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A DECOUIPUlVG INEQUALITY 
FOR mltTHLPmAR PUNC'B[ZOPdS QF STABLE WCTORS* 

Abstract. This note contains the proof of a decoupling ineqna- 
lity for multilinear functions of symmetric B-valued stable random 
vectors. 

1. hrtsduciion. Decoupling ineguaEties were recently introduced by 
McConnePl and Taqqu [a] for ?he study of double integrals with respect tb 
symmetric stable processes. Subsquently, a number of authors have studied 
both dtxoupling inequalities and their applications to multiple stochastic 
integration ([3]-161, [9], [10]). 

In the present note we prove a decoupling inquality for multilinear 
functions of symmetric B-valued stable random vectors. Although there is a 
partial overlap with decoupling inequalities proved by other authors, our 
result is more complete in the case of symmexric p-stable vectors, since it 
covers all powers 1 1 . 1 1 4  with 0 < q < p. In addition, our method of proof is 
very simple. 

The contents of this note were presented in the early stages of a seminar 
on Probability Theory at Case Western Reserve University in October, 1884. 
It is a pleasure to thank the participants in the seminar and, in particular, 
S. Rwapieri, for some useful conversations. 

2. The Bwa~pEng imecgoragty. Let B, V be separable Ba~~ach spaces. Let 
d~ N and let M :  Bd --z V be a measurable symmetric multilinear map. Let X 
be a symmetric p-stable B-valued s.v. fO .: p < 2) and let Xi ,  i = 1, . .., d, be 
independent copies of X. In what follows, it will be assumed that the 
following integrability condition is satisfied: for a fixed q ~ ( 0 ,  p), 

where G(x) = M ( x ,  x, ..., x). 

* This research was partially supported by an NSF grant. 



TRECJREM. For euwy g~ (0, 2), q ~(0, p), d E N, there exist cowtanfs c 
= c@, q,  d)  and C = C ( p ,  q,  16) such that, for any separable Banach spGce,s B, 
k: ,for any sytnmetr-ic p-stable B-valUlgd 7.v. X a d  any measurabk syrnme~ric 
multilinear map M :  @ + Y satisfying (I), the fogokrlowing inequalities hold: 

P r o  of. We shall use the following notation: 
k d-  k 

x k f k  = (x, .. ., x,y, . .. , y). 

For example, if z: l? 4 Bd is a permutation of coordinates, then by the 
symmetry sf A4 we have M (~(2 f - k ) )  -- M (xk yd-k). Also, M ( 2 )  = (x). 

(I) The left inquality follows from the general plarization identity (see 
e.g. [2], p. 80, and references therein) 

d 

12) (2'd!) ~ ( x , ,  . . . , xJ= E ,  E ,  . . . E, fi (c gj xi), 
~ E Z ~  j= 1 

where 6 = (-1, 1) and e ..., E ~ ) .  In fact, since 
d 

2 ( d -  'IP C E~ x~) = Y (X )  for every E G I d ,  
i= l 

we have from (2) and the triangle inequality: for q 2 1 (so in this case p 11, 

This shows that the lefi inquality is valid in this case with c ( p ,  q, d)  
= gd! d -  ' 4 9 4 .  

For O < q < I, EIIM(X,,  . . ., Xd)l(% ( (2dd!) -42ddddp~l l&(x) j~49 SO in 
this case the left inequality holds with c ( p ,  q, d) = 2 2 " ( q - 1 ) ( d !  d - d / p ) g .  

(11) To prove the right inequality we proceed in two steps. The first step 
is to prove the following claim: 

(3) the right inequality is true for q ~ ( p / 2 ,  p). 

To prove claim (3) we proceed by induction on d. If d = 1, there is 
nothing to prove. Assume that d > 1 and (3) is kue for 1 6 n < d. Let y 
= 2 - l t p ;  then 2 ( y  (X+ Y)) = 9(a, where Y is an independent copy of x. If 
q 2 1, then 

EI~(XM. = s l l ~ ( ( ~ ( x +  nr~r  = .PE 1 n= 0 ~ J M ( x ~ Y " ~ [  



and, therefore, 

Observe that all terms on the right-brad side are finite; this folbws 
from (I), (2) and the triangle inequality. Now, if p = 3(X), 

The inner expectation is finite for almost all x. Since d-n < d- 1, by 
the inductive hypothesis, for almost all x, 

e I l ~ ( x n  rd-Ylq 6 c(pq 4, ~ - P ~ ) E I I M ( x " ,  x ,+~,  .. ., xd)llq. 
Thus 

( 5 )  E I I W X ~  yd-'311q G UP, 4, ~ - ~ ) E I I M ( x ~ ,  x,+ I ,  . . ., xd)llq 

with Xn, X,,, , . . ., X, independent copies of X .  Next, 

16) EIIM(Xn, Xn+al .. ., %Illq 
= jd#-'(xn+1, . .., xd)EIIM(Xn7 . - - 7  x,JIIqn 

Again, the inner expectation is finite for almost all (x,, , , . . . , x,). Since 
n < d-1, by the inductive hypothesis, for almost all (x ,,,, ... ., x,), 

From (5)47) we get 

(8) EEIM(Xnp-711' G C ( P :  q: d -n )C(~ ,  q, M)EIIM(Xl, ..., X&l14. 

From (4) and (8) we get 

(9) (1 - 2yd)(E l l m ~ l l q ) ~ "  

Since p < 2 and d 2 2, it follows that 2yd = 21-'d/p) < 1 and, therefore, 

EIJ@(x)~~' G (1 - 2 y d ) - q D p E ~ j ~ ( ~ 1 ,  . .., X,Jljq, 
where 
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If p/2 < q < 1, using the elementary inequality 

and proceeding in a similar way, we obtain in the inductive step 

E I I ~ ( X ) I I ~  6 ~ Y ~ ~ E I I Q O ~ ~ / ~ +  

Since d 3 2 and q > p/2, it follows that 2ydq = 21-(dgIp) < --. 21p(2q1p) < I, SO 

in this case we have 

~ l l ~ ( ~ l l ~  < (3-2fq)- 'DE llM(x19 . *  =, x,J1Iq, 
a - 1  4 

where D = 9 d) C(p, 4 .  d -n)C(p ,  q ,  n). 
a= 1 

(111) In order to complete the proof of the theorem we need the 
following 

LEMMA. Let M :  P t V he a measurable symmetric muitilinem map. Lei 
X be s p-stable symmetric B-valered r.u. and let X1, . . ., Xd be i d e p e d e n t  
copies of X .  Then: 

(a3 f o p  every q E (0, P), 

(b) for every O < q  < r < p there exists a constant A = A @ ,  q,  r ,  6) 
(deperadirng only on p ,  q ,  r ,  6) suck that 

Proof. We first need to extend certain well-known results for stable 
B-valued r.v.'s to a more general situation[*). Since the arguments are slight 
modifications of standard ones in the B-valued case, we will merely sketch 
them. Let E -be a real vector space and let 0 < a  < 1 be hed .  Assume that 
Q: E -+ R +  is an a-homogeneous quasi-norm; that is, Q satisfies 

(4 e(x+y) < @(~)+Q(Y) for_' x, Y E E ,  
(ii) Q(IZX) = lillEe(x) for XEE, L E E ,  

and that B is a separable metric space with the metric d ( x ,  y) = ~(x-y) .  
We set 11x1 la = (e(~))lla ; then 

(*) We are indebted to B. Rajput for a question that led us to clarify this p i n t .  
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Itx+ yll, S a(lbEl, + Fjyll,) for x, y E E, where m = 2(1/4)-1, 

x = 1 x u  for XEE, AER. 

If 5, j = 1, . , . , n, are independent symmetric E-valued r.v.'s and 
3, = (j = lrl . .., n), then the following Levy-type illequality is obtained 
by an obvious modification sf the usual proof: 

(10) P isupll &ll. > at}  a 2~ { I IS ,~~~ ,  t) for t z 0. 
kdn 

If the 5's are independent copies of a symmetric p-stable r.v. 'I: then by 
a standard argument we get from (10): for all  EM, t > 0, 

nP {JJYJJ, > atn''"; < --Eog(l-2P (IJYJI, > t)) .  

From this inequality it follows that 

(1 1) Ellrl l ;<a for a < r < p ,  

(1 2) (E ( 1  ~ ( ( : ) l ) ~  G c ( E  ( ( ~ ~ 1 , 4 ) ~ / 4  for o < q < I- < P ,  

where the constant C depends only on p ,  q ,  r ,  a. Of course, (11) and (12) are 
well-known results if ol = 1 (see e.g. 111, Th. 3.2, and [7], Prop. 7.3.4). 

We pass now to the proof of statements (a) and (b). 
(a) We proceed by induction. Let O < q < p. For d = 1 the assertion 

reduces to (11). Assume that the result is true for n = d- 1. For each XEB, 
let q~ (x) be the (d - 1)-multilinear map on Pr'- defined by 

qExI(x1, a m . ,  x,-1) = M(x,, ..-, Xd-1, 4. 
By the inductive hypothesis, q (x) E Lg (Bd- l ,  ; V). Moreover, the 

map q ~ :  B + Lq [Bd- l ,  ; T/) is a measurable linear map, and hence 
2 = cp(X,) is a symmetric p-stablie I ,  lud--'; Iv)-valued r.v. Then 

by (11), applied to E = L ~ ( B ~ - ' ,  pd-I; V) and 

Jllf IF%d- if @I < q c 1 (so a = q), 

= Gruni 4 dpd- 1)119 if q 2 1 (SO a = 1). 

(b) From (12) it follows that there exists a constant A h ,  q, r) such that, 
for every symmetric p-stable r.v. taking values in a vector space E with an 
a-homogeneous quasi-norm, where a = 1 or min(l, q), 

(13) (E1lYIl:)ll" ' q, ~ ~ ~ E I l ~ E 1 3 u q .  
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We will prove the claimed statement with 

Again we proceed by induction. For d = 1 the statement reduces to (13). 
Assume that the assertion is true for n = d -  1 .  Then, proceeding as before 
and using (13X 

This completes the proof d the lemma. 
We can finally complete the proof of the theorem. If 0 < q < p/2, choose 

r ~ - ( p / 2 ,  p). Then by Wtilder's inequality, claim (3) and the Lamma, 

[I] A. de Acosta, Stable rneasures aind serninorms, Annals of Probability 3.5 (1975), p. 8 6 5  
875. 

[2] G.  Borell, Tail probabifities in Gauss space, Lecture Notes in Math. 664 (19781, p. 71 82. 
[3] W. K r  ak o w i  a k and J. Szulga, Strictly p-stable mulriple integrals, 0 < p < 2. Preprint, 

1985. 
[4] S. Kwapieli, Becoupling inequalities for polynomial chaos. Preprint, 1985, Department of 

Mathematics and Statistics, Case Western Reserve University. 
[S] S. Kwapieri and W. Woyczyhski, Decotlpling of tnartingale transfop~ns and stochastic 

integrals for processes with independent increments. Preprint, 1985, Department of Mathe- 
matics and Statistics, Case Western Reserve University. 
- Double stochastic integrals, random quadratic forms and random series in Oriicz spaces. 
Preprint, 1985, Department OF Mathematics and Statistics, Case Western Reserve Universi- 
ty. 

[7] W.  Linde, Ilnfiniteiy divisible and stable measures on Banuch spaces, Teubner-Texte zur 
Mathematik 58, Leipzig 1983. 

[8] T. McConnel l  and M. Taqqu, Double integration with respect to symmetric stable 
processes. Preprint, 1984. 

l-9J - Decotrpling inequalities for mltilinearfirms on independent symmetric random variables. 
Preprint, 1985. 

[10] J. Z i n n, Comparison of martingale d~&ence sequences. Preprint, 1985. 

Department of Mathematics and Statistics 
Case Western Reserve University 
Cleveland, Olio 44106 
USA 

Received on 8. 1.  I986 


