SELP-DECOMPOSABLE PROBABILITY MEASURES ON LOCALLY CONVEX TOPOLOGICAL VECTOR SPACES
 BY CHU VAN DONG (HANOI)

Abstract

The paper presents a proof of the Levy-Khintchine representation for self-decomposable probability measures on complete locally convex topological vector spaces.

In recent years infinitely divisible (i.d.), stable and semi-stable probability measures (p.m.'s) on locally convex topological vector spaces have been extensively studied (see, e.g. [1-3]). However, another important class of selfdecomposable p.m.'s, lying between i.d.p.m.'s and stable p.m.'s, has been considered only in Banach space. This fact motivates our study in this paper.

Let E be a real complete locally convex topological vector space (LCTVS) with the topological dual space E^{\prime} separating points of E. Given $c>0$ and a tight measure M on Borel subsets of R, let $T_{0} M$ denote the image of M under the transformation $T_{c} x=c x, x \in E$.

A tight p.m. μ on E is said to be self-decomposable (s.d.) if for every $0<c<1$ there exists a p.m. μ_{c} such that

$$
\begin{equation*}
\mu=T_{c} \mu * \mu_{c}, \tag{1}
\end{equation*}
$$

where the asterisk * denotes the convolution operation.
In the same way as in the Banach space (cf. [5]) one can prove that if μ on E is s.d., then μ and its component μ_{c} in (1) are both i.d. Further, if μ is . an i.d.p.m. on E, then its characteristic functional, denoted by $\hat{\mu}$, has (cf. [3]) the Levy-Khintchine representation

$$
\begin{equation*}
\hat{\mu}(y)=\exp \left\{i\langle y, a\rangle-\frac{1}{2} Q(y)+\int_{E}\left(e^{i\langle y, x\rangle}-1-i\langle y, x\rangle 1_{K}(x)\right) M(d x)\right\}, \tag{2}
\end{equation*}
$$

where $y \in E^{\prime}, a \in \mathbb{E}, Q$ is a positive definite quadric form on E and $\mathbb{1}_{\mathbb{E}}$ is the indicator of a convex balanced compact subset K of E such that $M(\mathbb{E} \backslash \mathbb{K})$ $<\infty$. The measure M, being a generalized Poisson exponent (Levy measure), has a finite mass outside every neighbourhood of zero in \mathbb{E} and $M(\{0\})=0$.

It is clear from (1) and (2) that μ is an s.d. if and only if its generalized Poisson exponent M satisfies

$$
\begin{equation*}
M \geqslant T_{c} M \quad(0<c<1) \tag{3}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
M=\sum_{j=0}^{\infty} T_{c j} M_{c} \quad(0<c<1) \tag{4}
\end{equation*}
$$

where $M_{c}=M-T_{c} M$ is the generalized Poisson exponent corresponding to μ_{c} in (1).

Thus the problem of representation of s.d.p.m.'s on E is reduced to that of solving inequality (2). In the Banach space this problem can be treated by the extreme points method (cf. [8]) and the polar coordinates method (cf. [4]). However, since there is no norm in the general LCTVS, another method would be more appropriate. In the sequel we apply the so-called "differentiation method" suggested by N. V. Thu to solve inequality (3). Namely, we shall first prove that there exists a limit

$$
\begin{equation*}
G=\lim _{c \rightarrow 1} \frac{M-T_{c} M}{-\log c} \tag{5}
\end{equation*}
$$

which can be considered as a derivative of M (see Lemma 2). Then the measure M can be represented by an inverse operation (integration) - see Theorem 1.

Let K be a convex balance subset of E as in (2). Put $A=E \backslash K$ and define

$$
\begin{equation*}
Q_{A}(x)=\sup \{\lambda: \lambda \geqslant 1, x \in \lambda A\}, \quad x \in E \tag{6}
\end{equation*}
$$

It is easy to prove the following properties of $Q_{A}(\cdot)$:
(i) $1_{A}\left(c^{j} x\right)=1$ if and only if $0 \leqslant j \leqslant \log Q_{A}(x) /(-\log c)$, where j $=0,1,2, \ldots, x \in E$ and $0<c<1$.
(ii) For every $\delta>1, \delta_{\delta A}(x)=Q_{A}(x) / \delta$, whenever $Q_{A}(x) \geqslant \delta$.

Moreover, we get the following
Lemma 1. The family $G_{t}:=M_{c} / t$, where (and in the sequel) $t=$ $-\log c>0$ and M_{c} is as in (4), is tight in the following sense: there exists a number $t_{0}>0$ such that for every $\varepsilon>0$ there exists a convex balance compact subset W of E with the property

$$
\begin{equation*}
\sup _{0<t \leqslant t_{0}} G_{t}(E \backslash W)<\varepsilon . \tag{7}
\end{equation*}
$$

Proof. Let \mathbb{K} be a convex balance compact subset of E as in (2) and δ be a number from the interval (1,2). Setting $\mathbb{B}=\mathbb{E} \backslash \mathbb{K}$ and taking into
account that $M(E \backslash K)<\infty$, we get

$$
\begin{equation*}
M(B)<\infty . \tag{8}
\end{equation*}
$$

Further, by (4) and (i),

$$
M(B)=\sum_{j=0}^{\infty} T_{c j} M_{c}(B)=\int_{E\{\{0\}}\left(\sum_{j=0}^{\infty} 1_{B}\left(c^{j} x\right)\right) M_{c}(d x)=\int_{E\{\{0\}}\left[\frac{1}{t} \log Q_{B}(x)\right] M_{c}(d x),
$$

where [$\cdot]$ denotes the integer part and Q_{B} is defined by (6). Hence and by (ii) it follows that

$$
\begin{align*}
M(B) & \geqslant \int_{X}\left[\frac{1}{t} \log Q_{B}(x)\right] M_{c}(d x) \geqslant \int_{X}\left[\frac{1}{t} \log \frac{Q_{B}(x)}{\delta}\right] M_{c}(d x) \tag{9}\\
& \geqslant \int_{X}\left[\frac{1}{t} \log Q_{\delta B}(x)\right] M_{c}(d x),
\end{align*}
$$

where $X=\left\{x \in E: Q_{B}(x) \geqslant \delta\right\}$.
Now, observing that

$$
\begin{equation*}
\lim _{t \searrow 0} \frac{t^{-1} \log Q_{\delta B}(x)}{\left[t^{-1} \log Q_{\delta B}(x)\right]}=1 \tag{10}
\end{equation*}
$$

uniformly on the set X, one can choose a number $t_{0}>0$ such that, for any $0<t \leqslant t_{0}$ and $Q_{B}(x) \geqslant \delta$,

$$
\begin{equation*}
\left[\frac{1}{t} \log Q_{\delta B}(x)\right] \geqslant \frac{1}{2 t} \log Q_{\delta B}(x) . \tag{11}
\end{equation*}
$$

Therefore, by (9) and (i), it follows that, for $0<t \leqslant t_{0}$,

$$
M(B) \geqslant \frac{1}{2} \int_{X} \log Q_{\delta B}(x) G_{t}(d x)=\frac{1}{2} \int_{X}^{\infty} \int_{0}^{\infty} 1_{\delta B}\left(e^{-s} x\right) d s G_{i}(d x) .
$$

Hence and since $1_{\delta B}\left(e^{-s} x\right)=0$ on the set $E \backslash X$, we get

$$
\begin{aligned}
M(B) & \geqslant \frac{1}{2} \int_{E}^{\infty} \int_{0}^{\infty} 1_{\delta B}\left(e^{-s} x\right) d s G_{t}(d x)=\frac{1}{2} \int_{0}^{\infty} G_{t}\left(\delta e^{s} B\right) d s \\
& \geqslant \frac{1}{2} \int_{0}^{b} G_{t}\left(\delta e^{s} B\right) d s \geqslant \frac{b}{2} G_{t}\left(\delta e^{b} B\right) \quad \text { for every } b>0
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
2 M(B) / b \geqslant G_{t}\left(\delta e^{b} B\right) \tag{12}
\end{equation*}
$$

Since b can be arbitrarily chosen, the last inequality implies that if $\varepsilon>0$
and $2 M(B) / b<\varepsilon$, then $\sup G_{t}(E \backslash W)<\varepsilon$ for $0<t \leqslant t_{0}$, where $W=\delta e^{b} K$ is a convex balanced compact set. Thus Lemma 1 is proved.

Lemma 2. There exists a measure G on E such that $G(\{0\})=0, G$ is finite outside every neighbourhood of 0 in E and

$$
\begin{equation*}
G_{t} \Rightarrow G \quad \text { as } t \searrow 0, \tag{13}
\end{equation*}
$$

where the convergence is taken in the weak sense outside every neighbourhood of 0 in E.

Proof. By Theorem 3.1 in [7], it follows that Lemma 2 is true if E $=R^{1}$. Hence, for every functional $y \in E^{\prime}$, the image of G_{t} under y converges to a limit on \mathbb{R}^{1} which, together with the tightness of the family G_{t} (see Lemma 1), implies that there exists a measure G such that $G(\{0\})=0$ and (14) holds. Moreover, G is finite outside every neighbourhood of 0 in E. Lemma 2 is thus proved.

Lemma 3. Measures M and G in (3) and (13) satisfy the relation

$$
\begin{equation*}
M(\varepsilon)=\int_{E}^{\infty} \int_{0}^{\infty} 1_{\varepsilon}\left(e^{-t} x\right) d t G(d x) \tag{14}
\end{equation*}
$$

for every Borel subset ε of E separated from 0 . Consequently, for every continuous seminorm P on E we have

$$
\begin{equation*}
\int_{E} \log _{+} P(x) G(d x)<\infty \tag{15}
\end{equation*}
$$

where $\log _{+} a=\max (\log a, 0)$,
Proof. From Theorem 2.9 in [7] and Lemma 2 it follows that for every functional $y \in E^{\prime}$ we have

$$
\begin{equation*}
y M(\varepsilon)=\int_{R^{1}} \int_{0}^{\infty} 1_{\varepsilon}\left(e^{-t} x\right) d t y G(d x), \quad \varepsilon \subset R^{1} \tag{16}
\end{equation*}
$$

which, together with the fact that the image of the measure

$$
\int_{E}^{\infty} \int_{0}^{\infty} 1_{\varepsilon}\left(e^{-t} x\right) d t G(d x), \quad \varepsilon \subset E
$$

under y is equal to the right-hand side of (16), implies

$$
\begin{equation*}
y M(\cdot)=y\left(\int_{E}^{\infty} \int_{0}^{\infty} 1\left(e^{-t} x\right) d t G(d s)\right) \tag{17}
\end{equation*}
$$

Consequently, formula (14) holds.
It remains to prove that (15) is satisfied. In fact, let U be a convex balanced neighbourhood of 0 in E and q the Minkowski functional defined by $p(x)=\inf \{\lambda: \lambda>0, x \in \lambda U\}$.

By (14) and since $1_{E \backslash U}\left(e^{-t} x\right)=1$ if and only if $0 \leqslant t \leqslant \log _{+} p(x)$, we get

$$
M(E \backslash U)=\int_{E}^{\infty} \int_{0}^{\infty} 1_{E \backslash U}\left(e^{-t} x\right) d t G(d x)=\int_{E} \log _{+} p(x) G(d x)
$$

Thus Lemma 3 is proved.
Lemma 3 together with formula (2) imply the following representation for s.d.p.m.'s on E :

Theorem. Let μ be an s.d.p.m. on E. Then its characteristic functional μ has the representation

$$
\begin{equation*}
\mu(y)=\exp \left\{i\langle y, a\rangle-\frac{1}{2} Q(y)+\iint_{X}^{\infty}\left(\int_{0}^{\infty} h\left(y, e^{-t} x\right) d t G(d x)\right\}, \quad y \in E^{\prime},\right. \tag{18}
\end{equation*}
$$

where $h(y, x)=e^{i\langle y, x\rangle}-1-1_{K}(x)\langle y, x\rangle, a, Q$ and K have the same meaning as in (2), and the measure G satisfies (15) with $G(\{0\})=0$.

Acknowledgement. I would like to thank my adviser Professor Nguyen Van Thu for introducing me into the problem and for his great support.

REFERENCES

[1] A. de Acosta, Stable measures and seminorms, Ann. Prob. 3 (1975), p. 365-375.
[2] D. M. Chung, B. S. Rajput and A. Tortrat, Semistable laws on TVS, 1979.
[3] E. Dettweiler, Grenzwertsätze fïr Wahrscheinlichkeitsmasse auf Badrixianschen Räumen, Dissertation, Eberbard-Karls-Universität zu Tübingen, 1974.
[4] Z. J. Jurek, How to solve the inequality $u_{t} m \leqslant m$ for every $0<t<1$? Bull. Acad. Polon. 30.9-10 (1982), p. 477-482.
[5] A. Kumar and B. M. Schreiber, Self-decomposable probability measures on Banach spaces, Studia Math. 53 (1975), p. 55-71.
[6] A. P. Robertson and W. Robertson, Topological vector spaces, Cambridge 1964.
[7] N. V. Thu, Universal multiply self-decomposable probability measures on Banach spaces, Prob. Math. Stat. 3 (1982), p. 71-84.
[8] K. Urbanik, Lévy's measures on Banach spaces, Studia Math. 63 (1978), p. 284-308.

Institute of Mathematics, Hanoi
Vien Toan hoc
P. O. Box 631, Bo ho

Hanoi, Vietnam

Received on 23. 12. 1985

