PROBABILITY AND

MATHEMATICAL STATISTICS

Vol. 9.1 (1988), p. 147-151

A REPRESENTATION THEOREM FOR RANDOM SETS

BY

W. WEIL (KARLSRUHE) AND J. A. WIEACKER (FREIBURG)

Abstract. It is shown that every random closed set X in \mathbb{R}^d , taking its realizations in the extended convex ring, is (up to equivalence) the union set of a point process Y of convex particles with the same invariance properties as X.

1. Random closed sets and point processes of compact particles in R^d are important models for applications in image analysis and stereology (see for example [4]). In practice, quite often only the union set $X = X_y$ of a particle process Y is observable and frequently it is essential (e.g. for projected thick sections) that the particles are compact convex sets (convex bodies). In that case, X is a random closed set with values in \mathcal{S}^d , the class of sets $F \subset \mathbb{R}^d$, such that, for any convex body K, $F \cap K$ is a finite union of convex bodies (extended convex ring). This raised the question whether every random \mathcal{G}^d -set X is equal (in probability) to the union set of some point process Y on the set \mathcal{K}^d of convex bodies ([5], p. 398). A positive answer was given in [6] and the result was used to solve some measurability and continuity problems for geometric functionals of random \mathcal{S}^d -sets. We remark that in a similar situation (point processes of sets of positive reach [7]), where a corresponding result is lacking, the considerations had to be restricted to random sets which are known to be the union set of a point process.

The construction given in [6] does however not preserve any invariance property of the random set, whereas for practical applications it would be necessary to know that a stationary and/or isotropic random set X comes from a point process Y with the same invariance properties. In this note we show that a modification of the method in [6] leads to a general result of this kind.

2. First we introduce some notation. The classes \mathscr{K}^d and \mathscr{S}^d , and the convex ring \mathscr{R}^d (the class of finite unions of convex bodies) are considered as topological subspaces of the space \mathscr{F}^d of all closed subsets of \mathbb{R}^d (see [1] for

details concerning the topology on \mathscr{F}^d and its properties). A random \mathscr{S}^d -set is a measurable map X from some probability space $(\Omega, \mathfrak{A}, P)$ into the topological space \mathscr{P}^d . Similarly, a point process Y on \mathscr{H}^d is a measurable map from $(\Omega, \mathfrak{A}, P)$ into \mathscr{M} , the set of locally finite (countable) collections of convex bodies with the usual σ -algebra (see, e.g. [2] and notice that a collection of sets corresponds to a simple counting measure). For a point process Y on \mathscr{H}^d , X_Y denotes the union set of Y. SO_d denotes the rotation group of \mathbb{R}^d and G^d the group of rigid motions. Each $g \in G^d$ has a unique decomposition $g = \varrho t_x$, where $\varrho \in SO_d$ and t_x is the translation by $x \in \mathbb{R}^d$. For $F \in \mathscr{F}^d$, $\mathscr{A} \subset \mathscr{F}^d$, $x \in \mathbb{R}^d$ and $g \in G^d$, we use the notation

$$F \pm x := \{ y \pm x \mid y \in F \}, \ \mathscr{A} \pm x := \{ F \pm x \mid F \in \mathscr{A} \}$$

and

$$gF:=\{gy\mid y\in F\},\ g\mathscr{A}:=\{gF\mid F\in\mathscr{A}\}.$$

The map $(F, g) \mapsto gF$ from $\mathscr{F}^d \times G^d$ into \mathscr{F}^d is continuous [3] and the map $(M, g) \mapsto gM$ from $\mathscr{M} \times G^d$ into \mathscr{M} is measurable [7].

Finally, a random \mathscr{S}^d -set X (resp. a point process Y on \mathscr{K}^d) is said to be *g*-invariant, for $g \in G^d$, if X = gX (resp. Y = gY). Here and in the following the equality sign means that both random sets (resp. point processes) induce the same probability measure on \mathscr{S}^d (resp. on \mathscr{M}). A random set or point process which is *g*-invariant for all translations (resp. rotations) *g* is called stationary (resp. isotropic).

3. We now can state our result.

THEOREM. Let X be a random \mathscr{S}^d -set. Then there exists a point process Y on \mathscr{K}^d such that $X = X_Y$ and Y is g_0 -invariant for each rigid motion g_0 for which X is g_0 -invariant. Especially, if X is stationary, then Y is stationary, and if X is isotropic, then Y is isotropic.

Proof. In [6], Lemma 2, we proved that there is measurable "dissection" of sets in \mathscr{R}^d into convex bodies, i.e. a measurable map

$$\xi\colon \mathscr{R}^d\to \sum_{n=0}^\infty (\mathscr{K}^d)^n$$

(here $\sum_{i \in \mathcal{M}^{d}} (\mathcal{H}^{d})^{n}$ is the topological sum of the product spaces $(\mathcal{H}^{d})^{n} = \mathcal{H}^{d} \times ...$ $\times \mathcal{H}^{d}$, $(\mathcal{H}^{d})^{0} = \{\emptyset\}$) which associates with each $K \in \mathcal{H}^{d}$ a collection $\xi(K)$ $= (K_{1}, ..., K_{n})$ of convex bodies with $K = \bigcup K_{i}$ (i = 1, 2, ..., n) and n = n(K)is the minimal number for which such a representation is possible. Since the bodies K_{i} in $\xi(K)$ are necessarily different, we may write $\xi(K)$ $= \{K_{1}, ..., K_{n}\}$ in the following.

In order to apply this mapping to a set $F \in \mathscr{S}^d$, we first have to dissect F into pieces in \mathscr{R}^d . As in [6], we do this by a hypercube tiling $C_z, z \in \mathbb{Z}^d$, of \mathbb{R}^d .

Here

$$C = \{ x \in \mathbb{R}^d | x = (x_1, ..., x_d), -\frac{1}{2} \leq x_i \leq \frac{1}{2} \text{ for } i = 1, ..., d \},\$$

and $C_z = C + z$. However, to ensure the invariance properties, we shift $F \cap C_z$ to the origin, apply ξ , and shift back. Thus, by

$$\Phi(F) = \bigcup_{z \in \mathbb{Z}^d} [\xi((F \cap C_z) - z) + z],$$

a mapping $\Phi: \mathscr{S}^d \to \mathscr{M}$ is defined which is measurable (see [6]) and obeys $F = \bigcup K$.

 $K \in \Phi(F)$

Thus $\Phi \circ X$ is a point process on \mathscr{K}^d with union set X.

So far, the construction preserves invariances with respect to lattice translations t_z , $z \in \mathbb{Z}^d$. In order to get the corresponding result for general rigid motions we use the above construction not with a fixed but with a motion invariant random hypercube tiling which is independent of X.

For this purpose, let G_0^d be the (measurable) set of all rigid motions $g = \varrho t_x$ with $\varrho \in SO_d$ and $x \in (0, 1]^d$, let \mathfrak{B} be the σ -algebra of all Borel subsets of G_0^d and let τ_0 be the Haar measure on G^d , restricted to G_0^d and normalized. For $g \in G^d$, define $\Phi_g: \mathscr{S}^d \to \mathscr{M}$ by $\Phi_g(F) = g\Phi(g^{-1}F)$. Since the operation of G^d on \mathscr{S}^d and \mathscr{M} is measurable, $\Phi_g \circ X$ is again a point process on \mathscr{K}^d with union set X, and hence the same is true for the point process $Y: (\Omega \times G_0^d, \mathfrak{A} \otimes \mathfrak{B}, P \otimes \tau_0) \to \mathscr{M}$ defined by $Y(\omega, g) = \Phi_g(X(\omega))$.

It remains to show that Y has the required invariance properties.

Thus, let X be g_0 -invariant for a rigid motion g_0 and let \mathscr{A} be a measurable set in \mathscr{M} . Since $g_0 \Phi_g(F) = g_0 g \Phi(g^{-1} g_0^{-1} g_0 F) = \Phi_{g_0 g}(g_0 F)$ whenever $g \in G^d$ and $F \in \mathscr{S}^d$, we have

(1)
$$P \otimes \tau_{0} \{(\omega, g) \mid g_{0} Y(\omega, g) \in \mathscr{A}\} = \int_{G_{0}^{d}} P(\{\omega \mid g_{0} Y(\omega, g) \in \mathscr{A}\}) d\tau_{0}(g)$$
$$= \int_{G_{0}^{d}} P(\{\omega \mid \Phi_{g_{0}g}(g_{0} X(\omega)) \in \mathscr{A}\}) d\tau_{0}(g)$$
$$= \int_{G_{0}^{d}} P(\Phi_{g_{0}g} \circ X \in \mathscr{A}) d\tau_{0}(g).$$

If $g = \varrho t_x$ and $g_0 = \varrho_0 t_{x_0}$, then $g_0 g = \varrho_0 t_{x_0} \varrho t_x = \varrho_0 \varrho t_{\varrho^{-1}x_0} t_x$ = $\varrho_0 \varrho t_{x+\varrho^{-1}x_0}$ and the last integral in (1) equals

(2)
$$\int_{\mathrm{SO}_d} \int_{(0,1)^d} P(\Phi_{\varrho_0 \varrho^t x + \varrho^{-1} x_0} \circ X \in \mathscr{A}) d\lambda^d(x) d\nu(\varrho),$$

where λ^d is Lebesgue measure and v is the normalized Haar measure on SO_d. We consider now a fixed $\varrho \in SO_d$. Then, for any $x \in (0, 1]^d$, there is a unique decomposition $x + \varrho^{-1} x_0 = y(x) + z(x)$ with $y(x) \in (0, 1]^d$ and $z(x) \in \mathbb{Z}^d$. Since the norm of z(x) is bounded, the mapping $\varphi: x \mapsto z(x), x \in (0, 1]^d$, can assume only finitely many values, z_1, \ldots, z_k say. Defining $C_i: = \{x \in (0, 1]^d | z(x) = z_i\}$, we have

$$(0, 1]^d = \bigcup_{i=1}^{\kappa} C_i$$

and the C_i are disjoint. On each C_i , the mapping $\psi: x \mapsto y(x)$ is a translation. Since, for $x, x' \in (0, 1]^d$, y(x) = y(x') implies $x - x' = z(x) - z(x') \in \mathbb{Z}^d$ and hence $x = x', \psi$ is injective. Obviously, it is also surjective on $(0, 1]^d$. Thus, ψ is a bijection of $(0, 1]^d$ leaving the Lebesgue measure λ^d invariant. We therefore get

$$\int_{[0,1]^d} P(\Phi_{\varrho_0 \varrho_{t_x+\varrho^{-1}x_0}} \circ X \in \mathscr{A}) d\lambda^d(x)$$

$$= \int_{[0,1]^d} P(\Phi_{\varrho_0 \varrho_{t_y(x)+z(x)}} \circ X \in \mathscr{A}) d\lambda^d(x)$$

$$= \int_{[0,1]^d} P(\varrho_0 \varrho \Phi_{t_y(x)+z(x)} \circ \varrho^{-1} \varrho_0^{-1} X \in \mathscr{A}) d\lambda^d(x)$$

$$= \int_{[0,1]^d} P(\varrho_0 \varrho \Phi_{t_y(x)+z(x)} \circ \varrho^{-1} \varrho_0^{-1} X \in \mathscr{A}) d\lambda^d(x)$$

$$= \int_{\substack{(0,1)^d\\(0,1)^d}} P(\varrho_0 \, \varrho \Phi_{t_x} \circ \varrho^{-1} \, \varrho_0^{-1} \, X \in \mathscr{A}) \, d\lambda^d(x)$$
$$= \int_{\substack{(0,1)^d\\(0,1)^d}} P(\Phi_{\varrho_0 \varrho t_x} \circ X \in \mathscr{A}) \, d\lambda^d(x).$$

Using (1), (2) and the invariance of v under ρ_0 , we conclude that

$$P \otimes \tau_0(\{(\omega, g) \mid g_0 \mid Y(\omega, g) \in \mathscr{A}\}) = P \otimes \tau_0(\{(\omega, g) \mid Y(\omega, g) \in \mathscr{A}\}).$$

Hence, Y is g_0 -invariant and the proof is complete.

Finally, it should be mentioned that the same argumentation can be used to prove that a random closed set X in \mathbb{R}^d is the union set of a point process Y on the space of all nonvoid compact subsets of \mathbb{R}^d (considered as a topological subspace of \mathscr{F}^d) with the same invariance properties as X. However, for this result, a simpler proof is possible. The difficulties in our construction stem from the fact that the particles of Y are required to be convex.

REFERENCES

- [1] G. Matheron, Random sets and integral geometry, Wiley, New York 1975.
- [2] J. Neveu, Processus ponctuels, Lecture Notes in Math. 598, Springer-Verlag, Berlin 1977, p. 249-447.
- [3] B. D. Ripley, The foundations of stochastic geometry, Annals Prob. 4 (1976), p. 995-998.

Representation theorem for random sets

- [4] D. Stoyan and J. Mecke, Stochastische Geometrie, Akademie-Verlag, Berlin 1983.
- [5] W. Weil, Stereology a survey for geometers. In: Convexity and its applications, Eds. P. Gruber and J. M. Wills, Birkhäuser-Verlag, Basel 1983, p. 360-412.
- [6] W. Weil and J. A. Wieacker, Densities for stationary random sets and point processes, Adv. Appl. Prob. 16 (1984), p. 324-346.
- [7] M. Zähle, Curvature measures and random sets II, Prob. Th. Rel. Fields 71 (1986), p. 37-58.

Universität Karlsruhe Mathematisches Institut II Englerstrasse 2 7500 Karlsruhe 1, GFR Universität Freiburg Mathematisches Institut Hebelstrasse 29 7800 Freiburg, GFR

Received on 17. 6. 1986

5000 - T

.

.