} \int_{R_{+}}\left[\frac{e^{i t\langle y, x\rangle}-1}{t}-\frac{i\langle y, x\rangle}{1+t^{2}\|x\|^{2}}\right] \sum_{k=-\infty}^{\infty} b^{\alpha k} \psi_{\|x\|}\left(b^{k} t\|x\|\right) d t \lambda(d x)
$$

where $x_{0} \in X, y \in X^{*}, \alpha \in(0,2), b \in(0,1), \eta=-\ln b, U_{\eta}^{0}=\{x \in X: 0<\|x\|<\eta\}, \lambda$ is a finite Borel measure on the closed ball of radius η such that $\lambda(\{0\})=0$ and ψ_{r} is given by the formula

$$
\psi_{r}(t)= \begin{cases}1 & \text { for } t \in\left[1, e^{r}\right) \\ b & \text { for } t \in\left[e^{r}, b^{-1}\right), r \in(0, \eta]\end{cases}
$$

We precede the proof of this theorem by introducing some notions and notation.
U, U_{η} and S will denote the unit ball, the ball of radius η and the unit sphere, respectively.

Let $X_{0}=X \backslash\{0\}, R_{+}=(0, \infty)$ and $Q=U \times[0, \infty] . Q$ is a separable
metric space. Let $h: X_{0} \rightarrow Q$ be the mapping given by the formula $h(x)$ $=(x /\|x\|,\|x\|)$. h is a homeomorphism of X_{0} onto $S \times R_{+}$. For $q=(x, r) \in Q$ let us put $\|q\|=r$ and, for $b \in R, b q=(x, b r)$; then $\|h(x)\|=\|x\|$ and $h(b x)$ $=b h(x)$.

The measure v is infinitely divisible, thus $v=. \varrho * \widetilde{e}(M)$ (see Proposition 1). Let μ_{0} be such a measure that $d \mu_{0}=\|x\|^{2} /\left(1+\|x\|^{2}\right) d M$.

From Lemma 1 and from the finiteness of M on the complements of neighbourhoods of zero it easily follows that μ_{0} is finite on X. Let us put $m_{0}=h \mu_{0}$. This measure is concentrated at $S \times R_{+}$. We shall consider m_{0} on $S \times \bar{R}_{+}$, where $\bar{R}_{+}=[0, \infty]$. With these assumptions the following holds:

$$
\begin{equation*}
m_{0}(B)-c^{2} \int_{c^{-1} 1_{B}} \frac{\|q\|^{2}+1}{1+c^{2}\|q\|^{2}} m_{0}(d q) \geqslant 0 \tag{3}
\end{equation*}
$$

for each $B \in B(Q)$ and each $c \in(0,1)$;

$$
\begin{equation*}
\int_{b^{-1} 1_{B}} \frac{1+\|q\|^{2}}{\|q\|^{2}} m_{0}(d q)=b^{\alpha} \int_{B} \frac{1+\|q\|^{2}}{\|q\|^{2}} m_{0}(d q) \tag{4}
\end{equation*}
$$

for each $B \in B(Q)$, some $b \in(0,1)$ and some $\alpha \in(0,2)$.
This follows the rendering of the conditions of Lemma 1 and Definitions 1 and 2 with the usage of m_{0}. The justification of (3) and (4) is in fact the same as in the case of the Hilbert space [4].

Lemma 2. For the above-mentioned measure m_{0} there exists a pairwise disjoint family of compact subsets K_{n} of the sphere S such that $m_{0}=\sum_{n=1}^{\infty} m_{n}$ for $m_{n}=\left.m_{0}\right|_{K_{n} \times \overline{\mathbf{R}}_{+}}$.

The proof of Lemma 2 is similar to that of Lemma 5.4 in [10]. One uses in the proof the tightness of the measure m_{0} on Q.

In the sequel by K_{n} we shall understand sets as those given in Lemma 2. Let us denote by $N\left(K_{n} \times \bar{R}_{+}\right)$the set of all finite Borel measures of supports included in $K_{n} \times \bar{R}_{+}$. Similarly, $M\left(K_{n} \times \bar{R}_{+}\right)$denotes the set of probabilistic measures of supports in $K_{n} \times \bar{R}_{+}$. This is a compact metric space with the topology of weak convergence. Let $N_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)$be the set of all measures $m \in N\left(K_{n} \times \bar{R}_{+}\right)$such that (3) and (4) hold if m_{0} is substituted by m therein. Finally we put

$$
K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)=N_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right) \cap M\left(K_{n} \times \bar{R}_{+}\right)
$$

On $K_{b, a}\left(K_{n} \times \bar{R}_{+}\right)$we consider the topology induced from $M\left(K_{n} \times \bar{R}_{+}\right)$.
Lemma 3. The set $K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)$is compact and convex.
The proof is analogous to that of Lemma 1 in [5]. To apply in the sequel Choquet's theorem we have to find the set $e\left(K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)\right)$of extreme points of the set $K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)$.

For $E \in B\left(K_{n}\right)$ the sets $E \times\{0\}, E \times R_{+}, E \times\{0, \infty\}$ are invariant under multiplication by elements of R_{+}. Hence, for $m \in N_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)$, the restriction of m to any of these sets is again in $N_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)$. Thus we see that each extreme point of $K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)$has to be a measure concentrated either at a point $z \in K_{n} \times\{0, \infty\}$ or at $\{x\} \times R_{+}$for $x \in K_{n}$. Moreover, the measure m concentrated at $\{x\} \times R_{+}$is an extreme point of $K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)$iff, being considered in a natural way as a measure on R, it is an extreme point of $K_{b, a}(R)$ concentrated at R_{+}.
$P_{\text {roposition }} 3$ [5]. The extreme points of the set $K_{b, \alpha}(\mathbb{R})$ are of the form

$$
p_{r}(F)=V_{r} \int_{F}|t|\left(1+t^{2}\right)^{-1} \sum_{k=-\infty}^{\infty} b^{k \alpha} \psi_{r}\left(b^{k}|t|\right) d t
$$

where

$$
F \in B(R), \quad V_{r}=\left\{\int_{R}|t|\left(1+t^{2}\right)^{-1} \sum_{k=-\infty}^{\infty} b^{k \alpha} \psi_{r}\left(b^{k}|t|\right) d t\right\}^{-1},
$$

$r \in(0, \eta]$ and ψ_{r} is defined in the statement of the Theorem.
From the reasoning above we get a description of $e\left(K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)\right)$.
Let $Z_{n}=K_{n} \times([0, \eta] \cup\{\infty\}), \eta=-\ln b$. For $z=(x, r) \in K_{n} \times\{0, \infty\}$ let $m_{z}=\delta_{z}$ and, for $z=(x, r) \in K_{n} \times(0, \eta]$, let

$$
\begin{equation*}
m_{z}(B)=V_{r} \int_{B}\|q\|\left(1+\|q\|^{2}\right)^{-1} \sum_{k=-\infty}^{\infty} b^{k \alpha} \psi_{r}\left(b^{k}\|q\|\right) \lambda_{x}(d q), \tag{5}
\end{equation*}
$$

where $B \in B\left(K_{n} \times \bar{R}_{+}\right)$.
V_{r} is chosen to make m_{z} probabilistic. λ_{x} is a Lebesgue measure on $\{x\} \times \boldsymbol{R}_{+}$. Hence we obtain

Lemma 4. The set $e\left(K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)\right)$coincides with the set $\left\{m_{z}: z \in Z_{n}\right\}$. Moreover, the mapping $w: Z_{n} \rightarrow e\left(K_{b, a}\left(K_{n} \times \bar{R}_{+}\right)\right)$, defined by $w(z)=m_{z}$, is a homeomorphism of these sets.

Lemma 5. With the above-formulated assumptions about the measure m_{0}, for any bounded and continuous function $f: S \times \bar{R}_{+} \rightarrow \boldsymbol{R}$ there exists a finite Borel measure ζ, concentrated at $S \times[0, \eta]$, such that

$$
\begin{equation*}
\int_{S \times(0, \eta]} \int_{S \times \bar{R}_{+}} f(q) m_{z}(d q) \zeta(d z)=\int_{S \times \bar{R}_{+}} f(q) m_{0}(d q)\left({ }^{1}\right) . \tag{6}
\end{equation*}
$$

Proof. Choquet's theorem [1] says that "if X is a linear locally convex space and K is a compact and convex subset of X, then for each $x_{0} \in K$ there
$\left(^{1}\right.$) Obviously, the function $\int_{S \times[0, \eta]} f(q) m_{z}(d q)$ is defined only on $\bigcup_{n=1}^{\infty} K_{n} \times[0, \eta]$ but, as we shall see in the proof, the measure ζ vanishes outside this set, which justifies the notation.
exists a probabilistic measure v on $e(K)$ such that $\left\langle y, x_{0}\right\rangle=\int_{e(K)}\langle y, x\rangle v(d x)$ for each $y \in X^{* "}$.

By Lemma 3 the set $K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)$is compact and convex in the space of all signed measures which is locally convex. The restriction of m_{0}, i.e.

$$
\bar{m}_{n}=\left.m_{0}\left(K_{n} \times R_{+}\right)^{-1} \cdot m_{o}\right|_{K_{n} \times \bar{R}_{+}},
$$

belongs to $K_{b, a}\left(K_{n} \times \bar{R}_{+}\right)$since the set $K_{n} \times \bar{R}_{+}$is invariant under multiplication by scalars.

By Choquet's theorem, applied to the functional

$$
\left\langle m^{*}, \cdot\right\rangle=\int_{\mathbb{K}_{n} \times \bar{R}_{n}} f(q)(\cdot)(d q),
$$

there exists a probabilistic measure τ_{n}, concentrated at $e\left(K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)\right)$, such that

$$
\begin{align*}
& \int_{K_{n} \times \bar{R}_{n}} f(q) \bar{m}_{n}(d q)=\left\langle m^{*}, \bar{m}_{n}\right\rangle=\int_{e\left(K_{b, \alpha}\left(K_{n} \times \bar{R}_{+}\right)\right)}\left\langle m^{*}, m\right\rangle \tau_{n}(d m) \tag{*}\\
= & \int_{w\left(Z_{n}\right)}\left\langle m^{*}, m\right\rangle w \tilde{\tau}_{n}(d m)=\int_{\bar{Z}_{n}}\left\langle m^{*}, m_{z}\right\rangle \tau_{n}(d z)=\int_{Z} \int_{K_{n} \times \bar{R}_{n}} f(q) m_{z}(d q) \tilde{\tau}_{n}(d z)
\end{align*}
$$

(for w see Lemma 4), where $\tilde{\tau}_{n}=w^{-1} \tau_{n}$ is a finite measure concentrated at $Z_{n}=K_{n} \times(0, \eta]$. Multiplying by $m_{0}\left(K_{n} \times R_{+}\right)$the first and the last integrals in (*), we obtain

$$
\begin{equation*}
\int_{K_{n} \times \bar{R}_{n}} f(q) m_{n}(d q)=\int_{\bar{Z}_{n} K_{n} \times \bar{R}_{n}} \int_{n} f(q) m_{z}(d q) \tau_{n}^{\prime}(d z), \tag{7}
\end{equation*}
$$

where $\tau_{n}^{\prime}=m_{0}\left(K_{n} \times \bar{R}_{+}\right) \tilde{\tau}_{n}$.
Taking the sum over n on both sides of (7) and taking Lemma 2 into account, we obtain (6), where $\zeta=\sum_{n=1}^{\infty} \tau_{n}^{\prime}$.

To complete the proof it is enough to show the finiteness of measure ζ. Substituting $f(q) \equiv 1$ in (7), we obtain $m_{n}\left(\boldsymbol{K}_{n} \times \overline{\boldsymbol{R}}_{+}\right)=\tau_{n}^{\prime}\left(\boldsymbol{K}_{n} \times(0, \eta]\right)$. Taking on both sides the sum over n, we get $+\infty>m_{0}\left(S \times R_{+}\right)=\zeta(X \times(0, \eta])$.
3. Proof of the Theorem. Since m_{0} is concentrated at $S \times R_{+}$, we obtain (6) in the form

$$
\begin{equation*}
\int_{X_{0}} \tilde{f}(x) \mu_{0}(d x)=\int_{U_{\eta}^{0}} \int_{X} \tilde{f}(y)\left(h^{-1} m_{h(x)}\right)(d y) \tilde{\zeta}(d x) \tag{8}
\end{equation*}
$$

where $h: X_{0} \rightarrow S \times R_{+}, h(x)=z, \tilde{f}(y)=f(y /\|y\|,\|y\|)$ and $\tilde{\zeta}=h^{-1} \zeta$.
Let us denote the measure $h^{-1} m_{h(x)}$ by μ^{x}. It is concentrated at $\boldsymbol{R}_{+} x$. If we consider the mapping $t x \rightarrow t$, we infer that the inner integral on the right-hand side of (8) has the form

$$
\begin{equation*}
\int_{x_{0}} \tilde{f}(y) \mu^{x}(d y)=\int_{R_{+}} \tilde{f}(t x)\left(x^{-1} \mu^{x}\right)(d t) \tag{9}
\end{equation*}
$$

where $x^{-1} \mu^{x}(F)=\mu^{x}(\{t x: t \in F\})$ for $F \in B\left(R_{+}\right)$.
By (5) we get

$$
\begin{align*}
\left(x^{-1} \mu^{x}\right)(F) & =x^{-1}\left(h^{-1} m_{h(x)}\right)(F)=m_{(x)\|x\|,\|x\|)}(h(F x)) \tag{10}\\
& =V_{\|x\|} \int_{h(F x)}\|q\|\left(1+\|q\|^{2}\right)^{-1} \sum_{k=-\infty}^{\infty} b^{k x} \psi_{\|x\|}\left(b^{k}\|q\|\right) \lambda_{x /\|x\|}(d q) \\
& =V_{\|x\|} \int_{F} t\|x\|\left(1+t^{2}\|x\|^{2}\right)^{-1} \sum_{k=-\infty}^{\infty} b^{k x} \psi_{\|x\|}\left(b^{k} t\|x\|\right)\|x\| d t
\end{align*}
$$

The last equality follows from the observation that if $q=h(t x) \in h(F x)$, then $\|q\|=\|h(t x)\|=\|(t x / t\|x\|, t\|x\|)\|=t\|x\|$ and that $x^{-1} h^{-1} \lambda_{x /\|x\|}$ is the Lebesgue measure multiplied by $\|x\|$. Indeed,

$$
\begin{aligned}
& x^{-1} h^{-1} \lambda_{x /\|x\|}([0, \beta]) \\
& \quad=h^{-1} \lambda_{x /\|x\|}([0, \beta x])=\lambda_{x /\|x\|}(\{x /\|x\|\} \times[0, \beta\|x\|])=\beta\|x\|
\end{aligned}
$$

Now taking (9) and (10) into account we write (8) in the following form:

$$
\begin{align*}
& \int_{X} \tilde{f}(x) \mu_{0}(d x) \tag{11}\\
&=\int_{U_{\eta}^{0}} \int_{R_{+}} \frac{\tilde{f}(t x)}{t} \frac{(t\|x\|)^{2}}{1+(t\|x\|)^{2}} V_{\|x\|} \sum_{k=-\infty}^{\infty} b^{k x} \psi_{\|x\|}\left(b^{k} t\|x\|\right) d t \tilde{\zeta}(d x)
\end{align*}
$$

In order to calculate the characteristic functional of the measure v let us put

$$
\tilde{f}(x)=\left(e^{i\langle y, x\rangle}-1-\frac{i\langle y, x\rangle}{1+\|x\|^{2}}\right) \frac{1+\|x\|^{2}}{\|x\|^{2}} .
$$

Now (11) assumes the form

$$
\begin{align*}
& \int_{x_{0}} \tilde{f}(x) \mu_{0}(d x) \tag{12}\\
= & \int_{U_{n}^{0}} \int_{R_{+}}\left(\frac{e^{i t\langle y, x\rangle}-1}{t}-\frac{i\langle y, x\rangle}{1+t^{2}\|x\|^{2}}\right) V_{\|x\|} \sum_{k=-\infty}^{\infty} b^{k x} \psi_{\|x\|}\left(b^{k} t\|x\|\right) d t \tilde{\zeta}(d x)
\end{align*}
$$

In (12) the function $\mathbb{V}_{\|x\|}$ can be omitted, for it is Borel measurable and bounded. Finally, multiplying both sides by $e^{i\left\langle y, x_{0}\right\rangle}$ we obtain the desired representation.

REFERENCES

[1] G. Choquet, Le théorème de représentation intégrale dans les ensembles convexes compacts, Ann. Inst. Fourier 10 (1960), p. 333-344.
[2] S. A. Chobanyan and V. I. Tarieladze, On the complete continuity of the covariant operator (in Russian), Soobšc. Acad. nauk gruz. SSR 70 (1973), p. 273-276.
[3] E. Dettweiler, Grenzwertsätze fïr Wahrscheinlichkeitsmasse auf Badrikianschen Räumen, Z. Wahrsch. verw. Gebiete 34 (1976), p. 285-311.
[4] E. Hensz, On a subclass of infinitely divisible distributions on Hilbert space, Bull. Acad. Polon. Sci, 25 (1977), p. 579-583.
[5] E. Hensz and R. Jajte, On a class of limit laws, Teor. Ver. 23 (1) (1978), p. 215-221.
[6] W. Krakowiak, Operator semi-stable probability measures on Banach spaces, Coll. Math. 43 (1980), p. 351-363.
[7] A. Kumar, Semi-stable probability measures on Hilbert spaces, J. Multivar. Analysis 6 (1976), p. 309-318.
[8] A. Kumar and B. Schreiber, Self-decomposable probability measures on Banach spaces, Studia Math. 53 (1975), p. 55-71.
[9] A. Tortrat, Structure des lois indéfiniment divisibles dans un space vectoriel topologique (sépare) X, Symposium on Probability Methods in Analysis, Lecture Notes in Math. 31, Berlin 1967, p. 299-328.
[10] K. Urbanik, Lévy's probability measures on Banach spaces, Studia Math. 63 (1978), p. 283-308.
[11] N. N. Vakhania, V. I. Tarieladze and S. A. Chobanyan, Probabilistic distributions in Banach spaces (in Russian), Moscow 1985.

Institute of Mathematics
Technical University of Wroclaw
Wybrzeże Wyspiańskiego 27
50-370 Wroctaw, Poland

