CONDITIONED RANDOM WALKS WITH RANDOM INDICES

BY

A. SZUBARGA and D. SZYNAL (Lublin)

Abstract. Let $\left\{X_{k}, k \geqslant 1\right\}$ be a sequence of i.i.d. random variables with $\mathrm{E} X_{1}=0, \mathrm{E} X_{1}^{2}=\sigma^{2}<\infty$, and let $\left\{N_{m}, m \geqslant 0\right\}, N_{0}=0$ a.s., be a sequence of positive integer-valued random variables. Let $\left\{S_{n}, n \geqslant 0\right\}$ and $\left\{S_{N_{m}}, m \geqslant 0\right\}$ be defined by $S_{0}=0$ a.s., $S_{n}=X_{1}+$ $\ldots+X_{n}, n \geqslant 1, S_{N_{0}}=0$ a.s., $S_{N_{m}}=X_{1}+X_{2}+\ldots+X_{N_{m}}, m \geqslant 1$. Put

$$
N=\inf \left\{n: S_{n}<0\right\}, \quad M=\max \left\{S_{n}: n \leqslant N\right\}
$$

In this note, under additional conditions on sequences $\left\{X_{k}, k \geqslant 1\right\}$ and $\left\{N_{m}, m \geqslant 0\right\}$, we investigate the limit behaviour of $\mathbf{P}\left[M / \sigma \sqrt{N_{m}} \leqslant v \mid N>N_{m}\right], \quad \mathbf{P}\left[\max _{0 \leqslant k \leqslant N_{m}} S_{k} / \sigma \sqrt{N_{m}} \leqslant v \mid N>N_{m}\right]$, and $\mathrm{P}\left[N>N_{m} \mid M>v \sigma \sqrt{N_{m}}\right]$, where $v>0$.

1. Introduction. Let $\left\{X_{k}, k \geqslant 1\right\}$ be a sequence of independent identically distributed random variables with $\mathrm{E} X_{1}=0,0<\mathrm{E} X_{1}^{2}=\sigma^{2}<\infty$, and let $\left\{S_{n}, n \geqslant 0\right\}$ with $S_{0}=0$ and $S_{n}=X_{1}+\ldots+X_{n}, n \geqslant 1$, denote the random walk. Put $N=\inf \left\{n: S_{n}<0\right\}, M=\max \left\{S_{n}: n \leqslant N\right\}$, and write $\mu=-E S_{N}$. The following result is known:

Theorem 1. Under the above assumptions:

$$
\begin{equation*}
\lim _{x \rightarrow \infty} x \mathrm{P}[M>x]=\mu ; \tag{i}
\end{equation*}
$$

(ii) $\lim _{x \rightarrow \infty} \mathrm{P}\left[\sigma^{2} N / 2 x^{2} \leqslant u \mid M>x\right]=(2 / \sqrt{\pi u}) \sum_{k=1}^{\infty} \exp \left(-k^{2} / u\right), 0<u<\infty$;
(iii) $\lim _{n \rightarrow \infty} \mathrm{P}[M / \sqrt{n} \sigma \leqslant v \mid N>n]=1-v^{-1} \sqrt{\pi / 2}+2 \sum_{k=1}^{\infty} \exp \left(-2 k^{2} v^{2}\right)$;
(iv) $\lim _{n \rightarrow \infty} \mathrm{P}[N>n \mid M>\sigma \sqrt{n} v]=2 \sqrt{2 / \pi} v \sum_{k=1}^{\infty} \exp \left(-2 k^{2} v^{2}\right), 0<v<\infty$.

Proof. Statements (i)-(iii) have been proved in [2]. Putting now, in (ii), $n=\left[2 u x^{2} / \sigma^{2}\right], u=1 /\left(2 v^{2}\right)$, we have
(1) $\lim _{n \rightarrow \infty}(1-\mathbb{P}[N>n \mid M>\sigma \sqrt{n v}])$)

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left(1-\mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{n} \geqslant 0 \mid M>\sigma \sqrt{n} v\right]\right) \\
& =1-2 \sqrt{2 / \pi} v \sum_{k=1}^{\infty} \exp \left(-2 k^{2} v^{2}\right), \quad 0<v<\infty
\end{aligned}
$$

which proves (iv).
Moreover, we have
Theorem 2. Under the above assumptions, for $x>0$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathrm{P}\left[\max _{1 \leqslant k \leqslant n} S_{k} / \sigma \sqrt{n} \leqslant x \mid N>n\right]=\sum_{k=-\infty}^{+\infty}(-1)^{k} \exp \left(-k^{2} x^{2} / 2\right) \tag{2}
\end{equation*}
$$

Proof. It is known that

$$
\left(S_{[n \cdot]} / \sigma \sqrt{n} \mid N>n\right) \Rightarrow W^{+}, \quad n \rightarrow \infty,
$$

where W^{+}is a Brownian meander (see [1] and [4]). In [3] (Corollary (2.2)) it has been proved that, for $x>0$,

$$
\mathbb{P}\left[\sup _{0 \leqslant s \leqslant 1} W^{+}(s) \leqslant x\right]=\sum_{k=-\infty}^{+\infty}(-1)^{k} \exp \left(-k^{2} x^{2} / 2\right)
$$

Hence, we conclude that, for $x>0$,

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left[\max _{1 \leqslant k \leqslant n} S_{k} / \sigma \sqrt{n} \leqslant x \mid N>n\right]=\sum_{k=-\infty}^{+\infty}(-1)^{k} \exp \left(-k^{2} v^{2} / 2\right)
$$

which completes the proof of (2).
Let now $\left\{N_{m}, m \geqslant 1\right\}$ be a sequence of positive integer-valued random variables and put

$$
S_{N_{m}}=X_{1}+X_{2}+\ldots+X_{N_{m}}, \quad m \geqslant 1
$$

We are interested in the asymptotic behaviour of

$$
\begin{gathered}
\mathbb{P}\left[M / \sigma \sqrt{N_{m}} \leqslant v \mid N>N_{m}\right], \quad 0<v<\infty \\
\mathbb{P}\left[\max _{1 \leqslant k \leqslant N_{m}} S_{k} / \sigma \sqrt{N_{m}} \leqslant v \mid N>N_{m}\right]
\end{gathered}
$$

and

$$
\mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0 \mid M>v \sigma \sqrt{N_{m}}\right]=\mathbb{P}\left[N>N_{m} \mid M>v \sigma \sqrt{N_{m}}\right] .
$$

2. Results. We now prove the following

Theorem 3. Let $\left\{X_{k}, k \geqslant 1\right\}$ be a sequence of i.i.d. random variables with $\mathbb{E} X_{1}=0,0<\mathbb{E} X_{1}^{2}=\sigma^{2}<\infty$. Suppose that $\left\{N_{m}, m \geqslant 0\right\}, N_{0}=0$ a.s., is a sequence of positive integer-valued random variables independent of $\left\{X_{k}, k \geqslant 1\right\}$ and $\left\{\alpha_{m}, m \geqslant 1\right\}$ is a sequence of positive integers with $\alpha_{m} \rightarrow \infty, m \rightarrow \infty$, such that

$$
\begin{equation*}
\inf _{m} \mathrm{P}\left[N_{m} \leqslant a \alpha_{m}\right]=d \text { for some positive } a, \quad \text { where } d>0 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sqrt{\alpha_{m}} \mathrm{P}\left[N_{m}=n\right] \rightarrow 0, \quad m \rightarrow \infty, n \geqslant 1 . \tag{4}
\end{equation*}
$$

Then for $0<v<\infty$
(5) $\lim _{m \rightarrow \infty} \mathbb{P}\left[M / \sigma \sqrt{N_{m}} \leqslant v \mid S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right]$

$$
=1-v^{-1} \sqrt{\pi / 2}+2 \sum_{k=1}^{\infty} \exp \left(-2 k^{2} v^{2}\right)
$$

(6) $\lim _{m \rightarrow \infty} \mathbb{P}\left[\max _{1 \leqslant k \leqslant N_{m}} S_{k} / \sigma \sqrt{N_{m}} \leqslant v \mid S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right]$

$$
=\sum_{k=-\infty}^{+\infty}(-1)^{k} \exp \left(-k^{2} v^{2} / 2\right)
$$

and
(7) $\lim _{m \rightarrow \infty} \mathrm{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0 \mid M>\sigma \sqrt{N_{m}} v\right]$

$$
=2 \sqrt{2 / \pi} v \sum_{k=1}^{\infty} \exp \left(-2 k^{2} v^{2}\right)
$$

Proof. Assuming that, in (3), $a=1$, we prove now (5) and (6). Note that

$$
\mathrm{P}\left[M / \sigma \sqrt{N_{m}} \leqslant v \mid S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right]
$$

$$
=\sum_{n=1}^{\infty} t_{m, n} \mathbb{P}\left[M / \sigma \sqrt{n} \leqslant v \mid S_{1} \geqslant 0, \ldots, S_{n} \geqslant 0\right],
$$

where

$$
\begin{array}{r}
t_{m, n}=\mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{n} \geqslant 0\right] \mathrm{P}\left[N_{m}=n\right] / \mathrm{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right] \\
n \geqslant 1, m \geqslant 1,
\end{array}
$$

and

$$
\begin{aligned}
\mathbb{P}\left[\max _{1 \leqslant k \leqslant N_{m}} S_{k} / \sigma \sqrt{N_{m}}\right. & \left.\leqslant v \mid S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right] \\
& =\sum_{n=1}^{\infty} t_{m, n} \mathbb{P}\left[\max _{1 \leqslant k \leqslant n} S_{k} / \sigma \sqrt{n} \leqslant v \mid S_{1} \geqslant 0, \ldots, S_{n} \geqslant 0\right] .
\end{aligned}
$$

Now taking into account that (Theorem 3.5, [7])

$$
\begin{equation*}
\mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{n} \geqslant 0\right] \sim c / \sqrt{n}, \quad n \rightarrow \infty \tag{8}
\end{equation*}
$$

where

$$
c=\exp \left\{\sum_{k=1}^{\infty}(1 / k)\left(1 / 2-\mathbb{P}\left[S_{k}>0\right]\right)\right\}
$$

we see, by assumption (3), that

$$
\begin{align*}
& \mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right] \geqslant \mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0, N_{m} \leqslant \alpha_{m}\right] \tag{9}\\
& \quad \geqslant \mathrm{P}\left[S_{1} \geqslant 0, \ldots, S_{\alpha_{m}} \geqslant 0\right] \mathrm{P}\left[N_{m} \leqslant \sigma_{m}\right] \geqslant(d \cdot c) / \sqrt{\alpha_{m}}, \quad m \rightarrow \infty
\end{align*}
$$

Hence, using assumption (4), we have

$$
0 \leqslant t_{m, n} \leqslant \sqrt{\alpha_{m}} \mathbb{P}\left[N_{m}=n\right] /(d c) \rightarrow 0, \quad m \rightarrow \infty
$$

Since

$$
\sum_{n=1}^{\infty} t_{m, n}=1, \quad m \geqslant 1
$$

$\left\{t_{m, n}\right\}, m \geqslant 1, n \geqslant 1$, is a Toeplitz matrix ([6], p. 472). Therefore, by (iii) and (2), we get (5) and (6), respectively.

Similarly arguing, we get

$$
\begin{align*}
\mathrm{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant\right. & \left.0 \mid M>\sigma \sqrt{N_{m}} v\right] \tag{10}\\
& =\sum_{n=1}^{\infty} c_{m, n} \mathrm{P}\left[S_{1} \geqslant 0, \ldots, S_{n} \geqslant 0 \mid M>\sigma \sqrt{n} v\right]
\end{align*}
$$

where

$$
\begin{gathered}
c_{m, n}=\mathbb{P}[M>\sigma \sqrt{n} v] \mathbb{P}\left[N_{m}=n\right] / \mathbb{P}\left[M>\sqrt{N_{m}} \sigma v\right], \quad m \geqslant 1, n \geqslant 1, \\
\sum_{n=1}^{\infty} c_{m, n}=1, \quad m \geqslant 1
\end{gathered}
$$

Using assumption (3), we get

$$
\begin{aligned}
\mathbb{P}\left[M>\sigma \sqrt{N_{m}} v\right] & \geqslant \sum_{\left\{n: N_{m} \leqslant \alpha_{m}\right\}} \mathrm{P}\left[M>\sigma \sqrt{N_{m}} v, N_{m}=n\right] \\
& \geqslant \mathbb{P}\left[M>\sigma \sqrt{\alpha_{m}} v\right] \mathrm{P}\left[N_{m} \leqslant \alpha_{m}\right] \geqslant \mathrm{P}\left[M>\sigma \sqrt{\alpha_{m}} v\right] \cdot d
\end{aligned}
$$

for sufficiently large m. Hence, by (4) and (i), we have

$$
\begin{aligned}
0 \leqslant c_{m, n} & \leqslant \mathbb{P}\left[N_{m}=n\right] /\left(\mathbb{P}\left[M>\sigma \sqrt{\alpha_{m}} v\right] d\right) \\
& =\sigma v \sqrt{\alpha_{m}} \mathbb{P}\left[N_{m}=n\right] /\left(d \sigma \sqrt{\alpha_{m}} \mathbb{P}\left[M>\sqrt{\alpha_{m}} v \sigma\right]\right) \rightarrow 0, \quad m \rightarrow \infty
\end{aligned}
$$

These facts together with (iv) imply (7).

Corollary 1. Suppose that a sequence $\left\{X_{k}, k \geqslant 1\right\}$ of i.i.d. random variables satisfies the assumptions of Theorem 3. If $\left\{N_{m}, m \geqslant 0\right\}, N_{0}=0$ a.s., is a sequence of positive integer-valued random variables independent of $\left\{X_{k}, k\right.$ $\geqslant 1\}$, and $\left\{\alpha_{m}, m \geqslant 1\right\}$ is a sequence of positive integers with $\alpha_{m} \rightarrow \infty, m \rightarrow \infty$, such that, for any given $\varepsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left[\left|N_{m} / \alpha_{m}-\lambda\right| \geqslant \varepsilon\right]=o\left(1 / \sqrt{\alpha_{m}}\right), \quad m \rightarrow \infty, \tag{11}
\end{equation*}
$$

where λ is a random variable such that there exists an $a>0$ such that

$$
\begin{equation*}
\mathbb{P}[\lambda>a]=1 \tag{12}
\end{equation*}
$$

then (5), (6) and (7) hold true.
Proof. It is obvious that we can find $\left\{\alpha_{m}, m \geqslant 1\right\}$ such that (3) holds. For any fixed $n \in \mathbb{N}$ assumptions (11) and (12) imply that for any given $\varepsilon, 0$ $<\varepsilon<a$, and sufficiently large m

$$
\begin{aligned}
\sqrt{\alpha_{m}} \mathrm{P}\left[N_{m}=n\right] \leqslant \sqrt{\alpha_{m}} \mathrm{P}\left[N_{m} \leqslant \alpha_{m}(a-\varepsilon)\right] \leqslant & \sqrt{\alpha_{m}} \mathrm{P}\left[N_{m} \leqslant \alpha_{m}(\lambda-\varepsilon)\right] \times \\
& \times \sqrt{\alpha_{m}} \mathrm{P}\left[\left|N_{m} / \alpha_{m}-\lambda\right| \geqslant \varepsilon\right]
\end{aligned}
$$

Hence, we have (4), which completes the proof of Corollary 1.
The following example shows that assumption (11), in general, cannot be weakened in that sense that o can not be replaced by O, as it is in the random central limit theorem.

Example 1. Let $\left\{N_{m}, m \geqslant 5\right\}$ be a sequence of positive integer valued random variables such that $\mathrm{P}\left[N_{m}=1\right]=1 / \sqrt{m}, \quad \mathrm{P}\left[N_{m}=2\right]=1 / \sqrt{m}$, $\mathrm{P}\left[N_{m}=m\right]=1-2 / \sqrt{m}, m \geqslant 5$.

Suppose that $\left\{X_{k}, k \geqslant 1\right\}$ is a sequence of Theorem 3 independent of $\left\{N_{m}, m \geqslant 5\right\}$. We see that $N_{m} / m \xrightarrow{\mathrm{P}} 1, m \rightarrow \infty$, and, for $\varepsilon, 0<\varepsilon<1 / 4$, $\mathrm{P}\left[\left|N_{m} / m-1\right| \geqslant \varepsilon\right]=2 / \sqrt{m}, m \geqslant 5$.

Moreover, by (2) and (8), one can verify that, for $v>0$,

$$
\begin{aligned}
& \mathbb{P}\left[\max _{1 \leqslant k \leqslant N_{m}} S_{k} / \sigma \sqrt{N_{m}} \leqslant v \mid S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right] \\
& \rightarrow\left(\mathbb{P}\left[S_{1} \leqslant \sigma v, S_{1} \geqslant 0\right]+\mathbb{P}\left[\max \left(S_{1}, S_{2}\right) \leqslant \sigma \sqrt{2} v, S_{1} \geqslant 0, S_{2} \geqslant 0\right]+\right. \\
& \left.+c \sum_{k=-\infty}^{+\infty}(-1)^{k} \exp \left(-k^{2} v^{2} / 2\right)\right) /\left(\mathbb{P}\left[S_{1} \geqslant 0\right]+\mathrm{P}\left[S_{1} \geqslant 0, S_{2} \geqslant 0\right]+c\right) \\
& \neq \sum_{k=-\infty}^{+\infty}(-1)^{k} \exp \left(-k^{2} v^{2} / 2\right) .
\end{aligned}
$$

Similarly, one can verify that (5) and (7) do not hold with the considered sequence $\left\{N_{m}, m \geqslant 5\right\}$.

Consider now the case where $\left\{X_{k}, k \geqslant 1\right\}$ and $\left\{N_{m}, m \geqslant 0\right\}$ are not independent. We are able to prove the following

Theorem 4. Let $\left\{X_{k}, k \geqslant 1\right\}$ be a sequence of i.i.d. random variables with $\mathrm{E} X_{1}=0,0<\mathrm{E} X_{1}^{2}=\sigma^{2}<\infty$. Suppose that $\left\{N_{m}, m \geqslant 0\right\}, N_{0}=0$ a.s., is a sequence of positive integer-valued random variables, and $\left\{\alpha_{m}, m \geqslant 1\right\}$ is a sequence of positive numbers with $\alpha_{m} \rightarrow \infty, m \rightarrow \infty$, such that, for any given $\varepsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left[a-\varepsilon \leqslant N_{m} / \alpha_{m} \leqslant b+\varepsilon\right]=o\left(1 / \sqrt{\alpha_{m}}\right) \tag{13}
\end{equation*}
$$

where $0<a \leqslant b<\infty$ are constant.
Then, for $v>0$,

$$
\begin{align*}
& \sqrt{a / b}\left\{1-(v a / b)^{-1} \sqrt{\pi / 2}+2 \sum_{k=1}^{\infty} \exp \left(-2 k^{2}(v a / b)^{2}\right)\right\} \tag{14}\\
& \leqslant \liminf _{m \rightarrow \infty} \mathbb{P}\left[M \leqslant v \sigma \sqrt{N_{m}} \mid S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right] \\
& \leqslant \limsup _{m \rightarrow \infty} \mathbb{P}\left[M \leqslant v \sigma \sqrt{N_{m}} \mid S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right] \\
& \leqslant \sqrt{b / a}\left\{1-(v b / a)^{-1} \sqrt{\pi / 2}+2 \sum_{k=1}^{\infty} \exp \left(-2 k^{2}(v b / a)^{2}\right)\right\}
\end{align*}
$$

$$
\begin{align*}
& \sqrt{a / b} \sum_{k=-\infty}^{+\infty}\left\{\exp \left(-k^{2}(v a / b)^{2} / 2\right)\right\}(-1)^{k} \tag{15}\\
& \quad \leqslant \liminf _{m \rightarrow \infty} P\left[\max _{1 \leqslant k \leqslant N_{m}} S_{k} / \sigma \sqrt{N_{m}} \leqslant v \mid S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right] \\
& \quad \leqslant \limsup _{m \rightarrow \infty} \mathrm{P}\left[\max _{1 \leqslant k \leqslant N_{m}} S_{k} / \sigma \sqrt{N_{m}} \leqslant v \mid S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right] \\
& \quad \leqslant \sqrt{b / a} \sum_{k=-\infty}^{+\infty}\left\{\exp \left(-k^{2}(v b / a)^{2} / 2\right)\right\}(-1)^{k},
\end{align*}
$$

and

$$
\begin{align*}
& \sqrt{a / b} 2 \sqrt{2 / \pi} v \sum_{k=1}^{\infty} \exp \left(-2 k^{2} v^{2}\right) \tag{16}\\
& \leqslant \liminf _{m \rightarrow \infty} \mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0 \mid M>v \sigma \sqrt{N_{m}}\right] \\
& \leqslant \limsup _{m \rightarrow \infty} \mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0 \mid M>v \sigma \sqrt{N_{m}}\right] \\
& \leqslant \sqrt{b / a} 2 \sqrt{2 / \pi} v \sum_{k=1}^{\infty} \exp \left(-2 k^{2} v^{2}\right)
\end{align*}
$$

Proof. Put $A_{m}=\left\{n,(a-\varepsilon) \alpha_{m} \leqslant n \leqslant(b+\varepsilon) \alpha_{m}\right\}$. Then, by (13) and (8), we have

$$
\begin{aligned}
r_{m}=\mathbb{P}\left[S_{1}\right. & \left.\geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right] \\
& \leqslant \mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0, N_{m} \in A_{m}\right]+\mathbb{P}\left[N_{m} \in A_{m}^{c}\right] \\
& \leqslant c / \sqrt{\left[(a-\varepsilon) \alpha_{m}\right]}+o\left(1 / \sqrt{\alpha_{m}}\right) .
\end{aligned}
$$

Similarly, we get

$$
\begin{aligned}
r_{m} & \geqslant \mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{\left[(b+\varepsilon) \alpha_{m}\right]} \geqslant 0\right]-\mathbb{P}\left[N_{m} \in A_{m}^{c}\right] \\
& \geqslant c / \sqrt{\left[(b+\varepsilon) \alpha_{m}\right]}-o\left(1 / \sqrt{\alpha_{m}}\right) .
\end{aligned}
$$

Hence, we obtain

$$
\begin{equation*}
-o\left(1 / \sqrt{\alpha_{m}}\right)+c / \sqrt{\left[(b+\varepsilon) \alpha_{m}\right]} \leqslant r_{m} \leqslant c / \sqrt{\left[(a-\varepsilon) \alpha_{m}\right]}+o\left(1 / \sqrt{\alpha_{m}}\right) . \tag{17}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \mathrm{P}\left[N_{m} \in A_{m}^{c}\right] / r_{m}=0 . \tag{18}
\end{equation*}
$$

Hence, to prove (14), it is enough to consider

$$
\mathbf{P}\left[M \leqslant v \sigma \sqrt{N_{m}}, S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0, N_{m} \in A_{m}\right] / r_{m}
$$

Note that
$\mathbb{P}\left[M \leqslant v \sigma \sqrt{\left[(b+\varepsilon) \alpha_{m}\right]}, S_{1} \geqslant 0, \ldots, S_{\left[(a-\varepsilon) \alpha_{m}\right]} \geqslant 0, N_{m} \in A_{m}\right]$
$\leqslant \mathrm{P}\left[M \leqslant v \sigma \sqrt{\left[(b+\varepsilon) \alpha_{m}\right] /\left[(a-\varepsilon) \alpha_{m}\right]} \sqrt{\left[(a-\varepsilon) \alpha_{m}\right]}, S_{1} \geqslant 0, \ldots, S_{\left[(a-\varepsilon) \alpha_{m}\right]} \geqslant 0\right]$.
Moreover, we see that for any given $\eta>0$ and sufficiently large m,

$$
\sqrt{\left[(b+\varepsilon) \alpha_{m}\right] /\left[(a-\varepsilon) \alpha_{m}\right]} \leqslant \sqrt{(b+\varepsilon) /(a-\varepsilon)}+\eta .
$$

Hence, we get

$$
\begin{aligned}
& P\left[M \leqslant v \sigma \sqrt{N_{m}},\right.\left.S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0\right] / r_{m} \\
& \leqslant\left(\mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{\left[(a-\varepsilon) \alpha_{m}\right]} \geqslant 0\right] / r_{m}\right) \times \\
& \times P\left[M \leqslant v \sigma(\sqrt{(b+\varepsilon) /(a-\varepsilon)}+\eta) \sqrt{\left[(a-\varepsilon) \alpha_{m}\right]} \mid S_{1} \geqslant 0, \ldots, S_{\left[(a-\varepsilon) \alpha_{m}\right]} \geqslant 0\right]
\end{aligned}
$$

Note that, for any given $\delta>0$ and sufficiently large m,

$$
\mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{\left[(a-\varepsilon) \alpha_{m}\right]} \geqslant 0\right] / r_{m} \leqslant \sqrt{(b+\varepsilon) /(a-\varepsilon)}+\delta .
$$

Therefore, for sufficiently large m,

$$
\begin{align*}
& \mathbb{P}\left[M \leqslant v \sigma \sqrt{N_{m}}, S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0, N_{m} \in A_{m}\right] / r_{m} \tag{19}\\
& \leqslant \mathrm{P}\left[M \leqslant v \sigma(\sqrt{(b+\varepsilon) /(c-\varepsilon)}+\eta) \sqrt{\left[(a-\varepsilon) \alpha_{m}\right]} \mid S_{1} \geqslant 0,\right. \\
& \left.\quad \ldots, S_{\left[(a-\varepsilon) \alpha_{m}\right]} \geqslant 0\right](\sqrt{(b+\varepsilon) /(a-\varepsilon)}+\delta) .
\end{align*}
$$

Similarly we get, for any given $\Delta>0$ and sufficiently large m,
(20) $\mathrm{P}\left[M \leqslant v \sigma(\sqrt{(a-\varepsilon) /(b+\varepsilon)}-\Delta) \sqrt{\left[(b+\varepsilon) \alpha_{m}\right]} \mathrm{J} S_{1} \geqslant 0, \ldots, S_{\left[(b+\varepsilon) \alpha_{m}\right]} \geqslant 0\right] \times$

$$
\times(\sqrt{(a-\varepsilon) /(b+\varepsilon)}-\Delta)-o\left(1 / \sqrt{\alpha_{m}}\right)
$$

$$
\leqslant \mathrm{P}\left[M \leqslant v \sigma \sqrt{N_{m}}, S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0, N_{m} \in A_{m}\right] / r_{m}
$$

Letting now $m \rightarrow \infty, \eta \rightarrow 0, \delta \rightarrow 0, \Delta \rightarrow 0, \varepsilon \rightarrow 0$, we get (14). In the similar way one can get (15).

We now prove (16). Note that, for any given $\varepsilon>0$,

$$
\mathrm{P}\left[M>v \sigma \sqrt{N_{m}}\right] \geqslant \mathrm{P}\left[M>v \sigma \sqrt{\left[(b+\varepsilon) \alpha_{m}\right]}\right]-\mathrm{P}\left[N_{m} \in A_{m}^{c}\right],
$$

and

$$
\left.\mathrm{P}\left[M>v \sigma \sqrt{N_{m}}\right] \leqslant \mathrm{P}\left[M>v \sigma \sqrt{\left[(a-\varepsilon) \alpha_{m}\right.}\right]\right]+\mathrm{P}\left[N_{m} \in A_{m}^{\mathrm{c}}\right] .
$$

Moreover, we see that

$$
\begin{aligned}
& \mathrm{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0 \mid M>v \sigma \sqrt{N_{m}}\right] \\
& \\
& =\mathrm{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0, M>v \sigma \sqrt{N_{m}}\right] / \mathrm{P}\left[M>v \sigma \sqrt{N_{m}}\right] \\
& \leqslant \frac{\left.\mathrm{P}\left[S_{1} \geqslant 0, \ldots, S_{\left[(a-\varepsilon) \alpha_{m}\right]} \geqslant 0, M>\sigma v \sqrt{\left[(a-\varepsilon) \alpha_{m}\right.}\right]\right]+\mathrm{P}\left[N_{m} \in A_{m}^{c}\right]}{\mathrm{P}\left[M>v \sigma \sqrt{N_{m}}\right]} \\
& \leqslant \frac{\mathrm{P}\left[N_{m} \in A_{m}^{c}\right]+\mathrm{P}\left[S_{1} \geqslant 0, \ldots, S_{\left[(a-\varepsilon) \alpha_{m}\right]} \geqslant 0 \mid M>v \sigma \sqrt{\left[(a-\varepsilon) \alpha_{m}\right]}\right]}{\mathrm{P}\left[M>v \sigma \sqrt{\left[(b+\varepsilon) \alpha_{m}\right]}\right]-\mathrm{P}\left[N_{m} \in A_{m}^{c}\right]} \times \\
& \times P\left[M>v \sigma \sqrt{[(a-\varepsilon)] \alpha_{m}}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{P}\left[S_{1} \geqslant 0, \ldots, S_{N_{m}} \geqslant 0 \mid M>v \sigma \sqrt{N_{m}}\right] \\
& \geqslant \frac{-\mathrm{P}\left[N_{m} \in A_{m}^{c}\right]+\mathrm{P}\left[M>\sigma v \sqrt{\left[(b+\varepsilon) \alpha_{m}\right]}\right]}{\mathrm{P}\left[M>v \sqrt{\left[(a-\varepsilon) \alpha_{m}\right]}\right]+\mathrm{P}\left[N_{m} \in A_{m}^{c}\right]} \times \\
& \quad \times \mathrm{P}\left[S_{1} \geqslant 0, \ldots, S_{\left[(b+\varepsilon) \alpha_{m}\right]} \geqslant 0 \mid M>v \sigma \sqrt{\left[(b+\varepsilon) \alpha_{m}\right]}\right] .
\end{aligned}
$$

Hence, by the assumptions and (i), we obtain (16).

Corollary 2. If (13) holds with $a=b$, then (5), (6), and (7) hold true.
Remark 1. Assumption (13) holds true if we assume, for example, that, for any given $\varepsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left[\left|N_{m} / \alpha_{m}-\lambda\right| \geqslant \varepsilon\right]=o\left(1 / \sqrt{\alpha_{m}}\right), \quad \mathbb{P}[a \leqslant \lambda \leqslant b]=1, \tag{13}
\end{equation*}
$$

where λ is a random variable, and $0<a \leqslant b<\infty$ are constants.
Acknowledgement. The authors wish to thank the referee for valuable remarks which led to a considerable simplification of the paper.

REFERENCES

[1] E. Bolthausen, On a functional central limit theorem for random walks conditioned to stay positive, Ann. Probability 4 (1976), p. 480-485.
[2] R. Doney, Note on conditioned random walk, J. Appl. Probability 20 (1983), p. 409-412.
[3] R. Durret and D. Iglehart, Functions of Brownian meander and Brownian excursion, Ann. Probability 5 (1977), p. 130-135.
[4] D. Iglehart, Functional central limit theorems for random walks conditioned to stay positive, ibidem 2 (1974), p. 608-619.
[5] D. Kennedy, The distribution of the maximum of Brownian excursion, J. Appl. Probability 13 (1976), p. 371-376.
[6] A. Rényi, Probability theory, Amsterdam-London 1970.
[7] F,Spitzer, A Tauberian theorem and its probability interpretation, Trans. Amer. Math. Soc. 94 (1960), p. 150-169.

Mathematical Institute
Maria Curie-Skłodowska University
ul. Nowotki 10
20-031 Lublin, Poland

