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ASY MPTOTIrC REPRESENTATIONS 
OF SELF-NORMALIZED SUMS * 

Abstract. For sequences of ii.d. rv with the probability distri- 
butions belonging to the domain of attraction of a stable law with 
index a ~ ( 0 ,  21, Lhe asymptotical behaviour of partial sums divided by 
the lip-th power of partial sums of the p - th  absolute powers with 
alp ~ ( 0 ,  2) is considered. 

1. Introduction. Let X, XI, X2, . . . be independent identically distributed 
I random variables (i.i.d.rv) with distribution function F and quantile function 

Let G ( y )  = P {IX] < y ) ,  y > 0, and let K(s),  0 < s d 1, be the quantile 
function of G, similarly defined as Q is in (1.1). D e h e  also 

where v means maximum. We note that Q (s)  = - Q ,  (1 - s) + Q2 (s).  
Throughout this paper we assume that X is in the domain of attraction 

of a stable law with index a ~ ( 0 ,  2). The usual characterization of the latter 
law in terms of distribution functions can for example be found in Feller [ 5 ] .  
This characterization was formulated in terms of quantile functions by 

I 

Csorgo" et al. [I] as follows: 
PRo~osrno~. The rv X is in the domain of attraction of a stable law with 

index a E (0, 2)  if and only if with some function L, slowly varying at zero, we 
have 

(1.2) K ( l  -s) = s - ' l a  L(s). 
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and 

(1 -4) l i m Q z ( l - s ) / K ( l - s )  = w2,  
s 10 

where w l ,  w 2 2 0  and w";+w",l. 
Define 

n n 

S, (n)  = C Xj and T,,, (nj = x ]X j lp .  
j =  1 j= 1 

-- - - 
. Introduce also U  ,,,, . . . , U ,,,, standing for order statistics of independent 

uniform-(0, 1) rv. Then for each n we have 

II n n n 

= (x Q,(uj,J- 1 Q ,  (1 - uj,A (Q, cuj.n))p+ C ( Q i  (1 - ~ j , n ) ) ' ) ,  
j=  1 j =  1 j= 1 j -  1 

I where p > 0 and = means equality in distribution. 
Let (N(')  ( y ) ;  y  2 Oj (i = 1, 2) be two independent Poisson processes, and 

define the following rv : 
i f O < u < l ,  

m 

A l , i =  ~(N(i'(y)-y)y-2dy-(l~gY,('1-1) ( i = l , 2 ) ,  
y(i) 

1 

where Y,'" is the first jump point of N(')(y) (i = 1,  2); 
i f l < o l < 2 ,  

m 

A,,i = [ ( N ' " ( y j - y ) y - l - l I a d y  (i = I, 2) .  
0 

--- - 
Throughout we will choose p > 0, so that the rv lXIP is in the domain 

of attraction of a stable law with index or/p ~ ( 0 ,  2).  Let H ( y )  = P .(IXIP d y ) ,  
y 2 0 ,  and let J(s) ,  0 < s < 1, be its quantile function, similarly defined as Q 
is in ( 1 . 1 ) .  Then H ( y )  = G (y l lp) ,  J ( s )  = ( K ( s ) ) ~ ,  and by (1.2) we get 

(1.6) J ( l  - s )  = s-PIa LP(s). 
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As normalizing and centralizing factors we will use . 

& (n) = m- ' la/L(l /n) ,  

1 1 

Q ~ ( I - S ) ~ S +  j Q,(I-s)), Y a = 1,  
I/* 

if O < a  ( 1 ,  

c * . ~  (n) = (4 (4)' = n-NalLP ( l ln ) ,  - -. 
-. - 

and . 

The representation (1.5) mmbined with the method of proof of Corollary 
3.1 in CsiSrgo et al. [ l ]  immediately implies the following result: 

THEOREM 1 .  Assume that X is in the domain of attraction of a stable law 
with index a OIE (0, 2), and p > 0 is such that 0 < alp < 2. Then, as n + a, 

where 3 stands for convergence in distribution. 
In this paper we are interested in the limiting distribution of the rv 

with appropriate normalizing and centralizing sequences of constants ra,,(n) 
and ea,,(n), respectively. In case of ar = 2 and EX = Oy we have Student's case 
of the classical central limit theorem with p = 5 r,,, (n) = n'f2 and e2 , ,  (n) = 0 
in (1.7). If 0 < u < 2, then EX2 does not exist, and seeking the appropriate 
normalizing and centralizing sequences r,,,(n), ea,p(n) for the by z:F(n) 
divided sequence of partial sums Sa(n) was considered in the literature by 
Darling [Z], Efron [4] and Hotelling 161. Logan et al. [a] studied the 
limiting behaviour of the rv in (1.7) directly when r,,,(n) = 1 and ea,,(n) = 0, 
and obtain descriptions of asymptotic densities in the Iatter cases. LePage et 
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at. [7] obtained representations of the limiting rv in (4), again with r,,,(n) = 1 
and e,,, (n) = 0. As compared to the way we treat the problem of the 
asymptotic behaviour of the rv of (4) here, Logan et al. 181, and also LePage 
et al. [7], did not have the easily handled forms of a, (n), b, In), c,,,(n) and 
d,,,(n) as in our Theorem 1. O n  the basis of the latter theorem we will be 
able to give asymptotic representations of the rv of (1.7) in their full 
generality. The special cases of our asymptotic representations do not reduce 
algebraically to the same form as those of LePage et al. 171 in their cases. 

THEOREM 2. Assume that X is in the domain of attraction of a stable hw 
with index a E (0,  2), and p > 0 is such that 0 < a/p < 2. As n + m , we have: 

- (i) if 0 < a  <1 and 0 < a l p  4 1, then 

(ii) jf 0 < a < 1 and 1 < or/p < 2, then . ". - 

(iii) if a = 1, 0 < I/p < 1 and 
(a) wl # 1/2 (asymmetric), then 

(b) wl = w2 = 1/2 (quasi symmetric), 
(bl) lim la1 (n) bl (n)l = ao , then 

n-rm 

(b2) lim a,  (n) bl (n) = c,, then 
n-+m 

- . (iv) i f a  = p =  1, then 

where 

c* =( EXPIXI, if ElXl <a, 
-WI  + W 2 ,  if EJXJ = a; 
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(v) if a = 1 and 1 < l/p < 2, then 

(vi) i f l < a < 2 ,  O < a / p < l  a n d E X = Q  then 

(vii) !f I ( a  < 2, 1 < a /p  < 2 and EX = 0, then 

(viii) g 1 < u < 2, 0 < a /p  < l and EX # 0, then, . 

(ix) i f 1  < a < &  p = a  and EX#O 

(x) i f 1  <cr<2, 1 < a / p < 2 ,  EX#O and 
(a) p c 1, then 

(b) p = 1, then 

p > I, then 

Remark 1. Logan et al. [8] studied the cases (i) and (vi) and obtained 
the Fourier transforms of the appropriate limit distributions. For a number 
of parameter values they have numerically inverted these Fourier transforms 
and produced graphs for the densities. LePage et al. 171 studied the same 
two cases and obtained asymptotic representations in terms of an infinite 
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sequence of i.i.d. exponential rv and i.i.d. random signs. Our approach covers 
all possible cases and, an account of our asymptotic representations being in 
terms of two independent Poisson processes, in principle their distribution 
and density functions are also easily computable. 

Remark 2. The case (iii) (b) has two subcases. We illustrate here that 
they are not empty. First for (bl) we consider 

and 

and conclude our claim. As to (b2), if F is symmetric around zero, then Q1 
= Q, and b ,  (n) = 0 for all n, and co = 0. Again, in case of (b2) with 

and 

we get a finite positive co .  

Z Proofs. First a lemma for later use. 
LEMMA. Let L(x) > 0, slowly vmying at zero. Then 

f r o  o f. Special case of Theorem 1.2.1 (a) of De Haan 131. 
Proof of Theorem 2. (i) In this case we have 

and Theorem 1 implies the statement. 
-. 

(ii) In this case we have 
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If a = p, then - - 

1 
ca,u (n) &,a (n) = j (Q"~~-u)+Q; ( I -u ) )~u+  

LU(1ln) 1," 

by (1.21, (1.3), (1.4) and Lemma. Otherwise, imm~diately . .  , . . , ,  . 

The proof of this case is now complete. 
(iii) For all the subcases we have 

In case of (a) we show that 

lim la, (n) b ,  (n)l = w . 
n-m 

By (1.21, (1.31, (1.4) we have 

with a suitably chosen K > 0. Henm, by Lemma, we have (2.2) and (a) is 
proven. In case of (bl), (2.2) is assumed. Hence this follows by Theorem 1 
combined with (2.1). As to (b2), it again follows by (2.1) and Theorem 1. 

(iv) We have, upon keeping in mind that clgl (n) = a, (n) and using the 
latter instead, 

By Lemma we have a, (n)dl,, (n) -. w . Hence and by Theorem 1 the 
denominator of the latter fraction tends to 1 in probability. If ElXl < oo, 
then 

bl(n) -EX-+EXf EX 
=- 

d l ,  ( I  E 1x1 ElXl' 

where X- = -(X A 0), X+ = X v40. If E 1x1 =TO, then at least one of EX- 
and EXf is also infmite. Hence by definition of b1 (n) and that of dlgl (n), and 
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applying. L'Hospital's rule, we get 

b,(n)  + -w1+w2 - - -w1+w2  
dl, 1 (4 W l +  W2 

by Reposition. Hence by (2.3) and Theorem 1 we obtain the result. 
(v) We have 

By definition again c,,, (n) d,. ,(n) + co, and hence by Theorem 1 
the denominator of the latter fraction tends to 1 in probability. Now by the 
mean value theorem 

r 

(2.4) l l / p - ( l + x ) l / p  = - ( l / p ) x + o ( x ) ,  x + O .  
1 

' Consequently 

on applying also Theorem 1 and definitions of a, (n), b,  (n), c,,,(n) and dl ,p (n) .  
(vi) In this case b,(n) = 0, and Theorem 1 immediately implies this 

result. 
(vii) Here c,,,(n)d,,,(n) +cc by Lemma if a = p, and by definitions 

otherwise. In both cases 

and 

(c.,p (n))l'p s. (n) = 4 (4 4 (4 3 - w1 A , ,  + w2 A,,, 

by Theorem 1. 
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(viii) We have 

Again, la,(n)b,(n)) + oo. Hence by Theorem 1 the first right-hand mem- 
ber of (2.5) goes to 0 in probability while the second one yields the result. 

As a preliminary step to the proofs of (ix) and (x) we need 

Also in these two cases we have 

(ix) We have 

Hence proof of (ix) is now complete by (2.6), (2.7) and Theorem 1 
combined. 

(x) In case of (a) elementary calculations show that 

and hence, by (2.6), (2.7) and Theorem 1 combined, we have proven this case. 
As to (b), we note that 4 (n) = c,, , (n), ba (n) = nEX and d,,, (n) = nE [XI. 
Hence, by (2.61, (2.7) and Theorem 1 ,  we have this case too. In case of (c) 
elementary calculations show that (2.8) this time tends to infinity. Hence our 
statement follows by combining (2.4), (2.6), (2.7) and Theorem I. 
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