### PROBABILITY AND <u>MATHEMATICAL STATISTICS</u> Vol. 8 (1987), p. 41–47

# WEAK CONVERGENCE OF RANDOM SUMS OF INFIMA OF INDEPENDENT RANDOM VARIABLES

BY

## HALINA HEBDA-GRABOWSKA (LUBLIN)

Abstract. Let  $\{Y_n, n \ge 1\}$  be a sequence of independent positive random variables, defined on a probability space  $(\Omega, \mathcal{A}, P)$ , with a common distribution function F. Put

$$Y_m^* = \inf(Y_1, Y_2, ..., Y_m), \ m \ge 1 \ \text{and} \ S_n = \sum_{m=1}^n Y_m^*, \ n \ge 1.$$

In this paper mixing limit theorem for the sums  $S_n$ ,  $n \ge 1$ , is given and the random central limit theorem is proved.

1. Introduction and results. Let  $\{Y_n, n \ge 1\}$  be a sequence of independent positive random variables with a common distribution function F. Let us put

$$Y_m^* = \inf(Y_1, Y_2, ..., Y_m), \ m \ge 1,$$
 and  $S_n = \sum_{m=1}^n Y_m^*, \ n \ge 1.$ 

The three convergences: in probability, almost sure and in law were established in [4]–[7] for sums  $S_n$  of infima of independent random variables uniformly distributed on [0, 1]. The almost sure invariance principle was investigated in [8].

Now, let  $\{Y_n, n \ge 1\}$  be a sequence of independent positive random variables with a common distribution function F such that

(1) 
$$\int_0^1 \left| F(x) - \frac{x}{b} \right| x^{-2} dx < \infty \quad \text{for } 0 < b < \infty.$$

T. Höglund proved in [9] the following central limit theorem: THEOREM 0. Under assumption (1)

$$\lim_{n \to \infty} \mathbb{P}(Z_n < x) = \Phi(x),$$

where

$$Z_n = \frac{S_n - b \log n}{b \sqrt{2 \log n}}, \quad n > 1,$$

(2)

(5)

$$S_n = \sum_{k=1}^n Y_k^*, \ Y_k^* = \inf(Y_1, Y_2, \dots, Y_k), \ k \ge 1, \ n \ge 1,$$

and  $\Phi$  is the standard normal distribution function.

In this paper we give a mixing limit theorem and a random central limit theorem for  $\{Z_n, n > 1\}$ .

THEOREM 1. (i) Under the assumptions of Theorem 0 the sequence  $\{Z_n, n > 1\}$  is mixing, i.e.

$$\lim_{n \to \infty} \mathbb{P}(Z_n < x | B) = \Phi(x)^n$$

for any event  $B \in \mathcal{A}$  such that P(B) > 0.

(ii) Let  $\{N_n, n \ge 1\}$  be a sequence of positive integer-valued random variables such that

(3) 
$$N_n/a_n \xrightarrow{P} \lambda \quad as \ n \to \infty$$
,

where  $\lambda$  is a positive random variable dependent only on finitely many  $Y_n$ ,  $n \ge 1$ , and  $\{a_n, n \ge 1\}$  is a sequence of positive numbers tending to  $+\infty$ . Then

(4) 
$$\lim_{n\to\infty} \mathbb{P}(Z_{N_n} < x) = \Phi(x).$$

2. Proofs of results. In the proof of Theorem 1 we apply some lemmas given by Deheuvels [5] and Höglund [9]. For the sake of completeness we present them in Section 3.

Proof of Theorem 1. (i) Let  $\{Z_n, n > 1\}$  be defined by (2) and let  $Y_{m,n}^* = \inf(Y_{m+1}, \ldots, Y_n)$  for n > m. Denote by  $A_k$  the event  $\{Z_k < x\}$  for  $k \ge n_0$ , where  $n_0$  is such that  $P(A_k) > 0$  for all  $k \ge n_0$ . We prove that the sequence  $\{Z_n, n > 1\}$  is mixing.

By Theorem 1 ([10], p. 406) it is sufficient to show that

$$\lim_{n\to\infty}\mathbf{P}(A_n|A_k)=\Phi(x), \quad k\ge n_0,$$

as, by Theorem 0,  $\lim_{n \to \infty} P(A_n | \Omega) = \Phi(x)$ . Since

$$Z_n = \frac{S_k}{b\sqrt{2\log n}} + \frac{\sum_{l=k+1}^n (Y_l^* - Y_{k,l}^*)}{b\sqrt{2\log n}} + \frac{\sum_{l=k+1}^n Y_{k,l}^* - b\log n}{b\sqrt{2\log n}},$$

42

we have  $S_k/b \sqrt{2\log n} \to 0$  a.s. as  $n \to \infty$ , and, by Lemma 3.4,

$$\sum_{l=k+1}^{n} (Y_{l}^{*} - Y_{k,l}^{*})/b \sqrt{2\log n} \to 0 \text{ a.s.} \quad \text{as } n \to \infty.$$

The random variables  $\sum Y_{k,l}^*$  are independent of  $S_k$  for every  $k \ge n_0$ , so, by Theorem 0, we immediately obtain (5) and the proof of (i) is completed.

(ii) To prove that  $P(Z_{N_n} < x) \rightarrow \Phi(x)$  as  $n \rightarrow \infty$  for every  $\{N_n, n \ge 1\}$  satisfying (3), it is sufficient to note that the sequence  $\{Z_n, n > 1\}$  satisfies assumptions of Theorem 3 in [3].

By (i) and since the random variable  $\lambda$  depends only on finitely many  $Y_n$ ,  $n \ge 1$ , we have

(6) 
$$\lim_{n \to \infty} P(Z_n < x | A) = \Phi(x)$$

for all  $A \in \mathcal{F}_{\lambda}$ , where  $\mathcal{F}_{\lambda}$  is the  $\sigma$ -field generated by the random variable  $\lambda$ .

Now we show that  $\{Z_n, n > 1\}$  satisfies the generalized Anscombe's condition with the norming sequence  $\{k_n = n, n \ge 1\}$ , i.e. that for every  $\varepsilon > 0$  there exists a  $\delta > 0$  such that

(7) 
$$\limsup_{n \to \infty} \mathsf{P}_A(\max_{(1-\delta)n \le i < (1+\delta)n} |Z_n - Z_i| \ge \varepsilon) \le \varepsilon \mathsf{P}(A)$$

holds for every  $A \in \mathscr{F}_{\lambda}$ , where  $P_A(B) = P(A \cap B)$ .

If we write  $D_n(\delta) = \{i: (1-\delta) n \le i < (1+\delta)n\}$ , then by a simple estimation we obtain

$$(8) \max_{i\in D_{n}(\delta)} |Z_{n}-Z_{i}| = \max_{i\in D_{n}(\delta)} \left| \frac{S_{n}-b\log n}{b\sqrt{2\log n}} - \frac{S_{i}-b\log i}{b\sqrt{2\log i}} \right|$$

$$\leq \max_{i\in D_{n}(\delta)} \left| \frac{S_{n}}{b\sqrt{2\log n}} - \frac{S_{i}}{b\sqrt{2\log i}} \right| + \max_{i\in D_{n}(\delta)} \left| \frac{\log n}{\sqrt{2\log n}} - \frac{\log i}{\sqrt{2\log i}} \right|$$

$$\leq \max_{i\in D_{n}(\delta)} \max\left( \frac{S_{n}}{b\sqrt{2\log n}} - \frac{S_{i}}{b\sqrt{2\log i}}, \frac{S_{i}}{b\sqrt{2\log i}} - \frac{S_{n}}{b\sqrt{2\log n}} \right) + \frac{1}{\sqrt{2}} \max_{i\in D_{n}(\delta)} \max\left( \sqrt{\log n} - \sqrt{\log i}, \sqrt{\log i} - \sqrt{\log n} \right)$$

$$\leq \max\left( \frac{S_{n}}{b\sqrt{2\log n}} - \frac{S_{[n(1-\delta)]}}{b\sqrt{2\log n}(1+\delta)}, \frac{S_{[n(1+\delta)]}}{b\sqrt{2\log n}(1-\delta)} - \frac{S_{n}}{b\sqrt{2\log n}} \right) + \frac{1}{\sqrt{2}} \max\left( \sqrt{\log n} - \sqrt{\log n}(1-\delta), \sqrt{\log n}(1+\delta) - \sqrt{\log n} \right)$$

$$\max\left(S_{[n(1-\delta)]}\left(\frac{1}{b\sqrt{2\log n}} - \frac{1}{b\sqrt{2\log n(1+\delta)}}\right) + \frac{\sum_{k=[n(1-\delta)]+1}Y_k^*}{b\sqrt{2\log n}}, \\S_n\left(\frac{1}{b\sqrt{2\log n(1-\delta)}} - \frac{1}{b\sqrt{2\log n}}\right) + \frac{\sum_{k=n+1}^{[n(1+\delta)]}Y_k^*}{b\sqrt{2\log n(1-\delta)}}\right) + \\ + (\sqrt{\log n(1+\delta)} - \sqrt{\log n(1-\delta)})/\sqrt{2} \\ \leqslant \frac{\sum_{k=[n(1-\delta)]+1}Y_k^*}{b\sqrt{2\log n(1-\delta)}} + \max\left(\frac{S_{[n(1-\delta)]}}{b\log n(1-\delta)}b_n, \frac{S_n}{b\log n}b_n'\right) + c_n \\b_n = \log n(1-\delta)\left[\frac{1}{\sqrt{2\log n}} - \frac{1}{\sqrt{2\log n(1+\delta)}}\right], \\b'_n = \log n\left[\frac{1}{\sqrt{2\log n(1-\delta)}} - \frac{1}{\sqrt{2\log n(1-\delta)}}\right], \\b'_n = \log n\left[\frac{1}{\sqrt{2\log n(1-\delta)}} - \frac{1}{\sqrt{2\log n}}\right], \end{cases}$$

$$c_n = \frac{1}{\sqrt{2}} \left( \sqrt{\log n(1+\delta)} - \sqrt{\log n(1-\delta)} \right).$$

It is easy to see that  $b_n \to 0$ ,  $b'_n \to 0$  and  $c_n \to 0$  as  $n \to \infty$ .

Now let  $\{X_n, n \ge 1\}$  be a sequence of independent random variables uniformly distributed on [0, 1].

Put  $G(t) = \inf \{x \ge 0: F(x) \ge t\}$ . Then, by [6], the sequences  $\{G(X_n), n \ge 1\}$  and  $\{Y_n, n \ge 1\}$  are the same in law.

Furthermore, the sequence  $S_n = \sum_{k=1}^n Y_k^*$  may be represented as  $\overline{S}_n$ =  $\sum_{k=1}^n G(X_k^*)$ , where  $X_k^* = \inf(X_1, X_2, \dots, X_k)$ ,  $k \ge 1$ .

On the other hand, Höglund [9] proved that

$$\frac{\sum_{k=1}^{n} G(X_{k}^{*}) - b \log n}{b \sqrt{2 \log n}} = \frac{\sum_{k=1}^{n} X_{k}^{*} - \log n}{\sqrt{2 \log n}} + r$$

holds in law, where  $r_n \xrightarrow{P} 0$  as  $n \to \infty$ . Therefore, by Lemma 3.1,

(9) 
$$\frac{\overline{S}_{[n(1-\delta)]}}{b\log n(1-\delta)}b_n = \frac{\overline{S}_{[n(1-\delta)]}}{\log n(1-\delta)}b_n + r_n b_n \to 0, \text{ a.s.} \quad \text{as } n \to \infty$$

 $\leq$ 

where

and

(10) 
$$\frac{\overline{S}_n}{b \log n} b'_n = \frac{\overline{S}_n}{\log n} b'_n + r_n b'_n \to 0 \text{ a.s.} \quad \text{as } n \to \infty,$$

where  $\tilde{S}_n = \sum_{k=1}^n X_k^*$ ,  $n \ge 1$ . So, by (8)–(10) we get

(11) 
$$[\max_{i \in D_n(\delta)} |Z_n - Z_i| \ge \varepsilon] \subset \left[ \frac{\sum_{k=\lfloor n(1-\delta) \rfloor + 1}^{\lfloor m(1+\delta) \rfloor} Y_k^*}{b\sqrt{2\log n(1-\delta)}} \ge \frac{\varepsilon}{2} \right]$$

for any  $\varepsilon > 0$  and sufficiently large *n*. Observe that

$$\sum_{k=[n(1-\delta)]+1}^{[n(1+\delta)]} Y_k^* = \sum_{k=[n(1-\delta)]+1}^{[n(1+\delta)]} (Y_k^* - Y_{[n(1-\delta)],k}^*) + \sum_{k=[n(1-\delta)]+1}^{[n(1+\delta)]} Y_{[n(1-\delta)],k}^*.$$

By Lemma 3.4 and the fact that the random variables  $\lambda$  and

$$\sum_{k=[n(1-\delta)]+1}^{[n(1+\delta)]} Y_{[n(1-\delta)],k}^{*}$$

are independent for sufficiently large n, one can check that condition (7) is a consequence of the following well-known Anscombe condition:

(12) 
$$\limsup_{n\to\infty} \mathbb{P}(\max_{i\in D_n(\delta)} |Z_n - Z_i| \ge \delta) \le \varepsilon.$$

By (11), Lemma 3.3, the Markoff inequality and Lemma 3.2 we obtain

$$\Pr\left[\max_{i \in D_n(\delta)} |Z_n - Z_i| \ge \varepsilon\right] \le \Pr\left[\frac{\sum_{k=\lfloor n(1-\delta) \rfloor + 1}^{\lfloor n(1+\delta) \rfloor} Y_k^*}{b\sqrt{2\log n(1-\delta)}} \ge \frac{\varepsilon}{2}\right]$$

$$\leq P\left[\frac{\sum\limits_{k=[n(1-\delta)]+1}^{[n(1+\delta)]} X_k^*}{\sqrt{2\log n(1-\delta)}} \geq \frac{\varepsilon}{3}\right] \leq 3 \frac{E\left(\sum\limits_{k=[n(1-\delta)]+1}^{[n(1+\delta)]} X_k^*\right)}{\varepsilon\sqrt{2\log n(1-\delta)}}$$
$$= \frac{O(1)}{\sqrt{2\log n(1-\delta)}} \to 0 \quad \text{as } n \to \infty.$$

Hence, from Theorem 3 of [3], we immediately obtain (4) for every  $\{N_n, n \ge 1\}$  satisfying (3). This completes the proof of Theorem 1.

3. Lemmas. In this section we present some lemmas we needed in the proofs of Theorem 1.

### H. Hebda-Grabowska

LEMMA 3.1. Let  $\{X_n, n \ge 1\}$  be a sequence of independent random variables uniformly distributed on [0, 1]. Then  $\tilde{S}_n/\log n \to 1$  a.s. as  $n \to \infty$ , where  $\tilde{S}_n = \sum_{k=1}^n X_k^*$ , and  $X_k^* = \inf(X_1, X_2, ..., X_k)$ ,  $k \ge 1$ ,  $n \ge 1$ .

LEMMA 3.2.  $EX_k^* = (k+1)^{-1}$   $(k \ge 1)$ ,  $E\tilde{S}_n - \log n = O(1)$ . LEMMA 3.3. Under the assumptions of Theorem 0

$$\frac{\sum_{k=1}^{n} G(X_{k}^{*}) - b \log n}{b \sqrt{2 \log n}} = \frac{\sum_{k=1}^{n} X_{k}^{*} - \log n}{\sqrt{2 \log n}} + r_{n} \text{ in law}$$

where  $r_n \xrightarrow{P} 0$  as  $n \to \infty$ , and

$$\frac{\sum_{k=1}^{n} y_k |G(X_k^*) - bX_k^*|}{\sqrt{\log n}} \xrightarrow{P} 0 \quad as \ n \to \infty,$$

where, for  $0 < \delta < 1$ ,  $y_k = 1$  if  $X_k^* \leq \delta$  and  $y_k = 0$  if  $X_k^* > \delta$ , and  $G(t) = \inf \{x \ge 0: F(x) \ge t\}$ .

LEMMA 3.4. Let  $\{Y_n, n \ge 1\}$  be a sequence of positive independent random variables with the common distribution function F such that F(x) = 0 for  $x \le 0$ , F(x) > 0 for x > 0. Let us put  $Y_n^* = \inf(Y_1, \ldots, Y_n), Y_{m,n}^* = \inf(Y_{m+1}, \ldots, Y_n), n > m, n \ge 1$ .

Then the sum  $\sum_{n=m+1}^{\infty} (Y_{m,n}^* - Y_n^*)$  converges almost surely. Proof. We observe that

$$0 \leqslant Y_{m,n}^* - Y_n^* \leqslant \begin{cases} 0 & \text{if } Y_{m,n}^* \leqslant Y_m^*, \\ Y_{m,n}^* & \text{if } Y_{m,n}^* > Y_m^*. \end{cases}$$

Then

$$\sum_{n=m+1}^{\infty} (Y_{m,n}^* - Y_n^*) \leqslant \sum_{n=m+1}^{\infty} Y_{m,n}^* I_{[Y_{m,n}^* > Y_m]}.$$

Now, it is sufficient to show that

$$\lim_{K\to\infty}P\left(\sum_{n=m+1}^{\infty}Y_{m,n}^*I_{[Y_{m,n}^*>Y_m]}\geq K\right)=0.$$

Indeed,

$$\lim_{K \to \infty} P\left(\sum_{n=m+1}^{\infty} Y_{m,n}^* I_{[Y_{m,n}^* > Y_m^*]} \ge K\right)$$
  
=  $\int \lim P\left(\sum_{m=1}^{\infty} Y_{m,n}^* I_{[Y_{m,n}^* > C]} \ge K\right) P_{Y_m^*}(dC) = 0$ 

46

by

$$\lim_{K \to \infty} \mathbb{P}\left(\sum_{n=m+1}^{\infty} Y_{m,n}^* I_{[Y_{m,n}^* > C]} \ge K\right) = 0 \quad \text{for every } C > 0,$$

and  $P(Y_m = C) = 0$  for C = 0.

Acknowledgement. The author wishes to express his gratitude to the referee for valuable remarks and comments improving the previous version of this paper. Especially Lemma 3.4 belongs to him.

#### REFERENCES

- [1] D. Aldous and G. K. Eagleson, On mixing and stability of limit theorems, Ann. Prob. 6 (1978), p. 325-331.
- [2] P. Billingsley, Convergence of Probability Measures, Wiley, New York 1968.
- [3] M. Csörgö and Z. Rychlik, Weak convergence of sequences of random elements with random indices, Math. Proc. Camb. Phil. Soc. 88 (1980), p. 171-174.
- [4] P. Deheúvels, Sur la convergence de sommes de minima de variables aléatoires, C. R. Acad. Sci. Paris 276, A (1973), p. 309-313.
- [5] Valeurs extrémales d'échantillons croissants d'une variable aléatoire réelle, Ann. Inst. Henri Poincaré, Sec. B, vol X (1974), p. 89-114.
- [6] U. Grenander, A limit theorem for sums of minima of stochastic variables, Ann. Math. Stat. (1965), p. 1041-1042.
- [7] H. Hebda-Grabowska and D. Szynal, On the rate of convergence in law for the partial sums of infima of random variables, Bull. Acad. Polon. Sci. XXVII. 6 (1979).
- [8] An almost sure invariance principle for the partial sums of infima of independent random variables, Ann. Prob. 7. 6 (1979), p. 1036–1045.
- [9] T. Höglund, Asymptotic normality of sums of minima of random variables, Ann. Math. Stat. 43 (1972), p. 351-353.
- [10] A. Rényi, Probability Theory, Budapest 1970.

Instytut Matematyki UMCS Plac Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland

> Received on 3. 12. 1984; revised version on 10. 9. 1985

