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Abstract. Tlie paper presents a proof of thc Levy-Khintching: 
representation for self-decomposable probability measures an csrnple- 
ie locally convex topalogical vector spaces. 

In recent years infinitely divisible (i.d.), stable and serni-stable probability 
measures (p.m.'s) on locaIly convex t o p o l o ~ ~ a l  vedcrr spaces have been 
extensively studied (see, e.g. [I--31). However, another imprtant cZass of self- 
decomposable p.m.'s, lying between i.d.~.m.~s and stable p.m.'s, has been 
considered only in Basaach space. T&s fact motivate% our study in this paper, 

Let E be a. real complete locally convex topologi~al vector space 
(LCTVS) with the toplogical dual space E' separating points of E. Given 
c > 0 and a tight measure 1W on Bolrel subsets of R, let TOM denote the 
image of M under the transformation x = ex, XE E .  

A tight p.m. ,u on E is said to be self-decomposabk (s.d.) if for every 
0 < c < 1 there exists a p.m. & such that 

where the asterisk' * denotes the convolution operation. 
In the same way as in the Banxh space (d [53)  one can prove that if p 

on E is s.d., then p and Its component k ~ ,  in (I) are both id. Further, if y is .  
an i.d.p.~n. on E, then its characteristic functional, denoted by A has id [3]) 
the Lev-Kbintchjine representation 

where ~ E E ' ,  ~ E E ,  Q is a positive definite quadric form ow E and 9, is the 
indicator of a convex balanced compact subset K of E such that M@i,M 
< m. The measenre IW, being a generaked Poismn expnent (Levy mcaure), 
has a finite mass outside every n e i g h b u r h d  d zero in E and M[(eb]) = 0. 
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It is clear from (1) and (2) that p is an s,d. if and only if its generalized 
Poisson exponent M satisfies 

or, equivalently, 

where M, = M -  T,  A4 is the generabzed Poisson exponent corresponding to 

P C  in (1). 
Thus the problem sf  representation of s.d.p.m.% son E is reduced to that 

of solving inequality (2). Ira the Barnwh space this problem can be treated by 
the extreme p in t s  method (cf. [8]) and the polar coordinates method (d 
[4]). However, since there is no norm in the general LCTVS, another method 
would be more appropriate. In the sequel we apply the so-called "'rliRerentia- 
tion method" suggatd by N. V, Tku to solve inequdtgr (3). Namely, we 
shall first prove that there exists a limit 

which can be eoxlsidered as a derivative of M (see Lemma 2). Then the 
measure M can be represented by an inverse owation (integration) - s m  
Theorem 1. 

Let K be a convex balance subset d E as in (2). Put A = E\K a d  
qefine 

Et is easy to prove the fallowing properties of Q A ( . ) :  

ti) I, (cj x) = l ]if and only if 0 < j 4 log Q A  (xjtl( - Bog c), where j 
=0,  1 , 2  ,..., X E E  and O < c < 1 .  

(ii) For every 6 > 1, dbA (x) = Qa (x)/G, whenever &, (x) 2 6. 

i Moreover, we, get the &dowing 
I LEMMA 1. The family Gt: = M J t ,  where (and in the sequel) t = 
-loge > 0 ard is as 8'12 441, is tight in the followiragr sense: there exists a 
$umber to > O such that for every E > 0 there exists a convex balance compact 
subset W of E with the property 

45 sup G,(E\Hj <E. 
0 <r <to 

Proof. L&f K be convex balance compact subset of E as in (2) and 6 
be a numb. from the intepvd (8,2). Sdting B = E\K arm$ takuing into 



Se!f=dsco~sable prohbilty measures 

account that M(E\K) < m, we get 

($1 M ( B ~  < GO. ' Further, by (4) and (i), 

*here [ - denotes the integer part and Q, is defined by $6). Hence and by (ii) 
it follows that 

where X = { X E E :  Q,(x) 2 6, '. 

Now, observing that 

uniformly on the set X, one can choose a n u m k r  t, > 0 such that, for any 
0 < t < t, and Q,(x) 2 6, 

i Therefore, by (8) and (i), it follows that, for 0 < t < I,, 
I 1 1 3 0  

Hence and since 1, (e-" x)t = 0 on the set E \X, we gd 

1 1 "  1 "  
MI(I3) 2 - j J Ids (e-" x) dsGl (dx) = - j Gt (SeSB) ds 

2," 2 0 

1 b 
2 - J 6, ( 6 8  B) ds 2 - Gt;,(6$ B) for every b > 0. 

2 " 2 

Consequently, 

Since b can be arbitrarily chosen, the last inquality implies that if 8 > 0 
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and 2M(B)/b < c ,  then supC, (E \w  < E  for 0 < t d to, where W = 6 @ #  is a 
convex balanced compact set. Thus Lemma E is proved, 

LEMMA 2. There exis~s a naeusurdi a7 on E such that G ( ( 0 ) )  = 0, G b jClnite 
outside every neighhrourhood qf 0 in  E and 

where the convergatace is taken in the weak seme outside c.us~y neig3zbot~rAoad 
of O in E. 

Proof.  By Theorem 3.1 in PI, it follovlls that Lmma 2 is true if E 
=. R 1 .  Hence, for every functional y GE',  the image sf Gt under y converges 
to a limit on R1 wl~ich, together with the tightness of the faxnily G, (see 
Lemma I), implies that there exists a measure G such that G ( [ 0 ] )  = 0 and 
(14) holds. Moreover, G is bite outside every nt.lighbourhood of 0 in E. 
Lemma 2 is thus proved. 

LEMMA 3. Measures M and 6;: in (3 )  and (13)  sntisj) the relation 

f i r  every Borel subset E of Of separated from 0. Consequ;ently, for mery 
continuous sembnornz P on B we have 

where log, a = max (bg a,  O),  
Proof. Fram Theorem 2.9 in 173 and Lemma 2 it follows that for every 

functional y E LS' we have 
m 

(! 6) yM(F)= I ) '1 , (e -b)dtyG(dx) ,  E c R ' ,  
I ~1 0 

which, together with the fact that the image of the measure 

I 

under y is equal tto the right-hand side of (16), implies 

Consequently, formula (14) holds. 
It remaans to prove that (15) is satisfied. In fact, 14% U be a convex 

balanced neighbowhood of O in E and q the Mi&owski functional defined 
by p(x) = id{a:/l. > a, ~ ~ a u ] .  
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By (14) and since lE , t - (e -*x)  = f if and only if O 6 t G Log, p(x), we get 
m 

M(E:\U) = J 5 I,,,(s-f~)dtG(dx) = Slog, p[x):)C(dx). 
E o e 

Thus &ernma 3 is proved. 
Lemma 3 together with formula (2) imply the follcrwimg repsesehtation 

for s.d.p.m.'s an E: 
THEOREM. Let .u be an s.d.p.na. on E. Thm i t s  ckarmtwisfic Jirmtianal p 

has the representation 

where h{y, x) = keaX>- 1 - lK(x) { y ,  x). u, Q arrd K hcrrje the same meaning 
as in (2), and ihe memure G snlisfivs (15) with G ( { O } )  = 0. 
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