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Abstract. Suppose p,, is a convolution-snlootherr of the stan- 
dard empirical distriburio~~ function based on a random sample from 
a distribution F with a positive density. Consider the smoothed 
sample quantile furiction R; ' ( p )  = id {x: #, (x) 3 p ]  . Under approp- 
riate conditiony we establish h pointwise Bahadur type representa- 
tion theorem [I] from which local behavior can be inferred. 

, 1. ImtrdwkiaJI. Suppose XI, Xt, . . . , ;Yn are i.i.d. observations having 
 omo on distribution function (d.E) I; with density f > 0. Let I;,(.) denote the 
empirical d.f, based on the Xj's and define the quantile function G-' of any 
distribution function G by the bft-continuous version 

With this definition, the sample qiuantile function F i l  satisfies 

(21 F i l ( p ) = X , : ,  if k - 1  < n p < k ,  k = 1 ,  2, ..., n, 

where X,, is the Kh order statistic from the Xis. For notatio1.ia.1 convenience, 
also let 

and 

denote the empirical process and quantile process, respectively. 
Consider 
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Bahadur [lj showed that iEj(F-'(p),)3 > 0 and f' exists and is hounded 
in a neigknbourhoaad of F - l  (PI, then 

(6) R,(p) = 0 En-'I4 (log n)U2 (log log n)1114] 

with probz"aailty 1 (w. p, 1) pointwise as TI. +. m. Then Kiefer [8] obtained the 
exact rate of strung uniform convergeme of R,(p), 0 < p < 1 .  Subseqrnenl 
works of interest include Kiefer [9, 101, Sen [1411;, CsGrgii and R6vkz [2], 
and Shorask [15]. 

While many of the above-mention& investigations were probabilistically 
oriented, the main motivation of the present aticle is a statistical one. 
Needless lo say, the use of quantiks in the context sf the sample median and 

. the interguartile range are statistical folkbre. In recent years, Pamen E12, 131 
has also suggested extensive use of qualatiles and density-quantiks in data 
analysis. Of course when lo has a density, it is perhaps more reasonable to 
use a smooth estimate E,, of F rather than the step function F, ,  (For some 
ds~ussion of gR based on convolutioa see [Ill.) Smoothng again turned 
out to be appropriate in generating bootsbap samples, as Efron [33 has 
indic;ased. 

In this discussion, we %st smooth the empirical d.f. F ,  by wnvolution 
as in [I 11, i.e., let 

w k e  {W,] is a Heaviside sequence, is., {WN) is a sequence of d. f.'s 
converging weakly ti3 the d.f. correspndiilg to the unit mass at the origin. 
Then define 

Another type of quantile estimation is considered in [ 5 ]  and [4] where 
the smoothing is applied to F i l ( p )  (i.e., take inverse first, then smsoth). Still 
a third point of view, based on U-statistics, was employed in [7]. Bt would i$e 
interesting, although not for the present discussion, to compare the statistical 
behavior of all three versions. 

For the remainder of this article, we will assume that W, is cdgerentiabb 
with a positive derivative on its support, so that for n sufficiently large, (p) 
is u4quely befind and that p;' OF, is the identity function. 

The symbols "0" and "ow will be used with the understood qualification 
""as tz-.cn." 

Our main result (a Balaadur type representation theorem for .@i1(p)3) 
tagether with its corollaries will be presented in the next sextion. 
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where i?,, and 0, are defined in a similar way to (3) and (4) according to F,  
and pi1, respectively. Our objective is to obtain a pintwise rate of danost 
sure convergence for We will pro~etxl in the same way as Bahadur 
111. There are esse3ntialIy thee steps. 

First show that 

where n, = c ( n l l  log n)'12 for some constant c > O suitably chosen. 
In the second step, we show that 

with the supremum taken ova all x such that Jx-F- (p)J < a,. 
Thirdly, by Lagrange's form sf  Taylor's expansion w.r.t. F-lCp), i f f '  

exists and 5s bounded in a neighborhood of F -  (p) ,  we Rave 

The h a 1  result will be seen as a consequenGe of (ll), (12) and (I?). 
We begin with the following 
LEMMA 1. Suppose f (F-  (p) )  exists, and W', satisfies 

where a, = e ( r z -  ' log n)'12. Then fm c > U sufficiently large, ( 1  1) holds. 
COROLLARY 1. Pi1(p) i s  pointwise strong consistent. 
Proof of L e m a  1. Since 0 4 Ws < 1 for all n, by [ti], for any E > 0, 

I 141 P(~ , (x ) -E~ , (x )  > E )  < exp{-2m2). 

Let a;, = cl (n- "log rs)li2, where c ,  > 0 will be s , d f i d  later. Now, for n 
large enough, 

(15) ~ ( I P ,  ~ ( P ) - F - '  (PI/  > 4) 
= > ~ ; - ~ ( p ) + a k ) + P ( ~ ; ~ ( ~ )  < F - ' ( P ) - ~ )  

= ~(E,(F-"(p-i-a:) < p ) + ~ ( P , ( ~ - ~ ( p ) - n ; )  > p). 
Next, write n, = F- ( p )  --a;. We will show that 

(16) p - & ~ , ( n &  = f ( F - I  (p))a;+o(a2. 
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By the first condition of (W), 

=. j' $ j = A + B ,  say. 
la1 It( ;-a; 

The absolute value of B is bounded by 

which, by the second condition in (W), is also o(a:) for n large enough. Thus 
(16) is verified. 

Consider the second term on the right of (15); by (14) (since p 
-EE,(K,J > O for n large enough by (16)) 

whence from (17), as ps -t rn , 

Choosing c, sufficiently large, we see that 

(119) C ~(@,( lc,J>~)<m for some O < N , < o o .  
nBNl  

Similarly, one can choose a c2 > O sufficiently large such that for a: 
= c ,  (n-  log n)'),, 

(20) ~ ( ~ , ( ~ - ~ ( p ) + n ~ ) < ~ ) < o o  for some O < N 2 < 0 3 .  
nB N2 

Taking iV = N ,  v N , ,  c = c ,  v c,, and a, = c(n-'  log n)'I2, we see that 
( 8  1) follows by the Borel-CantelEi Lemma. 

Next, we state a non-trivial result which allows us to bypass the detailed 
argument presented in Lemma 1 of [I]: 
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~ O P O S I T I O N  ([16], Theorem 2.15). k t  {an} be a bardseqgance7 that is,' 
0 < a ,  < 1 ,  and that, as n-. m, 

(i) nu, f 03, 

(ii) log a; ' = o (na,), 
(iii) log a; '/log log n -. m . 
Suppose J is ar? interval {possibly i r ~ n i t e )  on which F has a (positive) 

uniformly' continuous derivative f. Then 

lim sup la, - Zn lull -, = [sup f (x)]""".p. 1.  
n - @  ra 13 -.I d a,  [2am log a,, f xeJ 

i.WJ 

We now establish (12) by way of the following 
LEMMA 2. Suppose ci, is defined as in h m m d  1 and suppose f i s  esniforrnly 

contirzuous on the swgport J qf F. Then (12) holds. 
Proof. Observe that 

so that the left side of (12) is mjorized by 

sup n-l/~[~,(x-u)-~,(~-'((p)-zs)]~~d~{~) 
IX- F $ ~ I  < a n  

sup n- 12, (s) - Z ,  (t)l 1 = 0 [n-lJ2 (an log a; ')1'2] 
Is - t l  s o , ,  

s , t ~ J  

= 0 [n- 3/4 (log n)3/4] W .  p. 1 

by the Proposition above and by the fact that {a,,) defined in Lemma 1 is a 
bandsequence. 

We are now ready to state the main result. 
THEOREM. Suppose f is un$ornaly continuous, f ' ( ~ - ' ( p ) )  exists and f' is 

bounded in a neighborhood oJ F 1 ( p ) .  Suppose (Wn) is a Heaviside seqzsence 
satisfving (W). Then ff,lp) defined in (10) satisfies 

(22) k, (p) = O [a- ' I4 (log n)3'4] w , p. 1 .  

COROLLARY 2. Under the same conditiolzs as in Theorem, asymptotically, 

Hence, by arguments analogous to Theorem 1 of Yamato [17], 
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where 

Proof of  Theorem. By Lemmas 1 and 2 and (13), we have 

Fa E F ~  (dl -pn ( F -  (PI)) - f f  (F-' ( P I )  CPR ( P I  -.F-l (PI] -t Q (4)) 
= O In- '1" (log n)'14] w. p. 1. 

SimpEfication yields 

(W ~,~(P)=F-'(P)-~-[P-~,(F-~(P~}]/~'(F-~~~)+ 

-1-0 [n-3f4(logn)3f4"j W .  p. 1,  

which is equivalent lo (22). 
COROLLARY 3. Under the same conditions as in Theorem, 

(25) lim f'(F1 ( p ) )  (0, [p)l /[2p(1- p) log log nJ1J2 = 1 w. p. 1 
A d ( 4  

pmuided pn (p)/(log log n)'lz = o [I). 
Proof. This fallows from the pointwise law of the iterated logarilh 

for @,(x) ((see [Ill), 
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