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SMOOTHED ESTIMATES OF A DISTRIBUTION FUNCTION*
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Abstract. Suppose F, is a convolution-smoother of the stan-
dard empirical distribution function based on a random sample from
a distribution F with a positive density. Consider the smoothed
sample quantile function Frip) =inf{x: F,(x) 2 p}. Under approp-
riate conditions, we establish a pointwise Bahadur type representa-
tion theorem [1] from which local behavior can be inferred.

. 1. Intreduction. Suppose X;, X,, ..., X, are iid. observations having
dommon distribution function (d.f) F with density f > 0. Let F,(?) denote the
empirical df. based on the X;s and define the quantile function G™' of any
distribution function G by the left-continuous version

Q) G l(p=inf{x: G(X)=p}, O<p<l.
With this definition, the sample quantile function F, ! satisfies
2 Flp=X, f k—1<np<k, k=1,2,...,n

where X, is the k™ order statistic from the X’s. For notational convenience,
also let ~ '

3 Z,(9 = /rIF()—-F (9], —o0<x<oo,

and

) Q.(0)=/nlF; ' @-F '], 0<p<l,

denote the empirical process and quantile process, respectively.
Consider

) R,(p) = Z,(F~ (o) + [ (F~ (1) Cu(D)-
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Bahadur [1] showed that if f{F~'(p)) > 0 and f” exists and is bounded
in a neighbourhood of F~1(p), then

(6) R,(p) = O[n~ "*(log n}!/* (loglog n)'**]

with probability 1 (w. p. 1) pointwise as n — co. Then Kiefer [8] obtained the
exact rate of strong uniform convergence of R,(p), 0 <p < 1. Subsequent
works of interest include Kiefer [9, 10], Sen [14], Cs6rgd and Révész [2],
and Shorack [15].
While many of the above-mentioned investigations were probabilistically
oriented, the main motivation of the present article is a statistical one.
Needless to say, the use of quantiles in the context of the sample median and
_the interquartile range are statistical folklore. In recent years, Parzen [12, 13]
has also suggested extensive use of quantiles and density-quantiles in data
analysis. Of course when F has a density, it is perhaps more reasonable to
use a smooth estimate F, of F rather than the step function F,. (For some
discussion of F, based on convolution, see [11].) Smoothing again turned
out to be appropriate in generating bootsirap samples, as Efron [3] has
indicated. : v -
In this discussion, we first smooth the empirical d.f. F, by convolution
as in [117, ie, let '

J

. 1
M Fu() = [Wa(x—1)dF, @) = ~ _IWL(xhX,-L

where - {W,,} is a Heaviside sequence, ie., {W,,} is a sequence of d. f’s
converging weakly to the d.f. corresponding to the unit mass at the origin.
Then define

®) Byl (p) =inf {x: F,(x) = p}.

Another type of quantile estimation is considered in [5] and [4] where
the smoothing is applied to F, !(p) (i.e., take inverse first, then smooth). Still
a third point of view, based on U-statistics, was employed in [7]. It would be
interesting, although not for the present discussion, to compare the statistical
behavior of all three versions.

For the remainder of this article, we will assume that W, is differentiable
with a positive derivative on its support, so that for n sufficiently. large, £, ! (p)
is unjquely defined and that F;'oF, is the identity function.

The symbols “0” and “0” will be used with the understood qualification
“as n— c0.” )

Our main result (a Bahadur type representation theorem for F; )]
together with its corollaries will be presented in the next section.
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2. Maip resml¢. Let ‘
(10) R =Z,(F ')+ Sf(F ' @)0.p, 0<p<l,

where Z, and ), are defined in a similar way to (3) and (4) according to F,
and F; !, respectively. Our objective is to obtain a pointwise rate of almost
sure convergence for R, (p). We will proceed in the same way as Bahadur
[1]. There are essentially three steps.

First show that

(11 IE;'(p-F '(Dl<a, w.p. 1 as n— oo,
1/2

where a, = c(n”'logn)'/* for some constant ¢ > 0 suitably chosen.
In the second step, we show that

(12 sup|[F,(x)—Fo(F~ ' (0))] - [F () —p]l = O [n~ ¥*(logn)**]w. p. 1,

with the supremum taken over all x such that |x—F~!(p)| < a,.
Thirdly, by Lagrange’s form of Taylor’s expansion w.rt. F~1(p), if f*
exists and is bounded in a neighborhood of F~!(p), we have

(13} FE)=FF @)+ F *O)F ' @-F '@l+
+O[(F; () —F ()]

The final result will be seen as a consequence of (11), (12) and (13).
We begin with the following

LemMa 1. Suppose f(F~'(p)) exists, and W, satisfies
(W) : ftaw, (=0, | |ddW,() = o(ad),

It] >a,

where a, = c(n”'logm)'/2. Then for ¢ >0 sufficiently large, (11) holds.
CoroLLArY 1. F;1(p) is pointwise strong consistent.
~ Proof of Lemma 1. Since 0 < W, <1 for all n, by [6], for any & > 0,
(14) P(F,(x)—EF,(x) > &) < exp {— 2ne?}. »

Let a, = ¢, (n” ' logn)'/?, where ¢, > 0 will be specified later. Now, for n
large enough{ »
15 P(F;'(-F ') >a)
| =P(F, () > F '(D+a)+P(F; (p) <F ' (p)—a))
=P(F.(F ' (p+a) < p)+P(F,(F (9 —~a;) > p).
Next, write 7, = F~!(p)—a,. We will show that

(16) p—EF,(z) = f(F' (D)) @y +0(a).
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By the first condition of (W),
A7)  p—EF,(n)—f(F ' ()a,
| = [[F(F~ ()~ F (F~* ()~ —1)— £ (F~* (9))(d; + D] dW, (0
= J" + j = A+ B, say.

tlse;  ltl>a

Now, for n sufficiently large

u<  FEEOFEID=a=0  eor gyl g aw, o,

lr|<ﬂ;'[ a+t

The absolute value of B is bounded by
2+ f(F ' (P)a] j AW, +f(F ' (p) | ldW, (),

ltl >ap, 2] >ay,

which, by the second condition'in (W), is also o(a;) for n large enough. Thus
(16) is verified.

‘Consider the second term on the right of (15); by (14) (since p
—EF (m,) > 0 for n large enough by (16))

(18) P(F,(n,) > p) = P(F,(n,)—EF,(n,) > p—EF,(n,))
< exp {"‘"27’1 [p_Eﬁn(nn)]z}a
whence from (17), as n— o0,

P(Fa(m) > p) < exp{ 3nf*(F ‘())cll"g"}

Choosing ¢ sufﬁciently large we see that

(19) Y P(F, 1:,,}>p)<oo for some 0 < N; < o0.
n?Nl

Similarly, one can choose a ¢, > 0 sufficiently large such that for aj
= c;(n” ' logn)'/?,
(20) Y P(FF '(p+a))<p)<oo for some 0 <N, < 0.

n=Noy

Taking N =N, v N,, ¢ =¢; v ¢,, and a, = c(n~* logn)!/?, we see that

(11) follows by the Borel-Cantelli Lemma.

Next, we state a non-trivial result which allows us to bypass the detailed
argument presented in Lemma 1 of [1]:
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ProposiTioN ([16], Theorem 2.15). Let {a,} be a bandsequence, that is,
0<a, <1, and that, as n— o0, ‘ '

(i) na, 1 o,

(ii) loga, ! = o(na,),

(iii) loga, ‘/loglogn— co.

Suppose J is an interval (possibly infinite) on whzch F has a (positive)
uniformly” continuous derivative f. Then ‘

: |12, ()~ Z, (W) _ 2
'Il{l)l:) ’ S'I‘Jl{)a" [2a,loga, 1] [il;?f(x)] w.p.1l.

We now establish (12) by way of the following

LemMMA 2. Suppose a, is defined as in lemma 1 and suppose f is uniformly
continuous on the support J of F. Then (12) holds.

Proof. Observe that
[Fn(x)_ﬁn(F_l(p))]_[F(x)_p]
=n" " [Z,(x—u)—Z,(F ! (p)—u)] dW,(w),
so that the left side of (12) is majorized by

sp 2, = Z, (7 @) )] 4 )
uu")'\""
< sup n Y*|Z,(9—Z,@)| 1 =0[n*(a,loga; 1)'/*]
Is—t] <a,
s,ited

=0[n 3*(ogn’*] w.p. 1

by the Proposition above and by the fact that {a,} defined in Lemma 1 is'a
bandsequence.
We are now ready to state the main result.

THEOREM. Suppose f is uniformly continuous, f'(F~'(p)) exists and f' is
bounded in a neighborhood of F~'(p). Suppose {W,} is a Heaviside sequence
satisfying (W). Then R,(p) defined in (10) satisfies

(22) R,(p) = O[n~Y*(logn)®*] w. p. 1.
CoRrROLLARY 2. Under the same conditions as in Theorem, asymptotically,
FF1@)Culp) £ —Z,(F ' ).

Hence, by arguments analogous to Theorem 1 of Yamato [17],

(23) 0,0 — 1P S N©, ) as n—oo,
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where

tn(p) = /n[p—EF,(F )/ f (F (),  of =p(—p)/f*(F (p)-
Proof of Theorem. By Lemmas 1 and 2 and (13), we have
FLLF 01 =Fo(F @)}~ {f(F ) IF (9~ F (91+0(a)}
= 0 [n"¥*(logn**] w. p. 1.
Simplification yields

4 F'p=F'o+[p-F(F @) f(F @)+
+0[n"3¥*(logn)**] w. p. 1,

which is equivalent to (22).
CoroLLARY 3. Under the same conditions as in Theorem,

(25) lim £ (F~ (p))I0. (PI/[2p(1—p)loglog n]** = 1 w. p. 1

n—+aw

provided p,(p)/(loglogn)'/* = o(1).
Proof. This follows from the pointwise law of the iterated logarithm
for F,(x) (see [11]).
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