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Abstract. The paper presents a proof of the Levy-Khintchine
representation for self-decomposable probability measures on comple-
te locally convex topological vector spaces.

In recent years infinitely divisible (i.d.), stable and semi-stable probability
measures (p.m.’s) on locally convex topological vector spaces have been
extensively studied (see, e.g. [1-3]). However, another important class of self-
decomposable p.m.’s, lying between i.d.p.m’s and stable p.m.s, has been
considered only in Banach space. This fact motivates our study in this paper.

Let E be a real complete locally convex topological vector space
(LCTVS) with the topological dual space E’' separating points of E. Given
c¢>0 and a tight measure M on Borel subsets of R, let T, M denote the
image of M under the transformation T,x = ¢x, xeE.

A tight pm. u on E is said to be self-decomposable (s.d.) if for every
0 <c¢ <1 there exists a pm. g, such that

M) _ =T u*p,

where the asterisk » denotes the convolution operation.

- In the same way as in the Banach space (cf. [5]) one can prove that if u
on E is s.d., then p and its component y, in (1) are both id. Further, if p is-
an i.d.p.m. on E, then its characteristic functional, denoted by £, has (cf. [ 3])
the Levy-Khintchine representation

@  AO)=exp {iy, a)—3Q0)+ [(€T—1-iy, x> 1 (x)) M(dx)},
| _ .

where ye E', acE, Q is a positive definite quadric form on E and 1y is the
indicator of a convex balanced compact subset K of E such that M(E\K)
"< c0. The measure M, being a generalized Poisson exponent (Levy measure),
has a finite mass outside every neighbourhood of zerc in E and M ({op=0
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It is clear from (1) and (2) that p is an s.d. if and only if its generalized
Poisson exponent M satisfies

@) L M>TM (@O<c<l)

or, equivalently,

@ M=Y T,M, (0<c<l),
: =

where M, = M — T, M is the generalized Poisson exponent corresponding to

Thus the problem of representation of s.d.p.m.’s on E is reduced to that
of solving inequality (2). In the Banach space this problem can be treated by
the extreme points method (cf. [8]) and the polar coordinates method (cf.
[4]). However, since there is no norm in the general LCTVS, another method
would be more appropriate. In the sequel we apply the so-called “differentia-
tion method” suggested by N. V. Thu to solve inequality (3). Namely, we
shall first prove that there exists a limit

5) G = im M= 1M
‘ 1 —logc
which can'be considered as a derivative of M (see Lemma 2). Then the
measure M can be represented by an inverse operation (integration) — see
Theorem 1.
Let K be a convex balance subset of E as in (2). Put A = E\K and
define '

(6) Qd(x)=sup;{/1:‘l>1,xe){,4}, xekE.

It is easy to prove the following properties of Q,(*):

() 1.(c’x)=1 if and only if 0<j<logQ,(x)/(—logc), where j
=0,1,2,...,xeE and 0 <c < 1. . ' :
(i) For every 8> 1, d;5,(x) = Q4(x)/6, whenever Q,(x) = 4.
| Moreover, we get the following
" 'LemmA 1. The family G,: = M,ft, where (and in the sequel) t=
—logc >0 and M, is as in (4), is tight in the following sense: there exists a
number to, > 0 such that for every & > 0 there exists a convex balance compact
subset W of E with the property ‘

M | sup G,(E\W <e.
0<t<y

Proof. Let K be a convex balance compact subset of E as in (2) and §
be a number from the interval (1,2). Setting B = E\K and taking into
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account that M(E\K) < o, we get

(8) M(B) < .

" Further, by (4) and (i),

MB =3 T,MB) = [ (3 LE@)M6)= | Eloggs(x)]Mc(dx),
| “

E\{0} j=0 E\{0}

where [ -] denotes the integer part and Qp is defined by (6). Hence and by (ii)
it follows that

©) M(B) > §[1 log 0y (x)] M.(d%) > IF 1ogQ"—(x)] M, (d%)
x|t xlt 0

> | E log Qss (x)] M, (dx),

b
where X = {er: Qp(x) = 5}.

. Now, observing that

m t~ log Qsp(x) _
o[t 1og Qop ()]

uﬁiformly on the set X, one can choose a number ¢, > 0 such that, for any
0<t<ty and Qg(x) =4,

o

(v | 102 0ur(0) | > 3 08.0un 9

. Therefore, by (9) and (i), it follows that, for 0 <t < t,,

| M(B)> 3 [108 055 (9Gd) = 3 | | Lsa(e™* 9 dsG, (0.
X X0 .

Hence and since 1;5(e"*x) =0 on the set E\X, we get

M®B) > 1 | }D 1,5 (e~ %) dsG, (dx) = T G,(6¢* B)ds
2E o] 2 [e}

b
2%_‘"6,(6e‘B)ds>gG,(6e”B) for every b > 0.
237

Consequently,
(12) 2M (B)/b = G,(6¢" B).

Since b can be arbitrarily chosen, the last inequality implies that if >0



180 C. V. Dong

and 2M (B)/b < ¢, then sup G,(E\W) <& for 0 <t < ty, where W= e’ K is a
convex balanced compact set. Thus Lemma 1 is proved.

- LemMa 2. There exists a measure G on E such that G({O}) =0, G is finite
Outsuie every neighbourhood of 0 in E and

(13) G,=G ast N0,

where the convergence is taken in the weak sense outside every neighbourhood
of 0 in E

Proof. By Theorem 3.1 in [7], it follows that Lemma 2 is true if E
= R'. Hence, for every functional ye E’, the image of G, under y converges
to a limit on R' which, together with the tightness of the family G, (see
Lemma 1), implies that there exists a measure G such that G{({0}) =0 and
(:14) holds. Moreover, G is finite outside every neighbourhood of O in E.
Lemma 2 is thus proved.

LeMMA 3. Measures M and G in (3) and (13) satisfy the relation
(14) M) = | [ 1,(e7" x) dtG(dx)
| . EO

for every Borel subset ¢ of E separated from 0. Consequently, for every
continuous seminorm P on E we have

(15) flog, P(x) G(dx) < o0,

1‘ivhere log, a = max(loga, 0},
Proof. From Theorem 2.9 in [7] and Lemma 2 it follows that for every
functional ye E' we have

(16) - yM( = | Gflg(e"‘x)dtyG(dx), g = RY,

R1 O

\;vhich, together with the fact that the image of the measure
j?la(e"x)dtG(dx), scE,
EO
under y is equal to the right-hand side of (16), implies
(17 yM{) = (j j 1 (7" x)drG (ds)). -
Consequently, formula (14) holds.
It remains to prove that (15) is satisfied. In fact, let U be a convex

balanced neighbourhood of 0 in E and g the Minkowski functional defined
by p(x) =inf{i:1>0, xeAU} '
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By (14) and since 1g (e 'x) =1 if and only if 0 <7 < log, p(x), we get
M(E\U) = | [ lgy(e™' x)dtG(dx) = [log, p(x)G(dx).
EO E

Thus Lemma 3 is proved.
- Lemma 3 together with formula (2) imply the following representation
for sd.pm’s on E:

ToEOREM. Let p be an sd.p.m. on E. Then its characteristic functional p
has the representation

(18 n( =GXP{ b, a>—*Q(JJ)+ f(j v, e—‘X)dTG(dx)} yeE',

where h(y, x) = €9 —1—1x(x)<y, x>, a, @ and K have the same meaning
as in (2), and the measure G satisfies (15) with G({0}) =0
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