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CONDITIONED RANDOM WALKS WITH RANDOM INDICES

BY

A. SZUBARGA anp D. SZYNAL (LuBLIN)

Abstract. Let {X;, k> 1} be a sequence of iid. random va-
riables with EX; =0, EX? =¢? < 00, and let {N,,, m>0}, Ng=0
as., be a sequence of positive integer-valued random variables. Let
fS,,, n> 0} and {Sy ,m >0} be defined by S, =0 as., S, =X;+
4 X,,nz, SNO—O as, Sy =X;+X;+...+Xy , m>1 Put

=inf{n: §, <0}, M =max{S,: n<N}.

In this note, under additional conditions on sequences

{X:, k> 1} and {N,, m > 0}, we investigate the limit behaviour of

P[M/o /N, € v|N > N,], P[ max Sy/o./N, <v|N>N,], and

0€k<N,,

P[N > N,IM >vo./N,], where v> 0.

1. Introduction. Let {X,, k > 1} be a sequence of indepcndent identically
distributed random variables w1th EX; =0, 0<EX?=0%<o0, and let
S, n= 0} with So =0 and S,=X,+...+X,,n> 1, denote the random
walk. Put N =inf{n: §, <0}, M = max {S n < N}, and write p = —ESy.
The following result is known: :

‘Tueorem 1. Under the above assumptions:
@ ' © limxP[M>x] =y

X o0

(i) lim P[e2N/2x%< |M >x] = (2/\/51;) Z exp(—k*/u), 0 <u < co;

X —>aD

(i) Lm P[M/fa o|[N>n]l=1-v" 11/1t/2+22 exp(—2k2 v?);
k=1

n—*a

(iv) lim P[N >n|M > ¢ /nv] = 2,/2/nv 2 exp(—2k*v?), 0 <v.< 0.

n—® =1
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Proof. Staiements (i)-(iii) have been proved in [2]. Putting now, in (ii),
n = [2ux?/6?], u = 1/(2v?), we have :

(1)  lm(1~P[N >n|M > a/nv]y

n—*ao0

= lim (I—P[$,; >0, ..., S, > 0|M > ¢ ./m])

n-* oo

=1-2./2 71:0’;1 exp(—2k2p2), 0<v<o0,

which proves (iv).
Moreover, we have
TueoreMm 2. Under the above assumptions, for x > 0,

- +
(2 limP[max S/o/n<x|N>n]l= Y (—Fexp(—k?x?%2).
n—ro 1<ksn k=— oo

Proof It'is known that - -

[N ﬂN>n)=,W+ n— oo,

where W* is a Brownian meandel (see [1] and [4]) In [3] (Corollary 2.2))
it has been proved that, for x >0,

P[ sup W*(s) <x]= Z (—D*exp(—k? x%/2).
gc<s<1 k= — o
" Hence, we conclude thaf, for x >0,
‘ - + .
lim P[ max Sy/o/n<x|N>n]= Y (—1fexp(—k?0v?2),
n—*an 1=5k<n k= — a0

which completes the proof of (2). : _
Let now {N,,, m>1} be a sequence of positive integer-valued random
variables and put

Sn, =X+ X+...+Xy,, m=21
We are intefested in -the asymptotic behaviour of
P[M/o /N, <v|N>N,], 0<v<o,
P[ max So./N, <o|N>N,l,

1<k Ny,

and

P[S, 20, ..., Sy >0|M > v0./N,]=P[N > N,|M > v5/N,].
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2. Resulis. We now prove the following

THEOREM 3. Let {X,, k = 1'} be a sequence of iid. random variables with
EX, =0, 0 <EX? =02 < 0. Suppose that {N,,m=0}, Nog=0 as, is a
sequence of positive integer-valued random variables independent of {X,, k > 1}
and {a,,, m > 1} is a sequence of positive integers with o, — o0, m— o0, such
that

3 infP[N,, < aw,,] = d for some positive a, where d >0,
and |
4) SO P[Np, =0]—0, m—w, nz1.

Then for 0 < v.< o0

(5 lim P[M/o./N,<v|8,20,...,85y

m—o .

> 0]

=1-0v" 1 /n/2+2 ) exp(—2k*v?),
k=1

(6) lim P[ max S,/o./N,<v|S;=20,...,8y =0]
mom  1SkSNp "

. + a0

= ) (=Dfexp(—k*v?/2),
k= — a

and

(7 lim P[S; >0,..., Sy >0|M>0./N,0]

=2 /20 Y exp(—2kvY.
k=1
Proof. Assuming' that, in (3}; a= 1, we prove now (35) and (6). Note that
P[M/o. /N, <vlS; >0, ..., Sy 3 0]

= Z tm,nP[M/O'\/;is UISI ; 0, ceey Sn 20]’
- n=1

where
twn = P[S1 20, ..., 8, > 0]P[N, =nl/P[S; >0, ..., Sy >0],
| n=zl,m>1,
and
P[ max S;/o. /N, <v|S;=0,...,Sy =0]
1SkSNy, "o

= Y tm,P[max S/o/n<v|$; 20,..., S, >0].
n=1

1sksn
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Now taking into account that (Theorem 3.5, [7])

(8) P[S;20,...,8,201~¢/n, n— oo,
where

= exp (Y. (WU/2-PLS, > 0D),

we see, by assumptidn-(B), that
© P[S:20,...,8y, >0]>P[S, > -y Sy, 20, N,y < 01,
C BP[8,20,...,5,, >01P[N, <0, > ISy, m— 0.
Hence, using assumbtion (4), we have _
< \/&;P[Nm =nl}/(dc) -0, m— 0.
Since
f twn=1, m>=1,
n=1
{tawpm=1,n>1,is a Toeplitz matrix ([6], p. 472). Therefore by (iii) and

(2), we get (5) and (6), respectively.
Similarly arguing, we get

(10 P[5, >0,..., Sy =0/M>0c./N,u]

@

=Y cuaP[S; 20,.... 5,2 0[M > 6 /nv],

n=1

where

Cn = P[M > O'\/i_w]P[Nm =nl/P[M > /N,ov], m>=1,n>1,

Using assumption (3), we get

P[M>o./N,v1> Y P[M>0./N,v N,=n]

1 Ny Sap}
2P[M>o./0,v]P[N, <a,]> P[M > a'\/fx v]-d
for sufficiently large m. Hence, by (4) and (i), we have
0< ¢y < PN, =nl/P[M > o./a,v]d)

= 00\/%y, P[N,, = n]fdo \/a,, P[M > Jo,,v6]) =0, m— 0.
These facts together with (iv) imply (7).
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CoroLLAry 1. Suppose that a sequence {X;,k>1} of iid. random
variables satisfies the assumptions of Theorem 3. If { N,,,, mz0}, No=0as., is
a sequence of positive integer-valued random variables independent of {Xk, k
=1}, and {o,,, m = 1} is a sequence of positive integers with a,, — 00, m — o,
such that, for any given & > 0, '

(11) P[INw/oa,—4] = ] = o(1/, /ot,,,) m— oo,
where A is a random variable such that there exists an a > 0 such that
(12) , | P[A>al=1,

then (5), (6) and (7) hold true.

Proof. It is obvious that we can find {a,, m > 1} such that (3) holds.
For any fixed ne N assumptions (11) and (12) imply that for any given ¢, 0
<& < a, and sufficiently large m ‘

V2PN, = 1] < /o P[Nyy < 0y (=81 < /0y P[Npp < 0 (A—8)] x
X o/t P [IN ot — 2 = £].

Hence, we have (4), which completes the proof of Corollary 1.

The following example shows that assumption (11), in general, cannot be
weakened in that sense that o can not be replaced by O, as it is in the
random central limit theorem.

Example 1. Let {N,, m > 5} be a sequence of positive integer valued
random variables -such that P[N, =11=1/\/m, P[N,=2]=1//m,
PN, =m] =1-2//m, m> .

Suppose that {Xk, k> 1} is a sequence of Theorem 3 independent of
{Nn, m>5}. We see that N,,,/m—»l m— oo, and, for ¢ O0<eg<1/4,
P[IN,/m—1] > &] = 2/\/m, m>

Moreover, by (2) and (8), one can verify that, for v > 0,

P[ max S/0./N, <v[S;>0,...,Sy >0]

1SkS Ny,

~(P[S; <ov, S, > 0]+P[max(S,, S,) < 6./2v, S, >0, 5, > 0]+

+e Z (= 1)exp(—=K*v*/D)P[S, > 0]+P[S; >0, S, > 0]+¢)

k=~

+ a

# % (~D-exp(- o).

k=— a0
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Similarly, one can verify that (5) and (7) do not hold with the considered
sequence {N,, m = 5}.

Consider now the case where {X;, k>1} and {N,, m >0} are not
independent. We are able to prove the following

TueoREM 4. Let {X, k > 1} be a sequence of iid. random variables with
EX, =0, 0 <EX}{=0? < 0. Suppose that {N,, m>0}, No=0 as., is a
sequence of positive ‘integer-valued random variables, and {a,, m>1} is a
sequence of positive numbers with o, — 00, m — oo, such that, for any given
£>0, '

(13) ' P[a;esN,,,/amsb+a] = 0(1/< /),

where 0 <a < b < oo are constant.
Then, for v > 0,

(14 Ja/b {1—(va/b)~? \/}E/"‘z’+2§ exp(—2k?(va/b)?)}.

<lminfP[M <vo\/Ny|S; 20, ..., 8y >0]

m—a

< limsupP[M < v \/Ny|S; 20, ..., Sy, > 0]

m-=rag

< Jbja{l—@bjat Ja2+2 Y exp(~ 22 0b/a?)},
. k=1

(15 Jalb f {eib(—‘kz(va/b)z/z)}(——‘1)"

k=—w

< liminfP[ max Sy/0 /N, <v[S;20,...,8y, 20]
m— o 1<k<Ny,

< limsupP[ max Sy/o./N, <v|S; >0,..., Sy, >0]
m—w 1<k<N,, .

<Jbja ¥ {exp(—K2@b/a)}H(—1F,
k=—w
and ‘
(16) < Ja/b2 2/nu§exp(——2kzvz)
A _

< liminfP[S; >0, ..., Sy_=O|M > 5 /N,,]

m a0

< limsupP[S, >0, ..., Sy > 0[M >v0 \/Ny]

m—a

< Jbla2 vy exp(—2A*r).
k=1
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Proof. Put A, = {1, (a—8)ty < 1 < (b+8) o). Then, by (13) and (8), we
have

m=P[8; 20,..., Sy, 20]
<

P[S;>0,...,8y,>0, Nye A, ]+ P[Nye An]
< of//(a—8 o]+ 0(1/ /o).
Similarly, we get
Tm = PLS1 20, ..., S+, = 01— P[Nne 4]

> ¢//[(b+9) tm] —0(1/~/0t).

Hence, we obtain

(A7) —0(U//tn)+¢/ /IO +8) o] < T < ¢/ /[(@—E) ] +0(1/ /).
Thq_s

(18) lim P[N, e A)/r, = 0.

m—ad

Hence, to prove (14), it is enough to consider

P[M UO—\/ m!SI N 05 NmEAm]/rm'
Note that

PIM <vo/I(b+8)an], S 20, ..., Sjg-eapy = 0, NpneA,]

< PIM < 06 \/[(b+8) 0 )/[(6—8) ] /[(@—) 0], S1 2 0, .., Syia-cpey = OI.

Moreqver we see that for any given n > 0 and sufficiently large m,

\/[(b+s)am]/[(a £)ay] < /(b+e)fa—e)+1.

Hence, we get

~ P[M<wvs/N,, 8, >0,...,5y >0}r,
" <SPS 20, ..., Saey = 01/rm) x

xP[M < 00 (/(b+o(a—2)+ 1) /[@a—8)%ul1S: > 0, .., Sa-nap > 01

Note that, for any given é > 0 and sufficiently large m,

PS>0, ..., Siu-na > 0/rm < /(b + (a5 +5.

Therefore, for sufﬁcwnt}y large m,
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(19) P[M<vo./N,, S:20,...,8y =0, NyeAdnl/rn
< P[M <vo(\/(b+e)c—e)+n)/[(a—8)a,]S; >0,
v Sia-s)ayy = 01 (V(b+efla—e)+9).
Similarly we get, for any given 4 > 0 and sufficiently large m,
(20) P[M <wvo(\/(a—e)(b+e)—A)/I(b+8)an]IS1 20, ..., Sip+ea, = 0] x
x( (a-—e)/(b+a)—A)—o(1/./oz,,,)
<P[M <6 /N,, S, 20,...,Sy >0, NyeA,)/r.
Letting now m—oo0, =0, 6—>0, 4—0, ¢—0, we get (14). In the

similar way one can get (15).
We now prove (16). Note that, for any given ¢ > 0,

P[M > v /N, 1= P[M > v6 \/[(b+8) %] ]~ P[Nne 451,
P[M > vo \/I_V,,_,] < P[M >0, /[(a—s)am]];i-P[NmeAf,,]

Moreover, we see that
P[S, >0,..., Sy > 0|M >vo./N,]

=P[S; 20,..., 8y, =0, M >0 N ]/P[M>ucr Nul

SP[SI 20, ceny S[(a—e)u ] = 0 M >O'U~/[(a 8)“ ]+P[N",EA;,]

P[M > vo \/N,]
P[N eAp1+P[S: 20, ..., Sju-say = OIM > vo /[(a—&) ] ]
< P[M>va«/[(b+s)rx 1]-P[N,.e 45]
x P[M > vo \/[(a—¢&)] oy

and

and
 P[S; 30, ..., Sy >0|M>v5./N,]

—P[N,e A;1+P[M > ov. /[(b+e) ] ]
> P[M > v./[(@a—8) tp]] +P[Npe A5]
XP[S1 =0 S[(b+6)um] OIM > UO'.\/[(b+8)dm]]

Hence, by the assumptions and (i), we obtain (16).
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Cororrary 2. If (13) holds with a = b, then (5), (6), and (7) hold true.
Remark 1. Assumption (13) holds true if we assume, for example, that,

for any given ¢ > 0,

(13) PLINfam—A > 6] = 0(l//oum), Pla<i<b]=1,

where A is a random variable, and 0 <a < b < oo are constants.
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