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A DECOUPLING INEQUALITY »
FOR MULTILINEAR FUNCTIONS OF STABLE VECTORS*

A. pE ACOSTA (CrLEvELAND, OHIO)

Abstract. This note contains the proof of a decoupling inequa-
lity for multilinear functions of symmetric B-valued stable random
vectors.

1. Imtroduction. Decoupling inequalities were recently introduced by
McConnell and Taqqu [8] for the study of double integrals with respect to
symmetric stable processes. Subsequently, a number of authors have studied
both decoupling inequalities and their applications to multiple stochastic
integration ([3]1-[6], [9], [10]).

In the present note we prove a decoupling inequality for multilinear
functions of symmetric B-valued stable random vectors. Although there is a
partial overlap with decoupling inequalities proved by other authors, our
result is more complete in the case of symmeiric p-stable vectors, since it
covers all powers ||-||* with 0 < g < p. In addition, our method of proof is
very simple. .

The contents of this note were presented in the early stages of a semina
on Probability Theory at Case Western Reserve University in October, 1984.
It is a pleasure to thank the participants in the seminar and, in particular,
S. Kwapien, for some useful conversations. '

2. The decoupling inequality. Let B, V be separable Banach spaces..Let
deN and let M: B~ V be a measurable symmetric multilinear map. Let X
be a symmetric p-stable B-valued r.v. (0 <p <2)and let X;,i=1,...,4d, be
independent copies of X. In what follows, it will be assumed that the
following integrability condition is satisfied: for a fixed q<(0, p),

. : . : \ .
§) |  EM@t <o,
where M(x) = M(x, x, ..., ).
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Tueorem. For every pe(0, 2), qe(0, p), deN, there exist constants ¢
=c(p, q, d) and C = C(p, q, d) such that, for any separable Banach spaces B,
V, for any symmetric p-stable B-valued r.v. X and any measurable symmetric
multilinear map M: B® — V satisfying (1), the following inequalities hold:

CE\IM(Xy, ..., XlF S EI\M(X)I* < CEIM (X, ..., X)II°

Proof We shall use the following notation:
: k d-k

i

x"y”‘ Xy enny XoWs eees V)

For example, 1f n: B'— Blisa permutatlon of coordinates, then. by the
symmetry of M we have M(m(x*y*™%) = M(x*y*~¥). Also, M (x%) = M(x).

(I) The left inequality follows from the general polarization identity (see
eg. [2], p. 80, and references therein)

_ . d

(2) ‘(2dd!)M(x1, eay xd)-= Z &1 &y -..de(Z ijj),
eeld i=1

where I = {—1,1} and ¢ =(g,, ..., &). In fact, since

d
LAY gX)=L(X) for every sel’,

j=1
we have from (2) and the triangle inequality: for ¢ = 1 (so in this case p > 1),
EIIM(X,, ..., X0 < (22dy)~1 24 4% (E 1M (X)||)"
S =@an(ENM X))
This shows that the left mequalaty is valid in this case with c(p, g, d)
=(dld” d/p)q
For 0<g<1, E||M(Xy,..., X)|lI"<(22d) 92 dY?E||M(X)||%, so in
this case the left inequality holds with c(p, q, d) = 244~V (d!d~ 7y,
(II) To prove the right inequality we proceed in two steps. The first step
is to prove the following claim: '
(3) the right inequality is true for ge(p/2, p).
To prove claim (3) we proceed by induction on d. If d =1, there is

nothing to prove. Assume that d >1 and (3) is true for 1 <n <d. Let y

=2"Y7; then Z(y (X +Y)) = £(X), where Y is an independent copy of X. If
g=1, then '

E|¥(X)l = E[|M (X + V)| = v4E

Z (_)M(X" Yd—")’{q

< v"“E(Z (e Y“-"m)

n=0
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and, therefore,
d _
@ (e <y Y (C)Em e v
- n=0 :
‘ 1/q - 1/q
= 20 EIM Y "+ 3 () EIM e Y
n=1
Observe that all terms on the right-hand side are finite; this follows

from (1), (2) and the triangle inequality. Now, if = Z(X),

E|IM(X" Y™ ")|* = fdu(x) E|IM (x" Y~ 7)1

The inner expectation is finite for almost all x. Since d—n <d—1, by
the inductive hypothesis, for almost all x,

EMx" Y )*< C(p, g, d—n) EIM (X", X114, ..., Xl
Thus
) EIMX"Y"™")* < C(p, g, d—m) EIM(X", X,y 1, ..., X)|*
with X", X, ., ..., X; independent copies of X. Next,
(© EIM(X", Xy, ..., Xl
= [dp ™ " Xps 15 > X)EIM(X", Xps 1, -- 5 XII°

Again, the inner expectation is finite for almost all (x,,,,.., x,). Since
n<d—1, by the inductive hypothesis, for almost all (x,,{, .., x,),

(D) EIIM(X", Xpi 15 -.0s X' S Clp, ¢, MEIM(Xy, .oy Xy Xpsgs -er X%
From (5}H7) we get '
® EIIM(X"Y“‘")II“<C(p, g, d=n)C(p, g, NEIIM (X, ..., X
- From (4) and (.8) we get oy :
© (-2 (EIM Xl
d—1 . .
< [v"- > (d)C (p, g, d—m)"C(p, g, n)”“](E IM(X4, ..., X 9"

=1\
Since p <2 and d > 2, it follows that 2y¢ = 2! 7@ <1 and, therefore,

E|MX)*<(1-2y)"1DE(IM(X,, ..., X)IY,
where

d—1 d
D=yY% (n)C(P, g, d—m"1C(p, q, n)*.
n=1

R
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If p/2 < g <1, using the clementary inequality

(

ai)q < Z al (a4 =0)

i i=1

bz

and proceeding in a similar way, we obtain in the inductive step
ENFL (Xl < 20 E | ¥ (X)*+

d—1 A\
"I‘[?dq Z (n) C(pa q, d—n)C(p, q, n):lE”M(Xh AR ] Xd)”q

n=1

Since d > 2 and q > p/2, it follows that 2y = 21-W@alp)  21-2aID) < 1 50
in this case we have :

BNV GOl < (12 DEIM (Xs, ... X1,

d-1 q
where D = 74 ¥ (") C(p, 4, d—n) C(p, 4, ).
n=1

This proves claim (3).

(II) In order to complete the proof of the theorem we need the
followmg

LeMMma. Let M: B? — V be.a measurable symmetric multllmear map. Let.
X be a p-stable symmetrzc B-ualued rov, and let X,, ..., X,; be independent
copies of X. Then: ‘

(2) for every q€(0, p),

EIM (X1, ... X < 0

(b) for every 0.<q <r <p there exists a constant A A(p, g1, d)'
(dependmg only on p, q, 7, d) such that .

(E”M(Xl’ e Xd)“ )1/" < A(E “M(Xh . Xa)”q)llq.

Preof. We first need to extend certain well-known results for stable
B-valued r.v.s to a more general situation (*). Since the arguments are slight
modifications of standard ones in the B-valued case, we will merely sketch
them. Let E -be a real vector space and let 0 <a < 1 be fixed. Assume that
¢: E— R™ is an a-homogeneous quasi-norm; that is, ¢ satisfies
@ e(x+y) <e()+e(y) for x, yek,

(i) o(Ax) =|A"e(x) for xekE, A€E,
‘and that E is a separable metric space with the metric d(x, y) = ¢{x—y).
We set [|x]|, = (o(x))'**; then

(*) We are indebted to B. Rajput for a question that led us to clarify this point.
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lIx+ll. < a(ixdle+lIyll)  for x, yeE, where a = 20m@-1,
(Axll, = |4 |Ixll, for xeE, AcR.

It Y, j=1,...,n are independent symmetric E-valued‘ r.v’s and
Sa=)Y (j=1, n), then the following Lévy-type inequality is obtained
by an obv1ous modlﬁcatlon of the usual proof:

(10) P{sup||¥%ll, > at} < 2P{|IS,}l, > £} for £>0.
O £9 1
If the Y;’s are independent copies of a symmetric p-stable r.v. ¥, then by
a standard argument we get from (10): for all neN, t >0,
nP{|Y]l, > am"?} < —log (1~ 2P {||Y|}, > t}).
From this inequality it follows that »

11) E|Y|E <o for 0<r<p,
(12) (ENYID)Y < CE|YIHY*  for 0 <g <r<p,

where the constant C depends only on p, g, r, «. Of course, (11) and (12) are
well-known results if « =1 (see eg. [1], Th. 3.2, and [7], Prop. 7.34).
We pass now to the proof of statements (a) and (b).
(a) We proceed by induction. Let 0 <q < p. For d =1 the assertion
reduces to (11). Assume that the result is true for n = d—1. For each xeB,
let @(x) be the (d—1)-multilinear map on B? ! defined by

(p(x)(xls LR xd~l) = M(xl, vees Xg—1, x)'

By the inductive hypothesis, @(x)eI¢(B*"!, u®~!; V). Moreover, the
map ¢: B—-I2(B* 1, y*~!; V) is a measurable linear map, and hence
Z = ¢(X,) is a symmetric p-stable IZ(B°"!, p°~'; V)-valued r.v. Then

EIM(Xy, ..., Xl = [du() fIIM (xy, ..., Xa-1, XN dpxy) ... dp(xs-y)
= [llo X)ll§du(x) = E||Z]|§ < 0
by (11), applied to E = I#(B*" !, 41, V) and

f) = {gnfnad “1if0<g<1 (so a=g),
(fllflledpd= ) if g > 1 (so a =1).

(b) From (12) it follows that there exists a constant A(p, g, r) such that,
for every symmetric p-stable r.v. taking values in a vector space E with an
a~-homogeneous quasi-norm, where o« = 1 or min(1, g),

(13) ENYIR™ < Alp, g, N(EN YD
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We will prove the claimed statement with

A(P: q,r, d) = (A(p, q. r)')d.

Again we proceed by induction. For d = 1 the statement reduces to (13).
Assume that the assertion is true for n =d—1. Then, proceeding as before
and using (13),

E|IM(Xy, ..., X)I" = [du(x) EIM (X, ..., Xg-1, X"
<(A@, g, M) JEIMX,, ..., Xo_q, D19 p(x)
= (A(p, g, D) " E|ZI; < (A(p, 9, M) V" (A(p, g, D) (EZN|Y™
= (4, 4. )" (EIM (X, ..., X",
This completes the proof of the lemma.

We can finally complete the proof of the theorem. If 0 < g < p/2, choose
re(p/2, p). Then by Holder’s inequality, claim (3) and the Lemma,

(EN¢ Y™ < El$(X0l" < CEIM (X4, ..., X
S CA(E|M(X,, ..., X)9™.
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