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ESTIMATION OF THE LOCATION PARAMETERS

BY

C. G. KHATRI (AHMEDABAD)

Abstract. The paper concerns the estimation of univariable
(multivariate) linear regression parameters based on the independent
normally distributed random variables (vectors) with unknown va-
riance (p. d. covariance matrix).

1. Univariate linear regression parameters. Let x; (i=1,2,...,n) be
independent N (y;, 6%), where if i’ = (uy, ..., i), then

(1.1 1= Ap,

A being a known (nxm)-matrix of rank m, and B and o2 are unknown
parameters.
The best linear unbiased estimate of f is

(1.2) B=AA 4%, x=(x;,%,-.. %,
and -
(1.3) B~ N(B, a*(4 4 Y).

Other types of estimates for f are obtained using Bayes arguments.

Suppose we have a prior knowledge on f and assume that the prior
distribution of B is N(B,, 6> A) when B, is known, and ¢? and A may be
known or not. Suppose ¢ and A are known. Then the distribution of g,
given Xx, is '

N{A '+ A4 A" YA Bo+ A'x), 6> (A~ + 4 A)7Y).
Hence Bayes estimate of f is given by o
(1.4 By =(I+AA A Bo+((A A A +1) ' B = o+ WS,
where 6 = f— B, d=p—Po aﬁd W = (1+(A4' 4) *)_l
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We have
(1.5) BBy =Pt WS
and ‘
(1.6) M, =E@B,—B)(By—B) =c* WA AW +{I-W)o5'(I~WY.
Is it possible to find W so that T = o2{4’ A)"*— M, is positive semi-

definite? This will be possible if we consider W depending on ¢2 and 4. It is
possible to write T as ‘

1.7 T = 6> To—(W—v) (62 (4 A~ +8) (W —v),
where ' ’
To =(A' A"t —67266{1-6(a*(4" A)~1+65) ' 6}
and |
v =88 (a2 (4’ A)~ 1408 "
Since
(% (A" A~ +66) V=4 A— A’ A68' A’ Af(c®+ 8 A’ Ad))Jo?,

the above expressions can be written as

(13) T, = (A’ A)" 1 — 05 /(0?+5 A’ A3) = (I —)(A' A)"!
and ‘ ‘
(1.9) y =66 A’ Af(c?+5 A AS):

It is easy to verify that T, is positive definite. Hence the best choice of
"W depends on  and 62, and it is given by W = v. Tl’AliS estimate cannot be
utilized and hence substituting ¢ and § by s*> and 0, respectively, where

=X [I—A(A AV ATxf(n—m) = (x' x— B A’ AP){(n—m).
Then, the new proposed estimate of f§ is

. 5 A A6 .
. = ﬁé.
(1 10) ﬁb ﬂ0+52+61A1A5 ‘
Sometimes it is better to use some other estimate of o2 instead of an
unbiased estimate and, hence, we shall modify the estimate f, given by (1.10)
as
- & A A4S .
1.11 = T
( ) ﬂbl ﬂ0+c52+51A1A5 4

where ¢ is an appropriate constant. The estimator (1.4) is known as the Ridge
estimator of f (see [5]), while the estimator (1.11) is known as the empirical
Bayes estimator, which is a particular case of those proposed and studied by
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Stein [8], Effron and Morris [2], etc. These estimators can be written as
" 1 \ -
(1.12) Bos = Bot+ 1“;?'(31) 15’
7/
where u = (§' A’ A8){(n—m)s?, and r(u) is a function of .
Notice that (1.11) can be obtained from (1.12) by taking
(1.13) r(u) = cuf(c+(n—mu).

2. Multivariate linear regression parameters. Let x;, X, ..., X, be inde-
pendent p-dimensional observations and let x; ~ N (y;, X). Suppose

1

-(21) u={ " |=ap,
Hn

A being a known (n xm)-matrix of rank m. Here B and Z are unknown

parameters. » ‘ :

Let X =(xy, ..., x,). Then the maximum likelihood estimate of f is

(2.2) B=A A 14X

and : :

(2.3) pa ~ N(Ba, @ Za(A’ 4)~")

for any vector .

To obtain other types of estimate for B, let us assume that
pa ~ N(Boa, a’ TaA) for any vector a. Then the posterior distribution of fia,
given X, is ‘ ‘

N{{A '+ A" AN (A fo+ 4" X)a, @ Za(A T+ A A7
for any vector a, and hence the Bayes estimate of f§ is
24) By = Bo+ W0, |
where & = f—f,, 5 =p—Bo and W= (I, +(44'4)" ") ",
Notice that, for all non-null vectors a, the distribution of f,a is
N{(Bo+Wd)a, a ZaW (4’ 4)~ 1 W), ’

Now, if ' = (Bi Pas ..., Bm), then we write B, = (B}, B2, ..., Br). In this
notation, f, ~ N(B,, (4’ A)" ' ®Z) and By, ~ N((Bo+Wé),, W(A' 4 ' W RZ),
where. PQQ is the Kronecker product of P and @ and it is defined by
PRQ = (p; Q) with P = (p;;). Then the mean square error for f, is

My = EBpu~Ba) Bou—Ba) = W(4' A7 WRE +[(1 = W) 81, [ - W)3T,.
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Is it possible to find W so that T = (4’ 4)"'®Z — M, is positive semi-
definite?
Let B’ = (b, b,, ..., b,) and By, = (b}, b3, ..., b,). Then, if T is positive
semi-definite, :
(B,) TB, =1r 2B {(A’ A W4 41 W’} B —(tr(I— W)r‘SB)2
should be nonnegative for all non-null matrices B. Let us transform:
B 3™Y2B (4 AV,
W — (AI A)“ 1/2 W!. (A' A)I,IZ’
§— (A A 25, 212,
Then
(B,) TB, = tr By B, (I— W, W))—[tr(I— W,)é, B,1°.
Now, if we choose W; = 8,6, (I+6,67) !
W, =0T oA AT T,
then at least it can be verified that T is positive definite for p =1 and 2. It

would be nice if this were true for any p.
Since ¢ and X are unknown quantities, we can substitute 4 and cS for

their estimates, where S = X [I—A(4’ A)~!' A’} X"/(n—m). Then we can pro-
pose for B the estimate

(2.5) Bre = Bo+8(cS+8 A’ A8)~1(5' A’ AS),

which is a generalization of (1.11). Formula (2.5) can _p::_ »rgfyritt‘erll as
(2.6) Boe = Bo+(8S~ 1) (A’ A) L c+857! 3’) 18,

which is a generalization of Thompson’s estimator [9, 10} As in the
univariate situation, we define

2.7 \ Bys = Bo+ WS,
where W is a function of §S™1§'.

3. Other types of estimates.

(a) Univariate. Let us base our estimate of f§ (of Section 1), based on the
empirical testing, on Ho(f = Bo) VS H(B # fo). Hence the proposed estimate
of fis

3= Bo+fid  fu<e,
o fz( (ﬁ Am;iﬁ ) f  otherwise,
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where u = § A’ A5{(n—m)s* and c is a constant. Here f; and f, are some
appropriate functions. Alam [1] used f; () = u/(1+4) and f;(w) =1, while
Upadhyaya and Srivastava [11] used f; (4} = 1 —aexp(—bu) and f,_ w=1.
They obtained mean square errors.

(b) Multivariate. In the model of Section 2 we can propose

(Bo+F (65715)6 if u(6S™ & A A<, or
Bow = 16" A" AB|/|S+6 A’ 4| > ¢
F,(BS™ BB otherwise,

where F, and F, are matrix functions of 5§14’ and BS™!f, respectively.

4. Bias and mean square error.

(a) Univariate. First of all we shall consider the estimate Bie = Bo
+ f(4) 6, where f(u) is a function of u = (§’ A’ A8)/(n—m)s®. We observe that
 and (n—m)s? are here independently distributed, 6 ~N(@S,a%(A' A7) and
(n—m)s?fg? ~y2 .. Let w= (6’ A Aé)/a and v = (n—m)s?/o2. The problem
is to find

(4.1) E@|w,v) and E(68|w, v).

To obtain these results, we observe that the density of & is
’ 1 . -
4.2) (2m) ™2 g™ A’ A exp (——2—0_—2-(5—5)’A'A(5—5))

and the density of w is

a0 (i/z)] w(m+2j—2)/2e—w/2

n, ) = e~ 42 .
“3)  glwim, 1) =e 2 JU 2m N2 [(mf24)

for 0 <w <o
or

(4.3a) g(wim, 2) = g(w|m, Q) a(w|m, 1),

where A = &' A’ Ad/o? and g(w|m, 0) is obtained from (4.3) by putting 4 = 0.
Hence, the density of o, given w, is

44 wl m2(rg?)" "‘/2!A’A|”2F(m/2){a(w|m Ny 1exp( 6’A’A5>

Let z = (A’ )llla/aﬁ and pu=(4' A)1/25/af Then (44) can be
rewritten as

4.5) (a(w|m, A} Lexp(y/wA i 2) [dz],

where zZ'z=p'p=1 and [dz] is a unit invariant Haar over O(1, m)




22 C. G. Khatri

= {z: 7z = 1}. The distribution given by (4.5) is known as Fisher — von
Mises distribution and studied by various authors (e.g. [4, 6, 12]).

Let C be an orthogonal matrix the first row vector of which is p.
Then Cz =y gives [dz] = [dy], and the density of y, given w, is

(4.6) {a(wim, 1)}~ 'exp(/wA y1) [dy],
where

I'(m/2) d
@.7) [dy] =—(£//’-“")E% over y'y = 1.

By (4 6) and (4.7) it is easy to show that y, and {y//1—y? for
i=2,3,..., m} are independently distributed, the distribution of y,, given w,
is

1 -
(4.8) h(y'1}={ (§,m2 )a(wlm /1)} exp(/wi yl)(l — y3)m= 32
. V for y2 <1,

and the joint density of ; = y;/\/1~ y? for i=2,3,..., mis similar to (4.7).
by replacing m by m—1. Hence

(49) El, =0, ELL;=0 fori#j=23,...,m

and .

(4.10) ER =m-1)"' fori=2,3,...,m
Thus

1
E(y,|w) = f Y1 h(y)dy,
-1
and, since [y, (1 -y 32dy, = —(m—1)"1(1—yH™ V72, we get
(4.11) E(:|w) = (y/whfim~1)EQ1~y?)

= (/wi/m) a(w|m~+2, fa(w|m, ),
(4.11a) E(ylw)=E(L{(I-yD"*w)=0 fori=2,3,...,m

(4.12) E(yf|w) = 1—E{(1-y{)|w}

= 1—(m—1)/m)a(wim+2, Y/a(w|m, 1),
@12)  EQiyw) = E{n (1—yH" l-sw} =0 forizl,
@.126) E(yw)=E{LL(1—y)lw} =0 forizj=2,3,...,m
and o

@12%) EGHW) = E{2(1-yDIw} = n—1)alwlm-+2, Daelm, 3).
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Hence
(4.13) E(y|w) = e, (\/wi/m)a(w|m-+2, Ha(w|m, 1)
and ; »
(4.14) ' E(yy|w) = e, &, (1—by+m~ 1 bl,

where ¢} =(1,0,...,0) and b =a(wim+2, Afa(w|m, 4).

Now we are in a position to give expressions for E(|w) and E (65'|w) as
4.15) , E(S|w) = aﬁ(A’A)'" 12C"E(y|w)

= d(w/m)a{w|m+2, Dja(w|m, 3),

and
(4.16) E(85'\w) = 62 (A’ A)~ " (w/m) b+w (1 —b)66'/A.

Using the density (4.3) and (4.3a) of w, we note that
4.17) gwim+2, ) =g(wim, )(wm)a(w|m+2, )/a(w|m, 1)
and hence '
(4.18) EBye = Bo+Ef (wfv) 8 = Bo+OEf (w*/v)
and
419)  E(Boe~B)(Boe—B) = % (A’ A) L E{f (w*/v)}* — 2065' Ef (w*/v)+

+(B3/HLE {f (w/0)}>w—mE {f (w*/1)} *1+ 58",

where w* is distributed as noncentral y*> with m+ 2 degrees of freedom and
noncentral parameter A, while w is distributed as noncentral x> with m
degrees of freedom and noncentral parameter A. Thus, the mean square error
matrix is :
(4.19) M, = E(Bye~B) (o~ B) = ar 0% (4" A)™ '+, 9,
where a, = E {f (w¥*/v)}? :E(f(F*))z and a, = 1—m(a/A)—2E(f (F¥))+
+A YE{f(w/v)}*w and F* = w¥/v.

For the various particular functions f, (4.19) or (4.19a) can be calculated
explicitly. This is left to the reader.

(b) Multivariate. The estimate of f can be written in two dlfferent
forms according to m > p of m < p. For m < p we write

(4.20) Bie = Bio+G (6, V™ 5’1) 31,
and for m>p
4.21) Bise = Bio+ 5, Go( “1616)),

where B, = /A' A By V2, Bio = JA AP E V2, V = E"V2SE" 1’2(n m)
and §, = \/A’AcSZ 1z
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The distribution of V is Wishart with n—m degrees of freedom,
8y ~ Ny (81, 1., I) and they are independent.
- Itis extremely difficult to obtain the mean and mean square matrix for
the elements of fj, defined in (4.20) and (4.21). We shall only consider-the
situation where m =1 and p > 1. For this purpose the estimate given in
{4.20) can be written as

(4-213} ' Blbe = Bio +9(51 v-1! 3,1) 51,

where 51, Bio and By, are row vectors and g is a scalar function &, V~16).

‘Since 8, and V are independently distributed, we shall use the orthogonal
transforrnatlon CVve = Vl, where the first row of C is 51/\ /6,6, . Then V1
=CV~!C and if V=@, o't =8,V "1§,/5,6, and l/v11 =v~yi,,
then (4.212) can be rewritten as :

4.22) ﬁlbe = Po+g (51 3'1/')) 31 s

which is exactly similar to the estimate considered in Section 4(a). Using
(4.18), we get

(4.23) - E(Bye) = B+ Eg(w*/v) 6y,
where
D~ K WE S 2Ra (), A=0,8, and 6, = (4 A2 5E12,
Further, by (4.19a), we get

4.24) M = EBue—B1) Bue—B1) = ay [ +a, 8, 8y,

where a, = E(g (W*/v))z, a, = 1—pla;/})—2Eg(w*/v)+ A" *E {g wiv)w, w
~ 2, wE~ 22,24 and v~ y2_,.
Other situations are left to the reader.
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