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ASYMPTOTIC REPRESENTATIONS
OF SELF-NORMALIZED SUMS *
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Abstract. For sequences of i.i.d. rv with the probability distri-
butions belonging to the domain of attraction of a stable law with
index a €(0, 2), the asymptotical behaviour of partial sums divided by
the 1/p-th power of partial sums of the p-th absolute powers with
a/pe(0, 2) is considered.

1. Introduction. Let X, X,, X, ... be independent identically distributed
random variables (i.i.d.rv) with distribution function F and quantile function

Q@) =inf{x: F(x)>s}, 0<s<l,

Q) =Q(0+), Q1) =00-).

Let G(y) =P{|X| <y}, y=0, and let K(s), 0 <s <1, be the quantile
function of G, similarly defined as Q is in (1.1). Define also

0:(9)=(-0(1-9)v0, 0<s<1,
0:(5)=Q() v0, 0<s<1,

where v means maximum. We note that Q(s) = —Q, (1—s)+ Q5 (s).

Throughout this paper we assume that X is in the domain of attraction
of a stable law with index ae(0, 2). The usual characterization of the latter
law in terms of distribution functions can for example be found in Feller [5].
This characterization was formulated in terms of quantile functions by
Csorg6 et al. [1] as follows:

ProprosiTiON. The rv X is in the domain of attraction of a stable law with
index ac(0, 2) if and only if with some function L, slowly varying at zero, we
have

(1.2) K(1—s)=s"Y*L(s),

(1.1)
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13 KmQ, (1—s)K(1—s) = wy,
s)0

and

(14) lim Q, (1—s)/K (1—-5) = w,,
s]0

where wy, w, =0 and wi+w3 =1.
Define

= -; X; and T, ,(m= ) |Xj".

j=1
. Introduce also Uy, ..., Uy, standing for order statistics of independent
uniform-(0, 1) rv. Then for each n we have

W9 (5.0, 0 2(F 00, 3 0(U,)

il {1 =

-

1

0:(U3= 3 010=Us). %, @a(Us)f + T (01 -0,

J

where p > 0 and Z means equality in distribution.
Let {N9(y); y = 0} (i = 1, 2) be two independent Poisson processes, and
define the following rv: :

if 0 <a <1,

Ay =0a L [NO(y)y 1" Ydy (i=1,2);
0

if a=1,
A= [ (NO@)—y)y 2dy—(log Y'-1) (i=1,2),
r{)
where Y is the first _]ump point of NO(y) (i=1, 2)
if 1 <a<?2,

Ay =0t [(NO)=y)y 1" dy  (i=1,2).
R 0 .
Throughout we will choose p > 0, so that the rv |[X|? is in the domain
of attraction of a stable law with index a/p €(0, 2). Let H(y) = P {|X|” <y},
y =0, and let J(s), 0 < s < 1, be its quantile function, similarly defined as Q
is in (1.1). Then H(y) = G(y”"), J(s) = (K(s)), and by (1.2) we get

(1.6) : Tl —s)=s"PRLA(s).
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‘As normalizing and centralizing factors we will use
- ag (m) = n™ /L (1/),

nEX=nj'Q(s)ds, ' if l<a<,

ba{n)= n(- j‘ Ql(l—s)d-‘H' _"Qz(l s)) ifa=1,

i/n ) 1/n
0, _ if 0 <a <1

_c,‘p(n)i= (aa,(n))p ﬂ—_n—‘pla/Lp:(l/n)’ '. RIS

and

1 .
nE|X|? = n [1Q(s)?ds, . ifl<alp<2,
] . -

dy p(n) = n(} (Ql(l—s))pdSA+ } (Q;(1—s)fds, if a =p,

1/n 1/n

0, - if 0<afp<1.
The representation (1.5) combined with the method of proof of Corollary
3.1 in Cs0rgd et al. [1] immediately implies the following result:

THEOREM 1. Assume that X is in the domain of attraction of a stable law
with index ae(0, 2), and p > 0 is such that 0 <afp <2. Then, as n— -0,

{a (1) (Se (M —b, (M), Cop(M(T, (M) — ., (M)}
Z {—wyd, 1 +wyd,z, WAy 1 +WEAypa},

where > stands for convergence in distribution.
In this paper we are interested in the limiting distribution of the rv

{8
wn Fa ) (?:,,f—’gl—)—e,,,,(n))
xp

with appropriate normalizing and centralizing sequences of constants r, ,(n)
and e, ,(n), respectively. In case of « = 2 and EX = 0, we have Student’s case
of the classical central limit theorem with p =2, r, ,(n) = n'/? and e, ,(n) =0
in (1.7). f 0 <a <2, then EX? does not exist, and seeking the appropriate
normalizing and centralizing sequences r,,(n), e, ,(n) for the by TY*(n)
divided sequence of partial sums S,(n) was considered in the literature by
Darling [2], Efron [4] and Hotelling [6]. Logan et al. [8] studied the
limiting behaviour of the rv in (1.7) directly when r, ,(n) = 1 and ¢, ,(n) =

and obtain descriptions of asymptotic densities in the latter cases. LePage et
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-al. [7] obtained representations of the limiting rv in (4), again with r, ,(n) = 1

and e, ,(n) =0. As compared to the way we treat the problem of the
asymptotic behaviour of the rv of (4) here, Logan et al. [8], and also LePage
et al. [7], did not have the easily handled forms of a,(n), b,(n), ¢, ,(n) and
d, ,(n) as in our Theorem 1. On the basis of the latter theorem we will be
able to give asymptotic representations of the rv of (1.7) in their full
generality. The special cases of our asymptotic representations do not reduce
algebraically to the same form as those of LePage et al. [7] in their cases.
. THeOREM 2. Assume that X is in the domain of attraction of a stable law
with index 0.€(0, 2), and p >0 is such that 0 <a/p <2. As n— o, we have

(1) lfO<fx <1 and 0 <afp <1, then
Sz (n) 2 "W1Aa1+wzda2
Tllp(n) (W Aa/p1+W2 a/p Z)llp’ -
(i) if 0<a <1 and 1 <af/p <2, then

01y ) gt
(i) f «=1,0<1/p<1 and
(a) w{ # 1/2 (asymmetric), then
| 1 50 o 1
ay(n) b, (n) 1”’(") (W8 A1p,1 +WB Ayyp, )P

(b) w, = w, = 1/2 (quasi symmetric),
(b1) lim |a,(n)by(n)] = oo, then

n—+ao

—wWy 4,1t Wy 4,55

1 S,(n a 1
ay(m)by(n) TP (M) (12 A1yp s +(1/2)F A1y, )"
(b2) lim a, (n)b, (n) = cq, then ' '

n—wo

S,(n) E] —(1/2)4,,,+(1/) 4, 5 +¢o |
TR0 (/27 Ayyp + (17D Ayypa)
—.(v).if a =p=1, then
S, (n) by (n)
T1.1(n) dl.l(n)

01,1(")d1,1(")g } ‘ W1A11+W2412 Co(wi 4y 1+wy4,,),

where

{EX/E[XI, if E|X| < o0,
Co =
© l-witws, FEIX| = oo




Self-normalized sums

(VVifoa=1and 1 <1/p <2, then

o f Si( b o
(cl.p(n)dl,p(n))ll {7}1,1/;2) -di?f;(z:)} > —widy 1 +wady;

(vi)ifl<a<2 O<afp<1 and EX =0, then

Sa(n) _.‘g — Wy Aa,l +w, Au.z
723/"1 (n) (WIII Aulp,l + WFZ’ Am,’p, 2)1“, ’

(vii) if l <a <2, 1<af/p<2 and EX =0, then

S, (n
(cap(Md,,, ("))llp ) 5 - Wi Ay1twad, s

T\[*(n)
(viii) if 1l <a <2, 0<a/p<1 and EX # Q, then,
R T R i

Gy () by () TP (1) (WE Ayypy A WEAgyp )P
(ix) if l <o <2 p=o and EX #£0
(Caa MW dya(m) ™ % S.(n  b(m) | 1
i3 s _ = = A X .
b ) T dEmf o MiAntridi);
X ifl<a<2 1<afp<2 EX#0 and
(a) p<1, then

S.(m . . EX |
1/ r]
(ca,p(n) da.p(")) p{'lzlll,"(n) —n! llp(—am} W Ay +W3 4,5,

(b) p=1, then

—_ s — A 4 = A Aa ,
B ] e s P )

() p>1, then

| (Cap (7) da,p () o { Sa(n) 1-yp__EX }
d, (n) b, (n) Tr(n) " EX|P)7 (-

Ca,1 (M) dy, 1 (n)%

1 .
- —;(W{ Agip1 +WE Ayyp,2)-

Remark 1. Logan et al. [8] studied the cases (i) and (vi) and obtained
the Fourier transforms of the appropriate limit distributions. For a number
of parameter values they have numerically inverted these Fourier transforms
and produced graphs for the densities. LePage et al. [7] studied the same
two cases and obtained asymptotic representations in terms of an infinite
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sequence of ii.d. exponential rv and i.i.d. random signs. Our approach covers
all possible cases and, an account of our asymptotic representations being in
terms of two independent Poisson processes, in principle their distribution
and density functions are also easily computable.

Remark 2. The case (iii) (b) has two subcases. We illustrate here that
they are not empty. First for (bl) we consider

N
Q,(1—u) = u( logu) u > up,

and

Qz(l—u) ( +—“1—), u?do,‘

and conclude our claim. As to (b2), if F is symmetric around zero, then Q,
=, and b, (n) =0 for all n, and ¢, = 0. Again, in case of (b2} with

RO | 1
Ql(l_u)=;(l_m), u>u0’

and

1
QZ (1 u) ( (logu)z)’ = Ug,

we get a finite positive c,.
2. Proofs. First a lemma for later use.
LemMA. Let L(x) > 0, slowly varying at zero. Then

1 L(u)
m 2@

Proof. Special case of Theorem 1.2.1 (a) of De Haan {3].
Proof of Theorem 2. (i) In this case we have

S.(n _ a,ns,0)
TP (cap L)

_and Theorem 1 implies the statement.

(i) In this case we have .

: S,
00 0

a,(n)S,(n)
ip
~[ca,p (T, p (n)— dap(n))]+1} .

{ 1
Ca,p(Md;, (1)
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If « = p, then
Caa (M) g (M) = L"(l/ )J (@1 (1-w)+Q3(1—w)du — oo
by (1.2), (1.3), (14) and Lemma. Otherwise,. lmmedlately
_ n*p/a . E|X|”n1 pla N
Ca,p(M) dy, (1) = m"E |X1? = D

The proof of this case is now complete.
(iii)) For all the subcases we have

S;(n) _% (n) (Sl"(") ~b; (")) ay (n) by (ﬁ)
Tll,‘zp (n) (cl.p (n) Ti.p(n))llp (cl,p(n) Tl,p(n))llp.
In case of (a) we show that '
22 lim |a, (1) by (n)] =

n-—+o0

' By (1.2), (1.3), (1 4) we have

(2.1)

K "L(ié)
L_(l/ n) 1'5an (% u)+ I a1~ u)du| > KL(l/n) 1/n “u

lay (n) by (n)] =

with a suitably chosen K > 0. Hence, by Lemma, we have (2.2) and (a) is
proven. In case of (bl), (2.2) is assumed. Hence this follows by Theorem 1
combined with (2.1). As to (b2), it again follows by (2.1) and Theorem 1.

(iv) We have, upon keeping in mind that ¢, , () =a,(n) and' using the
latter instead,

L ay (0)(S1 ()= by () + 2y (Mby () ay (b, () |
23) . a(mds.1tn) {al D (Tx () —da s () s (1) s 1 (1) a3 (m)dy l(n)}

ay (1) (S ()= by (W) — ay ((T,, l(n-)—di,l(n))df (?))

1 +(al (m)(T;,1 (n)—d, 3 (")))/(01 (n)d,,1 (n)

By Lemma we have a, (n)d1 1(n)— 0. Hence and by Theorem 1 the
denominator of the latter fractlon tends to 1 in probabxhty If E|X| < 0,
then

b, () —EX‘+EX* _EX
dy,1(n) E|X] EiX|’

where X~ = —(X A 0), X* = X v'0. If E|X| ='c0, then at least one of EX~
and EX ™ is also infinite. Hence by definition of b, () and that of d, ; (n), and
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- applying L’Hospital’s rule, we get

by (n) L TWitw,

= —-w;+Ww
dy,1(n) w;+w, ! 2

by Proposition. Hence by (2.3) and Theorem 1 we obtain the result.
(v) We have

(c1.5(n) dl,,,(n))""(

S b
T (n) d”*’(n))

cl,p(n)dl,p(n)
(Cl,p(n)(ﬂ,p(n)_dl.pgﬂ})+l)vp e
cyp(mdy,(n)

ay (M (S, (11)—_1'7;'(_?!))+t11(n)bl (n){l : (Ck1 p(n)(Tl »(n)— dx p("))+1) }

By definition again ¢, ,(n)d, ,(n) >, and hence ‘by ‘Theorem 1
the denominator of the latter fractlon tends to 1 in probability. Now by the
meari value theorem ;

(2.4 ' 12— (14 x)1? = —(1/p)x+o( ), x —O0.
- ' Consequently

al‘(n)vbl (n)‘{l (cl p(")(Tl (M—d,, p(ﬂ))+1) }

cl,p(n)dl,p(n)
a b\ |
‘Op(cl,,,(n)dl,,,(n))‘""(”’“

on applying also Theorem 1 and definitions of ay(n), by (n), c1,,(n) and d, ,(n).
(vi) In this case b,(n) =0, and Theorem 1 1mmed1ately implies this
result,
(vii) Here c”(n)d,p(n) —o00 by Lemma 1f o =p, and by definitions
otherw1se In both cases

Ca,p(Md,,, (1)
and

(Cap ()77 Su(n) = a4, (M) S, (1) > —w, 4, A wadys
by Theorem 1. i
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(viii) We have
1 S (n)
a,(m) b, (n) TP (n)

(2.5)

_ 1 aa(")(Sa (")_ba(n)) 1
a, (M) by (1) (Ca,p () T, p (M))'/? ( ap(n)’l?.p(n))”" |
Again, |a,(n) b, (n)] — co. Hence by Theorem 1 the first rlght hand mem- -
ber of (2.5) goes to 0 in probability while the second one yields the: resuj_t '
As a preliminary step to the proofs of (ix) and (x) we need
S, (n) a,(n) b, (n)
TP (1) (Cap () i (W)

(Cap (M), ()" [0, () (S, (n) b()
= (Gup () o D) {( w0, ) o ('i)( O-bo)],

aa(n)ba(n)(ca,p(n)da.p(n))”p[1—(C“"’(n)( Loy (1) do,p (1) +1)”p]}, e

(2.6) {

ca.p (n) da.p (n)
1+0p(1)

+

Also in these two cases we have
@7) Carp (M) dy (1) — 0.
(ix) We have

(Cara (M) dy e (W)
g (1) b (1)) (Caa () ()72~ 1

(f(@:—w)+(@: (1 ~w))dwrzqm)™
1/n v — 0.

L(l/ )IEXI(I_L (Ql(l u)) (Q2(1'"‘u))a)du/L“(1/n))1/'“,‘1. -

Hence proof of (ix) is now complete by (2.6), (2.7) and Theorem 1
combined. :

(x) In case of (a) elementary calculations show that |

@ (n) by (1) (Cap () e ()" ™" W~ UREX/L(UM)
T (CarM )T T AT PRE XL (1)

and hence, by (2.6), (2.7) and Theorem 1 combined, we have prdVéﬁ this: béée L

= 1-1x

(28) - -

‘As to (b), we note that a,(n) =c,,(n), b,(n) =nEX and d,l(n)—nEIXl
Hence, by (2.6), (2.7) and Theorem 1, we have this case too. In case of (c),_' =i
elementary calculations show that (2.8) this time tends to infinity. Hence_ our C

statement follows by combining (2.4), (2.6), (2.7) and Theorem - 1
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