CONDITIONED LIMIT THEOREMS FOR FUNCTIONS OF THE AVERAGE OF III.D. RANDOM VARIABLES

BY

A. SZUBARGA and D. SZYNAL (Lublin)

Abstract

Let $\left\{\xi_{k}, k \geqslant 1\right\}$ be a sequence of i.i.d. random variables with $E \xi_{1}=0,0<E \xi_{1}^{2}=\sigma^{2}<\infty$. Form the random walk $\left\{S_{n}, n\right.$ $\geqslant 0\}$ by setting $S_{0}=0, S_{n}=\xi_{1}+\ldots+\xi_{n}, n \geqslant 1$. Let T denote the hitting time of the set $(-\infty, 0]$ by the random walk. Put $X_{n}(t)$ $=S_{[m]} / \sigma \sqrt{n}, \quad 0 \leqslant t \leqslant 1$. Let h be a real-valued, right-continuous function on R, having left limits, with $h(0)=1$, and continuous at 0 . For $\beta>0$ we define the map $H_{n}: D[0,1] \rightarrow D[0,1]$ by $H_{n}(f)$ $=f h\left(n^{-\beta} f\right), f \in D[0,1], n \geqslant 1$. Put $Y_{n}=H_{n}\left(X_{n}\right)$. This note deals with the asymptotic behaviour of Y_{n} conditioned on [$T>n$]. Moreover, we investigate the asymptotic behaviour in the question when n is replaced by N_{n}, where $\left\{N_{n}, n \geqslant 1\right\}$ is a sequence of positive integer-valued random variables.

1. Introduction. Let $\left\{\xi_{k}, k \geqslant 1\right\}$ be a sequence of independent, identically distributed random variables with $\mathrm{E} \xi_{1}=0,0<\overline{\mathrm{E}} \xi_{1}^{2}=\sigma^{2}<\infty$, and let $\left\{N_{m}, m \geqslant 0\right\}, N_{0}=0$ a.s., be a sequence of positive integer-valued random variables. Form the random walk $\left\{S_{n}, n \geqslant 0\right\}$ by setting $S_{0}=0$ and $S_{n}=\xi_{1}$ $+\ldots+\xi_{n}, n \geqslant 1$. Define the random function X_{n} by

$$
X_{n}(t)=S_{[n t]} / \sigma \sqrt{n}, \quad 0 \leqslant t \leqslant 1
$$

where $[x]$ is the greatest integer in x. Next let T be the hitting time of the set $(-\infty, 0]$ by the random walk,

$$
T=\inf \left\{n>0 ; S_{n} \leqslant 0\right\},
$$

where the infimum of the empty set is taken to be $+\infty$. Let h be a realvalued, right-continuous function on \boldsymbol{R}, having left limits, with $h(0)=1$ and continuous at 0 . Let $D \equiv D[0,1]$ be the space of real-valued, right-conti-
nuous functions on $[0,1]$ having left limits. For $\beta>0$ we define the map $H_{n}: D[0,1] \rightarrow D[0,1]$ by

$$
H_{n}(f)=f h\left(n^{-\beta} f\right), \quad f \in D[0,1], n \geqslant 1 .
$$

Put $Y_{n}=H_{n}\left(X_{n}\right)$. The aim of this note is to give a functional central limit theorem for the random function Y_{n}, conditioned on $[T>n]$.

To be more specific we assume that $\left\{\xi_{k}, k \geqslant 1\right\}$ are the coordinate functions defined on the product space ($\left(\Omega, \mathscr{A}\right.$, P). If $\Lambda_{n}=\{T>n\}$, then we let $\left(\Lambda_{n}, \Lambda_{n} \cap \mathscr{A}, \mathrm{P}_{n}\right)$ be the trace of $(\Omega, \mathscr{A}, \mathrm{P})$ on Λ_{n}, where $\Lambda_{n} \cap \mathscr{A}$ $=\left\{\Lambda_{n} \cap F, F \in \mathscr{A}\right\}$ and $\mathrm{P}_{n}[A]=\mathrm{P}[A] / \mathrm{P}\left[\Lambda_{n}\right]$ for $A \in \Lambda_{n} \cap \mathscr{A}$. Let \mathscr{D} be the σ-field of Borel sets on D, generated by the open sets of the Skorohod \mathscr{F}_{1} topology. Let $D_{+}=\{x \in D ; x \geqslant 0\}$, and $\mathscr{D}_{+}=D_{+} \cap \mathscr{D}$. The measurable mappings $X_{n}^{+}, Y_{n}^{+}:\left(\Lambda_{n}, \Lambda_{n} \cap \mathscr{A}\right) \rightarrow\left(D_{+}, \mathscr{D}_{+}\right)$are defined by

$$
X_{n}^{+}(\cdot, \omega)=S_{[n]}(\omega) / \sigma \sqrt{n}, \quad \omega \in \Lambda_{n},
$$

and

$$
Y_{n}^{+}(\cdot, \omega)=H_{n}\left(X_{n}^{+}(\cdot, \omega)\right), \quad \omega \in \Lambda_{n} .
$$

The random function X_{n}^{+}induces a probability measure (p. m.) μ_{n}^{+}on \mathscr{D}_{+}: for $A \in \mathscr{D}_{+}$we have

$$
\mu_{n}^{+}(A)=\mathrm{P}_{n}\left[X_{n}^{+} \in A\right]=\mathrm{P}\left[X_{n}^{+} \in A\right] / \mathrm{P}\left[\Lambda_{n}\right]=\mathrm{P}\left[X_{n} \in A \mid \Lambda_{n}\right] .
$$

Iglehart [5], Theorem (3.4) (see also for this result Bolthausen [2]), has proved that $X_{n}^{+} \Rightarrow W^{+}, n \rightarrow \infty$, i.e. $\mu_{n}^{+} \Rightarrow \mu^{+}$, the p.m. of a Brownian meander W^{+}, the symbol \Rightarrow means weak convergence. Alternatively, we write $\left(X_{n} \mid \Lambda_{n}\right) \Rightarrow W^{+}, n \rightarrow \infty$, for this result. The random function $Y_{n}{ }^{+}$induces a p.m. on \mathscr{D}_{+}: for $A \in D_{+}$we have

$$
\bar{\mu}_{n}^{+}(A)=\mathrm{P}_{n}\left[Y_{n}^{+} \in A\right]=\mathrm{P}\left[Y_{n}^{+} \in A\right] / \mathbb{P}\left[\Lambda_{n}\right] .
$$

The main result of this note is that $\bar{\mu}_{n}^{+} \Rightarrow \mu^{+}, n \rightarrow \infty$. Moreover, we investigate the asymptotic behaviour in the question when n is replaced by N_{n}, where $\left\{N_{n}, n \geqslant 0\right\}, N_{0}=0$ a.s., is a sequence of positive integer-valued random variables.

We shall apply the following result of Doney [3]:
Lemma 1. For $v>0$
(1) $\lim _{n \rightarrow \infty} \mathrm{P}\left[\max _{0 \leqslant k \leqslant T} S_{k} / \sigma \sqrt{n} \leqslant v \mid \Lambda_{n}\right]=1-v^{-1} \sqrt{\frac{\pi}{2}}+2 \sum_{k=1}^{\infty} \exp \left(-2 k^{2} v^{2}\right)$.

We need in the sequel the following lemmas:
Lemma 2. Let $\beta>0$. For $\delta>0$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} P\left[\sup _{0 \leqslant t \leqslant 1}\left|X_{n}(t)\right|>\delta \mid \Lambda_{n}\right] \leqslant \sqrt{\frac{\pi}{2}} \delta^{-1}, \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left[\sup _{0 \leqslant t \leqslant 1}\left|n^{-\beta} X_{n}(t)\right|>\delta \mid \Lambda_{n}\right]=0 \tag{3}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
& \mathbb{P}\left[\sup _{0 \leqslant t \leqslant 1}\left|X_{n}(t)\right|>\delta \mid \Lambda_{n}\right]=\mathbb{P}\left[\sup _{0 \leqslant t \leqslant 1} S_{[n t} / \sqrt{n} \sigma>\delta \mid \Lambda_{n}\right] \\
& \leqslant \mathbb{P}\left[\max _{0 \leqslant k \leqslant T} S_{k}>\sigma \sqrt{n} \delta \mid \Lambda_{n}\right]
\end{aligned}
$$

Hence, (2) follows from Lemma 1.
We now prove (3). For any given $\varepsilon>0$ and $\delta>0$ we have
$\limsup _{n \rightarrow \infty} \mathbb{P}\left[\sup _{0 \leqslant t \leqslant 1}\left|X_{n}(t)\right|>\delta n^{\beta} \mid \Lambda_{n}\right]$

$$
\leqslant \limsup _{n \rightarrow \infty} \mathbb{P}\left[\left.\sup _{0 \leqslant t \leqslant 1}\left|X_{n}(t)\right|>\frac{\delta}{\varepsilon} \right\rvert\, \Lambda_{n}\right] \leqslant \sqrt{\frac{\pi}{2}} \frac{\varepsilon}{\delta},
$$

which implies

$$
\lim _{n \rightarrow \infty} P\left[\sup _{0 \leqslant t \leqslant 1}\left|n^{-\beta} X_{n}(t)\right|>\delta \mid \Lambda_{n}\right]=0
$$

and completes the proof of Lemma 2.
Lemma 3. Let $\beta>0$. For any $\delta>0$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} P\left[\sup _{0 \leqslant t \leqslant 1}\left|Y_{n}(t)-X_{n}(t)\right|>\delta \mid \Lambda_{n}\right]=0 \tag{4}
\end{equation*}
$$

Proof. Let $\varepsilon>0$. Since h is continuous at the point $x=0$, it follows that there exists an $\eta>0$ such that

$$
\begin{equation*}
|x| \leqslant \eta \Rightarrow|h(x)-1|<\varepsilon . \tag{5}
\end{equation*}
$$

Then, for any given $\delta>0$, we have

$$
\begin{aligned}
\mathbb{P}\left[\sup _{0 \leqslant t \leqslant 1}\right. & \left.\left|Y_{n}(t)-X_{n}(t)\right|>\delta \mid \Lambda_{n}\right] \\
\leqslant & \mathbb{P}\left[\sup _{0 \leqslant t \leqslant 1}\left|X_{n}(t)\right|\left|1-h\left(n^{-\beta} X_{n}(t)\right)\right|>\delta, \sup _{0 \leqslant t \leqslant 1}\left|n^{-\beta} X_{n}(t)\right| \leqslant \eta \mid \Lambda_{n}\right] \\
& +\mathbb{P}\left[\sup _{0 \leqslant t \leqslant 1}\left|n^{-\beta} X_{n}(t)\right|>\eta \mid \Lambda_{n}\right] \\
\leqslant & \mathbb{P}\left[\left.\sup _{0 \leqslant t \leqslant 1}\left|X_{n}(t)\right|>\frac{\delta}{\varepsilon} \right\rvert\, \Lambda_{n}\right]+\mathbb{P}\left[\sup _{0 \leqslant t \leqslant 1}\left|n^{-\beta} X_{n}(t)\right|>\eta \mid \Lambda_{n}\right] .
\end{aligned}
$$

Hence, by Lemma: 2, we get

$$
\limsup _{n \rightarrow \infty} P\left[\sup _{0 \leqslant t \leqslant 1}\left|Y_{n}(t)-X_{n}(t)\right|>\delta \mid \Lambda_{n}\right] \leqslant \sqrt{\frac{\pi}{2}} \frac{\varepsilon}{\delta},
$$

which proves (4).
5 - Prob. Math. Statist. 8

Let d denote the metric on $D([1]$, p. 111). We can rewrite Lemma 3 in the following form:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathbb{P}\left[d\left(X_{n}, Y_{n}\right)>\delta \mid \Lambda_{n}\right]=0 \tag{6}
\end{equation*}
$$

Theorem 1. Under the assumptions of this note we have

$$
\begin{equation*}
Y_{n}^{+}=\left(Y_{n} \mid \Lambda_{n}\right) \Rightarrow W^{+}, \quad n \rightarrow \infty . \tag{7}
\end{equation*}
$$

Proof. Assertion (7) follows from (5) and a result of Iglehart $\left(X_{n}^{+} \Rightarrow W^{+}, n \rightarrow \infty\right)$.

Denote by \mathscr{G} the class of all continuous functions g differentiable at the point $x=0$ with $g^{\prime}(0) \neq 0$.

Corollary 1. For every $g \in \mathscr{G}$

$$
\begin{equation*}
\left(\left(\sqrt{n} / g^{\prime}(0) \sigma\right)\left(g\left(S_{[n \cdot]} / n\right)-g(0)\right) \mid \Lambda_{n}\right) \Rightarrow W^{+}, \quad n \rightarrow \infty \tag{8}
\end{equation*}
$$

holds true.
Proof. Putting

$$
h(x)= \begin{cases}\frac{g(x)-g(0)}{x g^{\prime}(0)} & \text { if } x \neq 0 \\ 1 & \text { if } x=0\end{cases}
$$

we can write the left-hand side of (8) in the following form:

$$
\left(\sqrt{n} / g^{\prime}(0) \sigma\right)\left(g\left(S_{[n \cdot]} / n\right)-g(0)\right)=X_{n} h\left(n^{-1 / 2} X_{n}\right)
$$

It is easy to verify that h satisfies our assumptions. Putting in Theorem 1 that $\beta=1 / 2$, we obtain (8).
2. Random partial sum processes. In this section we are interested in the asymptotic behaviour of

$$
Y_{N_{m}}^{+}=\left(Y_{N_{m}} \mid \Lambda_{N_{m}}\right), \quad m \geqslant 1
$$

where $\left\{N_{m}, m \geqslant 0\right\}, N_{0}=0$ a.s., is a sequence of positive integer-valued random variables.

We now need the following extension of Lemma 1 :
Lemma 4. Let $\left\{\xi_{k}, k \geqslant 1\right\}$ be a sequence of i.i.d. random variables with $\mathrm{E} \xi_{1}=0,0<\mathrm{E} \xi_{1}^{2}=\sigma^{2}<\infty$. Suppose that $\left\{N_{m}, m \geqslant 1\right\}$ is a sequence of positive integer-valued random variables, and $\left\{\alpha_{m}, m \geqslant 1\right\}$ is a sequence of positive numbers with $\alpha_{m} \rightarrow \infty, m \rightarrow \infty$, such that, for any given $\varepsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left[\left|N_{m} / \alpha_{m}-1\right| \geqslant \varepsilon\right]=o\left(1 / \sqrt{\alpha_{m}}\right) \tag{9}
\end{equation*}
$$

Then, for $v>0$,

$$
\begin{equation*}
\mathbb{P}\left[\left.\max _{0 \leqslant k \leqslant T} \frac{S_{k}}{\sigma \sqrt{N_{m}}} \leqslant v \right\rvert\, T>N_{m}\right]=1-v^{-1} \sqrt{\frac{\pi}{2}}+2 \sum_{k=1}^{\infty} \exp \left(-2 k^{2} v^{2}\right) \tag{10}
\end{equation*}
$$

Proof. From Theorem 3.7, [6], we have

$$
\mathrm{P}[T>n]=\mathrm{P}\left[S_{1}>0, \ldots, S_{n}>0\right] \sim c / \sqrt{n}, \quad n \rightarrow \infty,
$$

where

$$
c=\exp \left\{\sum_{k=1}^{\infty}(1 / k)\left(1 / 2-P\left[S_{k}>0\right]\right)\right\}
$$

Hence, by (9), for $1>\varepsilon>0$ we have

$$
\begin{align*}
& \frac{c}{\sqrt{\left[(1-\varepsilon) \alpha_{m}\right]}}-o\left(\frac{1}{\sqrt{\alpha_{m}}}\right) \leqslant \mathbb{P}\left[T>N_{m}\right] \tag{11}\\
& \leqslant \frac{c}{\sqrt{\left[(1+\varepsilon) \alpha_{m}\right]}}+o\left(\frac{1}{\sqrt{\alpha_{m}}}\right), \quad m \rightarrow \infty
\end{align*}
$$

Put $A_{m}=\left\{k ;(1-\varepsilon) \alpha_{m} \leqslant k \leqslant(1+\varepsilon) \alpha_{m}\right\}$, and let A_{m}^{c} denote the complement of A_{m}. Then, by (9) and (11), we have

$$
\mathbf{P}\left[N_{m} \in A_{m}^{c}\right] / \mathrm{P}\left[T>N_{m}\right] \rightarrow 0, \quad m \rightarrow \infty
$$

Hence, we can write

$$
\begin{aligned}
& \mathrm{P}\left[\max _{0 \leqslant k \leqslant T} S_{k} / \sigma \sqrt{N_{m}} \leqslant v \mid T>N_{m}\right] \\
& \quad=\mathrm{P}\left[\max _{0 \leqslant k \leqslant T} S_{k} / \sigma \sqrt{N_{m}} \leqslant v, T>N_{m}, N_{m} \in A_{m}\right] / \mathrm{P}\left[T>N_{m}\right]+ \\
& \quad \quad+\mathrm{P}\left[\max _{0 \leqslant k \leqslant T} S_{k} / \sigma \sqrt{N_{m}} \leqslant v, T>N_{m}, N_{m} \in A_{m}^{c}\right] / \mathrm{P}\left[T>N_{m}\right] .
\end{aligned}
$$

We get thus the following estimate:

$$
\begin{aligned}
& \mathbb{P}\left[\max _{0 \leqslant k \leqslant T} S_{k} / \sigma \sqrt{\left[(1-\varepsilon) \alpha_{m}\right]} \leqslant v, T>\right. \\
& \left.\quad\left[(1+\varepsilon) \alpha_{m}\right]\right] / \mathbb{P}\left[T>N_{m}\right]-\mathbb{P}\left[N_{m} \in A_{m}^{c}\right] / \mathbb{P}\left[T>N_{m}\right] \\
& \quad \leqslant \\
& \quad \mathbb{P}\left[\max _{0 \leqslant k \leqslant T} S_{k} / \sigma \sqrt{N_{m}} \leqslant v \mid T>N_{m}\right] \leqslant \mathbb{P}\left[\max _{0 \leqslant k \leqslant T} S_{k} / \sigma \sqrt{\left[(1+\varepsilon) \alpha_{m}\right]}\right. \\
& \left.\quad \leqslant v, T>\left[(1-\varepsilon) \alpha_{m}\right]\right] / \mathbb{P}\left[T>N_{m}\right]+\mathbb{P}\left[N_{m} \in A_{m}^{c}\right] / \mathbb{P}\left[T>N_{m}\right]
\end{aligned}
$$

Therefore, by (1) and letting $m \rightarrow \infty$ and next $\varepsilon \rightarrow 0$, we get (10).
From Lemmas 4 and 2 one can get the following

Lemma 5. Let $\left\{\xi_{k}, k \geqslant 1\right\}$ and $\left\{N_{m}, m \geqslant 0\right\}$ be as in Lemma 4 and let $\beta>0$. For $\delta>0$ we have

$$
\begin{equation*}
\limsup _{m \rightarrow \infty} P\left[\sup _{0 \leqslant t \leqslant 1}\left|X_{N_{m}}(t)\right|>\delta \mid T>N_{m}\right] \leqslant \sqrt{\frac{\pi}{2}} \delta^{-1} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \mathrm{P}\left[\sup _{0 \leqslant t \leqslant 1}\left|N_{m}^{-\beta} X_{N_{m}}(t)\right|>\delta \mid T>N_{m}\right]=0 \tag{13}
\end{equation*}
$$

Lemma 6. Under the assumptions of this note, for any $\delta>0$,

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \mathrm{P}\left[\sup _{0 \leqslant t \leqslant 1}\left|Y_{N_{m}}(t)-X_{N_{m}}(t)\right|>\delta \mid T>N_{m}\right]=0 \tag{14}
\end{equation*}
$$

where $Y_{N_{m}}(t)=X_{N_{m}}(t) h\left(N_{m}^{-\beta} X_{N_{m}}(t)\right)$.
Note now that Theorem 3 of [7] implies $\left(X_{N_{m}} \mid T>N_{m}\right) \Rightarrow W^{+}, m \rightarrow \infty$. Thus, by (14), we get the following theorem:

Theorem 2. Let $\left\{\xi_{k}, k \geqslant 1\right\}$ be a sequence of i.i.d. random variables with $\mathbf{E} \xi_{1}=0,0<\mathbf{E} \xi_{1}^{2}=\sigma^{2}<\infty$. Suppose that $\left\{N_{m}, m \geqslant 1\right\}$ is a sequence of positive integer-valued random variables, and $\left\{\alpha_{m}, m \geqslant 1\right\}$ is a sequence of positive numbers with $\alpha_{m} \rightarrow \infty, m \rightarrow \infty$, such that, for any given $\varepsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left[\left|N_{m} / \alpha_{m}-1\right| \geqslant \varepsilon\right]=o\left(1 / \sqrt{\alpha_{m}}\right) \tag{15}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(Y_{N_{m}} \mid T>N_{m}\right) \Rightarrow W^{+}, \quad m \rightarrow \infty . \tag{16}
\end{equation*}
$$

Corollary 2. For every $g \in \mathscr{G}$,

$$
\begin{equation*}
\left(\left(\sqrt{N_{m}} / g^{\prime}(0) \sigma\right)\left(g\left(S_{\left[N_{m}\right]} / N_{m}\right)-g(0)\right) \mid T>N_{m}\right) \Rightarrow W^{+}, \quad m \rightarrow \infty . \tag{17}
\end{equation*}
$$

Acknowledgement. The authors are very grateful to the referee for his valuable remarks and comments improving the previous version of this paper.

REFERENCES

[1] P. Billingsley, Convergence of Probability Measures, New. York 1968.
[2] F. Bolt hausen, On a functional central limit theorem for random walks conditioned to stay positive, Ann. Probability 4 (1976), p. 480-485.
[3] R. Doney, Note on conditional random walk, J. Appl. Probability 20 (1983), p. 409-412.
[4] R. Durret and D. Iglehart, Functionals of Brownian meander and Brownian excursion, Ann. Probability 5 (1977), p. 130-137.
[5] D. Iglehart, Functional central limit theorems for random walks conditioned to stay positive, ibidem 2 (1974), p. 608-619.
[6] F. Spitzer, A Tauberian theorem and its probability interpretation, Trans. Amer. Math. Soc. 94 (1960), p. 150-169.
[7] A. Szubarga and D. Szynal, Functional random central limit theorems for random walks conditioned to stay positive, Probability and Math. Statistics 6 (1985), p. 29-41.

Mathematical Institute
Maria Curie-Skłodowska University
ul. Nowotki 10
20-031 Lublin, Poland

Received on 30. 4. 1985;
revised version on 7. 1. 1986

