A DECOUPLING INEQUALITY FOR MULTILINEAR FUNCTIONS OF STABLE VECTORS*

A. de acosta (Cleveland, Ohio)

Abstract. This note contains the proof of a decoupling inequality for multilinear functions of symmetric B-valued stable random vectors.

1. Introduction. Decoupling inequalities were recently introduced by McConnell and Taqqu [8] for the study of double integrals with respect to symmetric stable processes. Subsequently, a number of authors have studied both decoupling inequalities and their applications to multiple stochastic integration ([3]-[6], [9], [10]).

In the present note we prove a decoupling inequality for multilinear functions of symmetric B-valued stable random vectors. Although there is a partial overlap with decoupling inequalities proved by other authors, our result is more complete in the case of symmetric p-stable vectors; since it covers all powers $\|\cdot\|^{q}$ with $0<q<p$. In addition, our method of proof is very simple.

The contents of this note were presented in the early stages of a seminar on Probability Theory at Case Western Reserve University in October, 1984. It is a pleasure to thank the participants in the seminar and, in particular, S. Kwapien, for some useful conversations.
2. The decoupling inequality. Let B, V be separable Banach spaces. Let $d \in N$ and let $M: B^{d} \rightarrow V$ be a measurable symmetric multilinear map. Let X be a symmetric p-stable B-valued r.v. $(0<p<2)$ and let $X_{i}, i=1, \ldots, d$, be independent copies of X. In what follows, it will be assumed that the following integrability condition is satisfied: for a fixed $q \in(0, p)$,

$$
\begin{equation*}
E\|\tilde{M}(X)\|^{q}<\infty \tag{1}
\end{equation*}
$$

where $\tilde{M}(x)=M(x, x, \ldots, x)$.

[^0]Theorem. For every $p \in(0,2), q \in(0, p), d \in N$, there exist constants c $=c(p, q, d)$ and $C=C(p, q, d)$ such that, for any separable Banach spaces B, V, for any symmetric p-stable B-valued r.v. X and any measurable symmetric multilinear map $M: B^{d} \rightarrow V$ satisfying (1), the following inequalities hold:

$$
c E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q} \leqslant E\|\tilde{M}(X)\|^{q} \leqslant C E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q}
$$

Proof. We shall use the following notation:

$$
x^{k} y^{d-k}=\overbrace{(x, \ldots, x, y, \ldots, y)}^{k} .
$$

For example, if $\pi: B^{d} \rightarrow B^{d}$ is a permutation of coordinates, then by the symmetry of M we have $M\left(\pi\left(x^{k} y^{d-k}\right)\right)=M\left(x^{k} y^{d-k}\right)$. Also, $M\left(x^{d}\right)=\tilde{M}(x)$.
(I) The left inequality follows from the general polarization identity (see e.g. [2], p. 80, and references therein)

$$
\begin{equation*}
\left(2^{d} d!\right) M\left(x_{1}, \ldots, x_{d}\right)=\sum_{\varepsilon \in I^{d}} \varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{d} \tilde{M}\left(\sum_{j=1}^{d} \varepsilon_{j} x_{j}\right) \tag{2}
\end{equation*}
$$

where $I=\{-1,1\}$ and $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{d}\right)$. In fact, since

$$
\mathscr{L}\left(d^{-1 / p} \sum_{j=1}^{d} \varepsilon_{j} X_{j}\right)=\mathscr{L}(X) \quad \text { for every } \varepsilon \in I^{d}
$$

we have from (2) and the triangle inequality: for $q \geqslant 1$ (so in this case $p>1$),

$$
\begin{aligned}
\left(E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q}\right)^{1 / q} & \leqslant\left(2^{d} d!\right)^{-1} 2^{d} d^{d / p}\left(E\|\tilde{M}(X)\|^{q}\right)^{1 / q} \\
& =\left(d^{d / p} / d!\right)\left(E\|\tilde{M}(X)\|^{q}\right)^{1 / q}
\end{aligned}
$$

This shows that the left inequality is valid in this case with $c(p, q, d)$ $=\left(d!d^{-d / p}\right)^{q}$.

For $0<q<1, E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q} \leqslant\left(2^{d} d!\right)^{-q} 2^{d} d^{d q / p} E\|\tilde{M}(X)\|^{q}$, so in this case the left inequality holds with $c(p, q, d)=2^{d(q-1)}\left(d!d^{-d / p}\right)^{q}$.
(II) To prove the right inequality we proceed in two steps. The first step is to prove the following claim: (3) the right inequality is true for $q \in(p / 2, p)$.

To prove claim (3) we proceed by induction on d. If $d=1$, there is nothing to prove. Assume that $d>1$ and (3) is true for $1 \leqslant n<d$. Let γ $=2^{-1 / p}$; then $\mathscr{L}(\gamma(X+\dot{Y}))=\mathscr{L}(X)$, where Y is an independent copy of X. If $q \geqslant 1$, then

$$
\begin{aligned}
E\|\tilde{M}(X)\|^{q} & =E\left\|M\left((\gamma(X+Y))^{d}\right)\right\|^{q}=\gamma^{d q} E\left\|\sum_{n=0}^{d}\binom{d}{n} M\left(X^{n} Y^{d-n}\right)\right\|^{q} \\
& \leqslant \gamma^{d q} E\left(\sum_{n=0}^{d}\binom{d}{n}\left\|M\left(X^{n} Y^{d-\eta}\right)\right\|\right)^{q}
\end{aligned}
$$

and, therefore,
(4) $\quad\left(E\left\|M\left(X^{d}\right)\right\|^{q}\right)^{1 / q} \leqslant \gamma^{d} \sum_{n=0}^{d}\binom{d}{n}\left(E\left\|M\left(X^{n} Y^{d-n}\right)\right\|^{q}\right)^{1 / q}$

$$
=2 \gamma^{d}\left(E\left\|M\left(X^{d}\right)\right\|^{q}\right)^{1 / q}+\gamma^{d} \sum_{n=1}^{d-1}\binom{d}{n}\left(E\left\|M\left(X^{n} Y^{d-\eta}\right)\right\|^{q}\right)^{1 / q}
$$

Observe that all terms on the right-hand side are finite; this follows from (1), (2) and the triangle inequality. Now, if $\mu=\mathscr{L}(X)$,

$$
E\left\|M\left(X^{n} Y^{d-n}\right)\right\|^{q}=\int d \mu(x) E\left\|M\left(x^{n} Y^{d-n}\right)\right\|^{q}
$$

The inner expectation is finite for almost all x. Since $d-n \leqslant d-1$, by the inductive hypothesis, for almost all x,

$$
E\left\|M\left(x^{n} Y^{d-n}\right)\right\|^{q} \leqslant C(p, q, d-n) E\left\|M\left(x^{n}, X_{n+1}, \ldots, X_{d}\right)\right\|^{q} .
$$

Thus

$$
\begin{equation*}
E\left\|M\left(X^{n} Y^{d-n}\right)\right\|^{q} \leqslant C(p, q, d-n) E\left\|M\left(X^{n}, X_{n+1}, \ldots, X_{d}\right)\right\|^{q} \tag{5}
\end{equation*}
$$

with $X^{n}, X_{n+1}, \ldots, X_{d}$ independent copies of X. Next,
(6) $E\left\|M\left(X^{n}, X_{n+1}, \ldots, X_{d}\right)\right\|^{a}$

$$
=\int d \mu^{d-n}\left(x_{n+1}, \ldots, x_{d}\right) E\left\|M\left(X^{n}, x_{n+1}, \ldots, x_{d}\right)\right\|^{q}
$$

Again, the inner expectation is finite for almost all $\left(x_{n+1}, \ldots, x_{d}\right)$. Since $n \leqslant d-1$, by the inductive hypothesis, for almost all $\left(x_{n+1}, \ldots, x_{d}\right)$,
(7) $E\left\|M\left(X^{n}, x_{n+1}, \ldots, x_{d}\right)\right\|^{q} \leqslant C(p, q, n) E\left\|M\left(X_{1}, \ldots, X_{n}, x_{n+1}, \ldots, x_{d}\right)\right\|^{q}$.

From (5)-(7) we get

$$
\begin{equation*}
E\left\|M\left(X^{n} Y^{d-n}\right)\right\|^{q} \leqslant C(p, q, d-n) C(p, q, n) E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q} . \tag{8}
\end{equation*}
$$

From (4) and (8) we get
(9) $\quad\left(1-2 \gamma^{d}\right)\left(E\|\tilde{M}(X)\|^{q}\right)^{1 / q}$

$$
\leqslant\left[\gamma^{d} \cdot \sum_{n=1}^{d-1}\binom{d}{n} C(p, q, d-n)^{1 / q} C(p, q, n)^{1 / q}\right]\left(E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q}\right)^{1 / q}
$$

Since $p<2$ and $d \geqslant 2$, it follows that $2 \gamma^{d}=2^{1-(d / p)}<1$ and, therefore,

$$
E\|\tilde{M}(X)\|^{q} \leqslant\left(1-2 \gamma^{d}\right)^{-q} D^{q} E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q},
$$

where

$$
D=\gamma^{d} \sum_{n=1}^{d-1}\binom{d}{n} C(p, q, d-n)^{1 / q} C(p, q, n)^{1 / q} .
$$

If $p / 2<q<1$, using the elementary inequality

$$
\left(\sum_{i=1}^{m} a_{i}\right)^{q} \leqslant \sum_{i=1}^{m} a_{i}^{q} \quad\left(a_{i} \geqslant 0\right)
$$

and proceeding in a similar way, we obtain in the inductive step

$$
\begin{aligned}
E\|\tilde{M}(X)\|^{q} & \leqslant 2 \gamma^{d q} E\|\tilde{M}(X)\|^{q}+ \\
& +\left[\gamma^{d q} \sum_{n=1}^{d-1}\binom{d}{n}^{q} C(p, q, d-n) C(p, q, n)\right] E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q} .
\end{aligned}
$$

Since $d \geqslant 2$ and $q>p / 2$, it follows that $2 \gamma^{d q}=2^{1-(d q / p)} \leqslant 2^{1-(2 q / p)}<1$, so in this case we have

$$
E\|\tilde{M}(X)\|^{q} \leqslant\left(1-2 \gamma^{d q}\right)^{-1} D E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q},
$$

where $D=\gamma^{d q} \sum_{n=1}^{d-1}\binom{d}{n}^{q} C(p, q, d-n) C(p, q, n)$.
This proves claim (3).
(III) In order to complete the proof of the theorem we need the following

Lemma. Let $M: B^{d} \rightarrow V$ be a measurable symmetric multilinear map. Let. X be a p-stable symmetric B-valued r.v. and let X_{1}, \ldots, X_{d} be independent copies of X. Then:
(a) for every $q \in(0, p)$,

$$
E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q}<\infty ;
$$

(b) for every $0<q<r<p$ there exists a constant $A=A(p, q, r, d)$ (depending only on p, q, r, d) such that

$$
\left(E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{r}\right)^{1 / r} \leqslant A\left(E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q}\right)^{1 / q}
$$

Proof. We first need to extend certain well-known results for stable B-valued r.v.'s to a more general situation (*). Since the arguments are slight modifications of standard ones in the B-valued case, we will merely sketch them. Let E be a real vector space and let $0<\alpha \leqslant 1$ be fixed. Assume that $\varrho: E \rightarrow R^{+}$is an α-homogeneous quasi-norm; that is, ϱ satisfies
(ii)

$$
\begin{gather*}
\varrho(x+y) \leqslant \varrho(x)+\varrho(y) \quad \text { for } x, y \in E, \tag{i}\\
\varrho(\lambda x)=|\lambda|^{\alpha} \varrho(x) \quad \text { for } \quad x \in E, \lambda \in E,
\end{gather*}
$$

and that E is a separable metric space with the metric $d(x, y)=\varrho(x-y)$. We set $\|x\|_{\alpha}=(\varrho(x))^{1 / \alpha}$; then

[^1]\[

$$
\begin{gathered}
\|x+y\|_{\alpha} \leqslant a\left(\|x\|_{\alpha}+\|y\|_{\alpha}\right) \quad \text { for } x, y \in E, \text { where } a=2^{(1 / \alpha)-1}, \\
\|\lambda x\|_{\alpha}=|\lambda|\|x\|_{\alpha} \quad \text { for } x \in E, \lambda \in R .
\end{gathered}
$$
\]

If $Y_{j}, j=1, \ldots, n$, are independent symmetric E-valued r.v.'s and $S_{n}=\sum Y_{j}(j=1, \ldots, n)$, then the following Lévy-type inequality is obtained by an obvious modification of the usual proof:

$$
\begin{equation*}
P\left\{\left\{\sup _{k \leqslant n}\left\|Y_{k}\right\|_{\infty}>a t\right\} \leqslant 2 P\left\{\left\|S_{n}\right\|_{\alpha}>t\right\} \quad \text { for } t>0\right. \text {. } \tag{10}
\end{equation*}
$$

If the $Y_{j}^{\prime} \mathrm{s}$ are independent copies of a symmetric p-stable r.v. Y, then by a standard argument we get from (10): for all $n \in N, t>0$,

$$
n P\left\{\|Y\|_{\alpha}>a t n^{1 / p}\right\} \leqslant-\log \left(1-2 P\left\{\|Y\|_{\alpha}>t\right\}\right) .
$$

From this inequality it follows that

$$
\begin{gather*}
E\|Y\|_{\alpha}^{r}<\infty \quad \text { for } 0<r<p, \tag{11}\\
\left(E\|Y\|_{\alpha}^{r}\right)^{1 / r} \leqslant C\left(E\|Y\|_{\alpha}^{q}\right)^{1 / q} \quad \text { for } 0<q<r<p, \tag{12}
\end{gather*}
$$

where the constant C depends only on p, q, r, α. Of course, (11) and (12) are well-known results if $\alpha=1$ (see e.g. [1], Th. 3.2, and [7], Prop. 7.3.4).

We pass now to the proof of statements (a) and (b).
(a) We proceed by induction. Let $0<q<p$. For $d=1$ the assertion reduces to (11). Assume that the result is true for $n=d-1$. For each $x \in B$, let $\varphi(x)$ be the ($d-1$)-multilinear map on B^{d-1} defined by

$$
\varphi(x)\left(x_{1}, \ldots, x_{d-1}\right)=M\left(x_{1}, \ldots, x_{d-1}, x\right) .
$$

By the inductive hypothesis, $\varphi(x) \in L^{q}\left(B^{d-1}, \mu^{d-1} ; V\right)$. Moreover, the map $\varphi: B \rightarrow L^{q}\left(B^{d-1}, \mu^{d-1} ; V\right)$ is a measurable linear map, and hence $Z=\varphi\left(X_{d}\right)$ is a symmetric p-stable $L^{q}\left(B^{d-1}, \mu^{d-1} ; V\right)$-valued r.v. Then

$$
\begin{aligned}
E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{q} & =\int d \mu(x) \int\left\|M\left(x_{1}, \ldots, x_{d-1}, x\right)\right\|^{d} d \mu\left(x_{1}\right) \ldots d \mu\left(x_{d-1}\right) \\
& =\int\|\varphi(x)\|_{q}^{q} d \mu(x)=E\|Z\|_{q}^{q}<\infty
\end{aligned}
$$

by (11), applied to $E=L^{q}\left(B^{d-1}, \mu^{d-1} ; V\right)$ and

$$
\varrho(f)=\left\{\begin{array}{l}
\left.\int\|f\|^{q} d \mu^{d-1} \text { if } 0<q<1 \text { (so } \alpha=q\right), \\
\left(\int\|f\|^{d} d \mu^{d-1}\right)^{1 / q} \text { if } q \geqslant 1 \text { (so } \alpha=1 \text {). }
\end{array}\right.
$$

(b) From (12) it follows that there exists a constant $A(p, q, r)$ such that, for every symmetric p-stable r.v. taking values in a vector space E with an α-homogeneous quasi-norm, where $\alpha=1$ or $\min (1, q)$,

$$
\begin{equation*}
\left(E\|Y\|_{\alpha}^{r}\right)^{1 / r} \leqslant A(p, q, r)\left(E\|Y\|_{\alpha}^{q}\right)^{1 / q} . \tag{13}
\end{equation*}
$$

We will prove the claimed statement with

$$
A(p, q, r, d)=(A(p, q, r))^{d}
$$

Again we proceed by induction. For $d=1$ the statement reduces to (13). Assume that the assertion is true for $n=d-1$. Then, proceeding as before and using (13),

$$
\begin{aligned}
& E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{r}=\int d \mu(x) E\left\|M\left(X_{1}, \ldots, X_{d-1}, x\right)\right\|^{r} \\
& \quad \leqslant(A(p, q, r))^{(d-1) r} \int\left(E\left\|M\left(X_{1}, \ldots, X_{d-1}, x\right)\right\|^{q}\right)^{r / q} d \mu(x) \\
& \quad=(A(p, q, r))^{d-1) r} E\|Z\|_{q}^{r} \leqslant(A(p, q, r))^{(d-1) r}(A(p, q, r))^{r}\left(E\|Z\|_{q}^{q}\right)^{r / q} \\
& \quad=(A(p, q, r))^{d^{r}}\left(E \| M\left(X_{1}, \ldots, X_{d} \|^{q}\right)^{r / q} .\right.
\end{aligned}
$$

This completes the proof of the lemma.
We can finally complete the proof of the theorem. If $0<q \leqslant p / 2$, choose $r \in(p / 2, p)$. Then by Hölder's inequality, claim (3) and the Lemma,

$$
\begin{aligned}
\left(E\|\hat{\varphi}(X)\|^{q}\right)^{r / q} & \leqslant E\|\hat{\varphi}(X)\|^{r} \leqslant C E\left\|M\left(X_{1}, \ldots, X_{d}\right)\right\|^{r} \\
& \leqslant C A^{r}\left(E \| M\left(X_{1}, \ldots, X_{d} \|^{q}\right)^{r q}\right.
\end{aligned}
$$

REFERENCES

[1] A. de Acosta, Stable measures and seminorms, Annals of Probability 3.5 (1975), p. 865875.
[2] C. Borell, Tail probabilities in Gauss space, Lecture Notes in Math. 664 (1978), p. 71-82.
[3] W. Krakowiak and J. Szulga, Strictly p-stable multiple integrals, $0<p<2$. Preprint, 1985.
[4] S. K wapień, Decoupling inequalities for polynomial chaos. Preprint, 1985, Department of Mathematics and Statistics, Case Western Reserve University.
[5] S. Kwapień and W. Woyczyński, Decoupling of martingale transforms and stochastic integrals for processes with independent increments. Preprint, 1985, Department of Mathematics and Statistics, Case Western Reserve University.
[6] - Double stochastic integrals, random quadratic forms and random series in Orlicz spaces. Preprint, 1985, Department of Mathematics and Statistics, Case Western Reserve University.
[7] W. Linde, Infinitely divisible and stable measures on Banach spaces, Teubner-Texte zur Mathematik 58, Leipzig 1983.
[8] T. McConnell and M. Taqqu, Double integration with respect to symmetric stable processes. Preprint, 1984.
[9] - Decoupling inequalities for multilinear forms on independent symmetric random variables. Preprint, 1985.
[10] J. Zinn, Comparison of martingale difference sequences. Preprint, 1985.

Department of Mathematics and Statistics
Case Western Reserve University
Cleveland, Ohio 44106
USA

[^0]: * This research was partially supported by an NSF grant.

[^1]: $\left(^{*}\right)$ We are indebted to B. Rajput for a question that led us to clarify this point.

