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Abstract. Let {&y, k = 1} be a sequence of iid. random varlab-
les with E¢, =0, 0 < E¢? = 62 < o0, Form the random walk {S,,, n
>0} by setting So=0, S, =& +...+&, n> 1. Let T denote the
hitting time of the set (—oo, 0] by the random walk. Put X,(?)

= Sum/o \/;, 0<t<1. Let h be a real-valued, right-continuous
function on R, having left limits, with k(0) = 1, and continuous at 0.
For >0 we define the map H,: D[0, 11— D[0, 1] by H,(f)
= fh(n " f), feD[0,1], n= 1. Put Y,= H,(X,). This note deals
with the asymptotic behaviour of Y, conditioned on [T> n]. Moreo-
ver, we investigate the asymptotic behaviour in the question when n
is replaced by N,, where {N,, n>1} is a sequence of positive
integer-valued random variables.

1. Introduction. Let {&,, k > 1} be a sequence of mdependent identically
distributed random variables w1th E¢, =0 0< Eé?2 =62 < o0, and let
{N,, m=0}, Ny=0 as, be a sequence of positive integer-valued random
variables. Form the random walk {S,, n > 0} by setting S; =0 and S, =¢,

..+¢&,, n>= 1. Define the random function X, by

X, 0 = Smfo/n, 0<1i<1,
where [x] is the greatest integer in x. Next let T be the h1tt1ng time of the set
(—o0, 0] by the random walk,
T =inf{n > 0; S, <0},

‘where the infimum of the empty set is taken to be +oo. Let 7 be a real-
. valued, right-continuous function on R, having left limits, with #(0) =1 and
continuous at 0. Let D = D[0, 1] be the space of real-valued, right-conti-
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nuous functions on [0, 17 having left limits. For § > 0 we define the map
H,. D[0, 11— D[0, 1] by

H,(f) = fh(n*”f), feD[0, 1], n>1

Put Y, = H,(X,). The aim of this note is to give a functional central
limit theorem for the random function Y,, conditioned on [T > n].

To be more specific we assume that {£, k> 1} are the coordinate
functions defined on the product space (2, &, P). If A, = {T > n}, then we
let (A, A,nf, P,) be the trace of (Q, o/, P) on A, where A, o
={A,nF,Fes} and P,[A] = P[A]/P[A4,] for AeA,n . Let 9 be the
o-field of Borel sets on D, generated by the open sets of the Skorohod ¢,
topology. Let D, = {xeD; x > 0}, and 2, = D, n 2. The measurable map-
pings X5, Y,": (A, Ay,nsf)— (D, 2.) are defined by

X3, 0) = Spy(@o /n, wed,
and |
YV (,0)=H,(X) (", w), wed,
The random function X, induces a probablhty measure (p. m.) g, on
P, : for Ac P, we have

wf (4) = P,[X e A] = P[X; c A/P[A,] = P[X,c A|4,].
Iglehart [5], Theorem (3.4) (see also for this result Bolthausen [2]), has
proved that X = W?*, n— oo, ie. ) = u*, the p.m. of 2 Brownian mean-
der W™, the symbol = means weak convergence. Alternatively, we write

(X,)A) =W, n— o, for this result. The random function ¥,* induces a
pm. on Z,.: for AeD, we have

A (4) = P,[Y; e 4] = P[Y; e AYPA,].

The main result of this note is that g, =>u®, n— oo. Moreover, we
investigate the asymptotic behaviour in the question when n is replaced by
N,, where {N,,n> 0}, Ny = 0 as., is a sequence of positive integer-valued
random variables.

We shall apply the following result of Doney [3]:

LemMa 1. For v>0
(1) lim P[ max Sk/a'\/ﬁ <v|4,] - 1—U”1£+2 > exp(—2k*v?).
n+w  OSk<T ) k=1

We need in the sequel the following lemmas:
Lemma 2. Let f>0. For 6 >0 we have

) . limsup P[ sup |X,(t)] > 64,] < \/127[5‘1,

n—»a o<1
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and
3 lim P[ sup. |n"? X,(t) > é6|4,] =0.

iu-*ag‘ L ES T
Proof. We have
P[ sup |X,() >6|A,,] P[ sup s[,,,,/ﬁa>5|/1,,]

os<t<1 o=srs1

< P[ max 8, >0./nd|4,].

OSksST

Hence, (2) follows from Lemma 1.
© We now: prove (3). For any glven e¢>0and 6 >0 we have

lim supP{ sup | X, @) > 5nB}A,,]

n—*a 0<t<1

s limsupP[ sup 1X, () > 5

B Al osr=<1

L__.J
A
S
e

which implies
lim P[ sup [n~* X,(0) > d[4,] =

n—ao osi<1

and completes the proof of Lemma 2.
Lemma 3. Let p >.0. For any (3>0

4) lim P[ sup |Y,(t)— X 20 >dlA4,] = 0

n-*a o<<1
Proof. Let ¢ >0. Since & is continuous at the point x =0, it follows
that there exists an n > 0 such that :
(5) Xl <n=1h(x)—-1| <e.
Then, for any given 6 >0, we have

P[ sup |Y,()—X,(0) > 6|4,]

DESES]

P[ sup |X,(@)I|1=h(n ﬂX 2(0)] > 8, sup ]n"’X O < nl4,]

LESES | osts1

+P[ sup [n"f X, (1) > n4,]

o<1

]+p[ sup [n~" X, (t) >n|A,.]

ESE S

<P[ sup |X, (t)l >6

oses1

Hence, by Lemma;r 2, we get

hmsupP[ sup Y, (t) —X,0| > 5!/1,,]

n—fuo 0<t\

(SIS

which proves (4).
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Let d denote the metric on D ([1], p. 111). We can rewrite Lemma 3 in
the following form:

6 " lim P[d(X,, Y,) > 6|4,]=0.
THeoreM 1. Under theras'sumptions of this note we have :
™ ' Yn+ =(Yn,An)$W+: ‘> 00.
Proof Assertion (7) follows from (5) and a result of Iglehart
XF=W*, n— o).
’ Denote by % the class of all continuous functions- g differentiable at the
point x = 0 with ¢’ (0) # 0.
CoroLLARY 1. For every ge %

® (OGS —gO)A) =W, n— o,

holds true. :
Proof. Putting

g(X) g(0)
Chx)=<4 x9'(0)
1 if x=0,

if x#0,

we can write the lefi-hand side of (8) in the following form:

(19’ (0)6) (g (Spy/m) —g (0) = X, h(n™ 2 X,).

It is easy to verify that h satisfies our assumptions. Putting in Theorem 1
“that = 1/2, we obtain (8).

i 2. Random partial sum processes. In this section we are interested in the
asymptotic behaviour of

Ya, =(YNmIANm): m21,

where {N,,m>0}, No=0 as, is a sequence of positive integer-valued
random variables. ‘ : oo
We now need the following extension of Lemma 1:
Lemma 4. Let {&, k> 1} be a sequence of iid. random variables with
E¢, =0, 0 <E¢? =062 < o0. Suppose that {N,, m>= 1} is a sequence of
positive integer-valued random variables, and {a,, m>1} is a sequence of
positive numbers with a,, — 0o, m — oo, such that, for any given & >0,

) | P [N/t — 1] = £] = 0(1/+/2tn).
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-Then, for v >0,

10) P| max — vT>N 'l—v‘i\/£+2 mex —2k2 p%),
(10) quo_\/—— | ] 5t k; p( )

Proof. From Theorem 3.7, [6], We have

P[T>n]=P[S; >0,...,8,>0] ~c//n, n—oo,

where

¢ = exp {ki (1/k)(1/2—PS, > OD)}.

Hence, by (9), for 1 > ¢ >0 we have

c 1
— <P[T>N,,
O (G

' c 1
i < +o0 , Mm-— Q0.
i . : . (1 +8)a,] («/ocm) _
Put Ay = {k; 1—8)a, < k <(1+8)0,), and let A, denote the comple-
ment of A4,. Then, by (9) and (11), we have

P[N € A ]/P[T>Nm]—’0 m— 0.

Hence, we can wnte

P[ max Sk/a./N,;, <o|T > N,]

0<k<T

= P[ max Sy/o /N, <v, T>N,, NaeA4,/P[T > N, ]+

O<k<T

+P[ max S0 /N, <v, T> Ny, Nye ASYP[T > N,].

O<k<T

We get thus the following estimate:

Pl max Sy/o./[(1-8)a,] <v, T>

. OSk<T

[(1+82,]}/P[T > N,]—P[Nne A)/P[T > N,,]

< P[ max S,,/a-fw <o T>N,]< P[ max Sk/a,/[(1+s)a,,,]

O<ksT

<6, T>[(1 —e)m,,]]/P[T>Nm]+P[N e AS)/PIT > N,].

Therefore, by (1) and letting m — co and next ¢ — 0, we get (10).
From Lemmas 4 and 2 one can get the following
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LemMA 5. Let {&, k> 1} and {N,, m >0} be as in Lemma 4 and let
B>0. For 6 >0 we have » ‘

(12) llmsuDP[ sup | Xy ()| >6|T > N,] < \/EJ_I
m—+om 0<e<1 2

and |

(13)  lim P[ sup IN;# Xy (9] >8|T>N,]=0.
m—>ao 0<t<1

LEMMA 6. Under the assumptions of this note, for any é >0,
(14) lim P[ sup |Yy, (t) Xy, @ > 5|T>N,,,] 0,

m->ao 011

where Yy (t) = Xy, (t)h(N‘”X,,‘, ®). :

Note now that Theorem 3 of [7] implies (X Ny T>Ny)=>W?", m— c0.
Thus, by (14), we get the following theorem:

Tueorem 2. Let {&, k = 1} be a sequence of i.id. random variables with
E¢, =0, 0 <E&} =0? < 0. Suppose that {N,,m=1} is a sequence of
positive integer-valued random variables, and {o,, m > 1} is a sequence of
positive numbers with o,, — o0, m— o0, such that, for any given & > 0,

(19 PN /ot — 1] > &1 = 0(1/ /).
Then .
(16) o (Yn, |T>N)=W*, m- .

CoroLLARY 2. For every ge ¥,

A7 (/Nu/d ©0) (@S, /N —gO)| T > Np)=W*, m— 0.
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