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TWO PARAMETERS AND SOME STATISTICAL APPLICATIONS

By e
MANFRED DENKER®* (GOTTINGEN) AND MADAN L. PURI** (BLOOMINGTON)

Abstract. Let D((0, 1]1%) denote the space of all functions on

. (0,.17* with no discontinuities of the second kind. We prove weak

invariance principles in the space D{(0, 1]%) for processes of the form

J(Hpsm(t))dF,(8), m, n > 1, where F, and G, are two independent

.. empirical distribution functions of independent, identically distribu-
ted sequences of random variables,

" Hpym=(n+m+1)"Y(nF,+mG,),

and where h belongs to a certain class of functions ‘on the open unit
interval. The appropriate topology in D((0, 1]%) is given by uniform
convergence on compact sets. This type of processes is central in

" . nonparametric statistics having applications to two-sample linear
rank statistics and signed rank statistics.

1. INTRODUCTION |

In this paper we prove several weak invariance principles for a certain
type of stochastic integrals which arise from ranking procedures in nonpara-
metric statistics. These integrals can be written in the form

ay- - (h(Horm@)dF, (&) (n, m> 1)

(see section 2 for definitions), thus the corresponding random functions for
the invariance principle are functions in two variables from [0, 1]2. It turns
out that the important aspect of the problem lies in the behavior of the
functions h: (0, 1) >R. In view of the result of DupaC and Hijek [9],
our final result in section 8 is optimal concerning the imposed condition on
h. It is also worth noticing that Schulze-Pillot’s [18] approach using the
convergence in “weighted supremum norm” of the two-sample empirical
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process cannot lead to a result of the same generality. Another difficulty
arises from the behavior of the random functions near (0, 0), which is
overcome by using a topology of uniform convergence on certain compact
sets. In some cases of functions h, however, the usual topology of uniform
convergence suffices.

Weak invariance principles, as proved in this paper, have not appeared
in literature. Schulze-Pillot’s work will remain unpublished, hence we shall
briefly mention some of his results in sections 3 and 9. Though the
motivation to the present investigation comes from statistics, most of the

- material presented here does not depend on it; in any case this motivation

The paper is organized as follows: Section 2 contains the definition of
random functions based on the two -sample linear rank statistics. Section 3
gives a brief introduction to weak convergence in those function spaces
which are necessary for the purpose of our study. The limit process which
appears in subsequent sections is investigated in section 4. It is a Gaussian
process, indexed by points in {(r, s), 0 <r, s < 1} U {(0, 0)} with continuous
paths. Section 5 contains a first invariance principle for (1.1) in D([0, 1]?) for
certain differentiable functions h. In section 6 we derive an approximation
theorem for general functions k and use this result together with the result of
section 5 to derive an invariance principle for absolutely continuous h.
Finally, in section 8, an invariance principle for general h is derived (like in
[9]). As mentioned before, section 9 contains results of the unpublished work
of Schulze-Pillot and section 10 is devoted to some applications.

will be apparent for_specialists. Sections 2 and 10 illustrate these connections.

2. TWO-SAMPLE LINEAR RANK STATISTICS

Let X;,i>1, and Y, i > 1, be two independent sequences of indepen-
dent and identically distributed random variables with continuous distribu-
tion functions F and G, respectively. Since F and G are isomorphic to
Lebesgue measure on (0, 1), without loss of generahty we can assume that F
and G are absolutely continuous and

2.1) (F®+G)2=x, 0<x<1l.
Let F, and G, be the empirical distribution functions based on

Xy, ..., X,and V;, ..., Y, respectively. Let R(i, n, m), 1 <i < n, be the rank

of X; among (X1, ..., X, Y1, ..., ¥). Let n4+m = N, and consider the scores
a(i, n, m) satisfying :

2.2) C a,mm=h{N+1), 1<i<N,

or

(2.3) f laGi, n, m—h(i/(N + 1) = o(N*?),
i=1

e
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where h: (0, 1) — R denotes some Lebesgue measurable function to be speci-
fied later. Denote the linear rank statistics T.%, by
n

(2.4) Tt = Y a(RG, n, m), n, m),

i=1

where the scores a(-, n, m) satisfy (2.2) or (2.3). Write

1 . rF, () +5G(t)
(2.5) rs() r+5s) (Z [X,St]+z Iy, s'l)——*r:s———’ r,seN,
and
26 H,(t)=1Ft)+(1-1)G(1), 0<i<l.
Then, if the scores are given by (2.2), we can rewrite T as
o N
Ty h .
@) = nh (g Ban® JaF0
Let ' ]
1 /N . 1 '
8) Ton = [ (5 Hn,,.,(t))dmt)— [h(Hqw (0)dF ().
) +1 0
For Ne N define the random functions Sy(h) by

sN(h,r,s)={0 Fr<I/N, 6 <r s<1)

N 2N if r > 1/N.

By definition, Sy(h) is a random function with values in D ([0, 1]?), the
space of all right continuous bounded functions in [0, 1]? having at most
discontinuities of the first kind. We will be interested in the weak convergen-
ce of Sy(h) with respect to the uniform topology in a special case, and with
respect to the topology of uniform convergence on certain compact sets — in
the general case.

We need to put some restrictions on the score functlons h We assume
that h is right continuous and has bounded variation on every compact set
contained in the open interval (0, 1). We then can write h = h, —h,, where h,
and h, are non-decreasing right continuous functions having bounded varia-
tion on every compact set in (0, 1). We also assume that h; (1/2) = h,(1/2)
= 0 (the last assumption and the right continuity are really no restrictions).

If h, and h, are integrable with respect to [t(1—¢)] Y2dt, we put

N4l = (kg O+ s () (e (1— 1)~ do.
Denote by s# the set of all functions h with ||hl| < co. It is clear that if
he #, then [h*(r)dr < oo and

29) [Tt(1—07"2dh () < 1Al < [[r(1— 012 dh(e).
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instead of

£

- In the sequel, we shall use the Vinogradov symbol “<”
Landau’s “0”. Thus a <b means that a/b is bounded.

If he s# is absolutely continuous, then h can be approximated (in the
norm || ||) by functions which have bounded continuous second derivatives.
In general, every h can be approximated by functions of the form hlj, ; for
e>0.

Since he s has bounded varlatlon on each compact set and satisfies
h(1/2) = 0, we can rewrite T,, (see Pyke and Shorack [15]) as

1[0 N " -1
(2100 - T,.(H= g [F n ((_N_—l—l— H n,m) (f))— F _(H Hom) (t)_)] dh(1),
where = S

@.11) , ~A(n, m) = n/N.

3. FUNCTION SPACES OF UNIFORM CONVERGENCE ON COMPACT SETS
For 0 <x<1/2 let

Gl E,, = {(r, s)e[0, 17%x < HLS s ‘.1 —x} u {(0, 0} |
and let _ _ :
(3.2 E= U E=0 1700 0}

0<x£l/2

Note that, E, being a'compact subset of [0, 112, we canlcon,sider the
space D(E,) of all functions (on E,) which are “right continuous” and have at

most discontinuities of the first kind (see [14]). D(E) denotes the set of all

“right continuous” functions having no discontinuities of the second kind.
More precisely, if feD(E,) (resp. D(E)) whenever r)r and s;|s, then
lim f{(r., s;) =f(r, s) and otherwise lim f(ry, s;) exists (if r, —r and s; — s).
n—+a0 k—+w
Note that f|E,eD(E,) whenever feDE).

Let d, denote the Skorohod metric on D(E,) and let J, denote the
uniform metric on D(E,). These metrics extend to metrics d and § on D(E)
by the following definition: for g, f e D(E) let d,(f, g) d.(f |E,, g|E,) and

g =2 (flEx: glE,). Then

63 © d(f,g)= Y min(27% dyu(f; 9)

k=2

and

64 - 3(,0) = 3, min(2™ (S, 0)
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Both the metrics d and & are bounded; d metrizes the topology of
Skorohod convergence on each of the E,, and 6 metrizes the topology on
uniform convergence on every E,. We note the following '

LemMA 3.1. D(E) is complete with respect to both metrics, and the space
C(E) of continuous functions is a closed separable subspace. Moreover, the
space (D(E), d) is separable.

D(E) can be described as the d-closure of all functions which are finite
linear combinations of indicator functions of the form I, x4,, Where each
A; is either an interval of the form [a;, b;) or {1}.

- We now discuss weak convergence in D(E) with respect to- both metrics
d and é to the extent it-is-needed in the following discussion. '

Let {Z,,n>=1} be a family of random functions with values in
D([0, 13%). Since the map D ([0, 1]?) -+ D(E), given by f — f|E, is continuous
with respect to-the-Skorohod topology on D([0,1]%) and the inetric d on
D(E), and also continuous with respect to the uniform metric on D([0, 1713
and the metric 6 on D(E), weak convergence of Z, — Z, in D([0, 1]%) implies
the weak convergence in D (E) with respect to the corresponding metric. In
particular, we shall show (in Section 5) the weak convergence in D ([0, 1]%) of
Sx(h) to some Gaussian process when h satisfies certain conditions. Later, in
Section 7, we shall show that the above fact implies weak convergence in
D(E) for a large class of score functions h. Also, as a consequence of the
weak convergence of the empirical process N~ Y2[rN](Fp,@®)—F()) to a
Kiefer process in D([0, 1]%), we infer its weak convergence also in D(E).

‘We also note that the embedding (D (E), ) — (D (E), d) is continuous, so
that the weak convergence in the d-metric implies that in. the d-metric.
Conversely, we can argue as in [2] that a sequence Z, converges weakly in
(D(E), ) to Z, if it converges weakly in (D (E), d) and Z, has its support on
C,(E), the space of bounded continuous functions. This follows from the
general fact that if Z, has a separable range in (D(E), d), then the Borel ficlds
given by 6 and d coincide when restricted to that separable range.

If Do = D(E) is separable, then the Borel o-field is generated by the
projections (see [2], Section 18). In particular, a random function X with
values in D, is measurable if IT o X is measurable for every projection. The
random functions Sy(h) clearly have a separable range as they use only the
points (k/N, j/N) (0<k,j<N) in E, and hence they are measurable.

We shall always reduce the weak convergence in D(E) to that in
D([0, 17%); this way we can avoid speaking of tightness. In order to do so,
we shall use the following well known lemma: ‘

LemMMA 3.2. Let Z, and U,, n> 1, be random functions with values in
D(E) and suppose that U, converges weakly to U, with respect to J (resp. d).
If, for any ¢>0, imP(58(Z,, U,) > ¢) =0 (resp. limP(d(Z,, U, = &) = 0),
then Z, converges weakly to U, with respect to 6 (resp. d).
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If {P,,n>0} is a family of probability measures on D(E) such that
(C(E))—l (n> 1) and P,— P, weakly with respect to 6 or d, then
Py(C(E)) = 1.

The following lemma is a straightforward extension of Lemma 3.2:

Lemma 3.3. Let Z, be random functions in D(E). Suppose that for each ¢

> 0 there exists a sequence Ui, n> 1, of random functions and a random
Junction U*® such that

(3.5 vt —U*

weakly in D(E) with respect to & and such that

(3.6 P((Z, U)2n)<n-2a) for any 1> 0.

If there exists a random function Z such that -U.*'—»,-Z as ¢—0 in
probability and if ima(e) = 0, then Z, converges weakly in D(E) with respect

=0
to 6.

4. THE PROCESS Z (k)

Let the distribution functions F and G be fixed. Let # be a class of
score functions he s such that, for any 0 <-4 < 1, the functions FoH} ! and
GoH;! are almost surely differentiable with respect to d|h| (d|v| denotes the
total variation measure given by the signed measure v). This assumption
always holds if h is absolutely continuous.

We shall write dF/dH; and dG/dH, for versions of the Radon—Nikodym
derivatives satisfying

dF dG I
EH_loHA = (FoHj;") and EoH;Ig(GoHA 1y d|h as.
For he #, define a process Z(h) on E by Z(h, 0,0) =0 and
' | s LdG()
(4.1 = —— A (r, Ddh(H,, ., ()+
41 Zh,r,s) s dHg . 1 (r, )dh(H (1)
r L dF()

02D (s, 0dh(Hyes () (1 s # 0),
+P+Si‘;dHA(r,s) Z(S ) ( M,)()) (r e )

where A ,-and X, are two independent Kiefer processes on C ([0, 1]%) with
expectations zero and the -covariance structure given by

EXy(r, ) Ay (F, t) =min(r, )FO(I~F(), 0<t<r<1,0<rr<1
and

E A5 (s, 1) A5 (s, ) = min(s, ) G(O(1—G(r)), 0<t<t<1,0<s, <1
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LemMa 4.1. The process Z(h) has the same distribution as the process
—Z(h) and the process Z* (h), where

1 |
@42 Z*(hr,s) = _ﬁ_s_[(GoH;(,{s,)'(t) Ay (ry Hygly () dh(0)+
) 0 .

rt i _
+— I(F o.HA(rI.s)) (t) 9{2 (Sa Hl(rl,s) (t)) dh (t)
r+s 0

If h is absolutely continuous and W is integrable, then Z (h) has the same
distribution as Z¥T(h) where :

1 o 1
@3)  Zt(hr,9) = [[h(Hiy (u))+$ [ (i (W) dF (W)] 2, (r, di)+

+— [H O (s, Hilo (0)dF (Hil )
So

Proof. Since for any Kiefer process £ under consideration, — % has
the same distribution, it follows that Z(h) and —Z(h) have the same
distribution. That Z*(h) has the same distribution as Z(h) follows by a
change of variables in (4.1). o

Finally, if h is absolutely contmuous and if K is Lebesgue integrable,
then from (4.2) we obtain

Z(h, 1, 5) = -r—i—s (j)h’ ©) A1 (r, Hilky (0)dG (Hi L, (6) +

-

+ T TH O X (s, Hilo O)dF (B, o(0) =
0 .

1 N
— (W@ A1 (r, Hyy (1) dt +

0
1
Ti t) '%fl (ra Hl—(rl,s) (t))
1 |
+—— (K () A5 (s, Hily (D) dF (o ()

r+sgp
1

1
[ [ (H (r))+% {1 (i (W) dF ()] 1 (r, di)+
0 s

t

11
s A TH (o () dF () K (s, do),

which proves (4.3).
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The integrals with respect to the Brownian bridge component of the
Kiefer process were first defined by Filippova [10] for functions h satisfying
{h*(x)dF(x) < oo (resp. [h*(x)dG(x) < o0). Indeed, if &’ is integrable and
belongs to s, then by (2.9) it is easy show that these integrals are finite in
our special case. It is also clear that the processes of the form
[f () A (r, t)dv(t), where v is some measure and f some square integrable
function, have continuous paths and are in fact Wiener processes with zero
expéctations and covariance

Ej'f(t) A (r, t)dv(t)jf(t) A (', dv(t)
=2ff f(u)f(v)mm(r, r)u(l—v)dv(u)dv(v)+
v +”I(,,=,,,f2(u)m1n(r,r)u(l —u)dv (u)dv (v).

Since, in (4.1), H, (1) depends continuously on r and s, the processes
Z (h) must have continuous paths. They are obviously Gaussian and centered
at their expectatlons Their covariance structure is glven by the following

LEMMA 4.2. We have

’

SS
(r+s)(r'+s) %
X I _’.(G o Hi._(rl.s))’ (u) (G o H)._(rl',s'))’ (U) mln (F (H;(r:l,s) (u))s F (H;(rl'.s’) (U)) X
x (1 —max (F (Hzly W), F(Hik v () dh(u) dh(v) +

(ti.4) EZ(h,r,s5)Z(h, v, s) = min (r,r)

+min s, ) (r+s)r(r—r+s) [§(F o HzlyY ) (F 0 Hyh o) (8) x
x min (G (Hy!, (), G (Hzt sy (@) x
x(1—max (G (Hily ), G(Hids, ) dh(w) dh(v)

and |[EZ(h, r,s)Z(h, 7, s) <||hj|% where “<” depends onr, r', s and s'.
Proof. Let r <r and s < s’ (the other cases can be proved analogous-
ly). Then

EZ(h,r,8)Z(h, 7, s) = {—j (t) Hy(r, t) dh(H;  (0)—

dH).(r s)
r L dF

r+s odHM,s,

(&) A 5 (s, ) dh(H ;¢ (t))} X

{ '+5 gde(r s) 0 (", 1)dh (Ha . (0)—

L

r +S OdHl(l' ,5)

(&) A (s, O)dh(H i g, (t))}
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ss’ dGg - dG
) ff dH () dH e, (o)

XEJKI (T, u) J{I (r’a U) dh (Hl(r,s) (u)) dh (H}.(r’,s’) (U))+ -
rr’ dF dF
+

o (rt9) (' +s) [ [ dH;, 5 () dH . o

» X EA 5 (s, u) A5 (s, v)dh (H}.(r,s] (u)) dh (Hl(r‘,s'} (L))
Since B’y (r, u) A, (', v) = r min (F (u), F (v)) (1 — max (F (u), F (1)) and
EX (s, u) A5 (s, v) =s min(G(u), G(v)) (1-max(G(n), G(v))), (4.4) follows

by change of variables, - :--

If h is non-decreasing, then both the integrands in (4.4) are bounded by
C(r,r,s, s)||h|?>, where C(r, 1, s, s) is a constant, independent of h, but

dependent on 7, ¥, s, s'. Since the norm || || of h on # is compatible with the
Jordan decomposition of h, it follows that

[EZ (h, 1, ) Z(h, 1, s)| <|IhlI*.

If, in (4.1), r/(r+s) is fixed, so are H,, ; and s/(r+s). Hence, for any fixed
c (0<c<l,

1—c¢
4.5) Z(h, P r)

is a sum of two independent Wiener processes with covariance structure
given by Lemma 4.2. In particular, the variance is given by

l—c \2
EZ (h, r, cr) =rag?,
c

(v) x

where

o = 2(1—0)? [ | {GoH Y (G oH Y (W) (FoHI H(w) x

x (1—FoH,; " (v)} dh(w)dh(v)+
+2c(1—c) | (FoHZ Y W)(FoH; 'Y (v)(GoH,; ") (u) x

S e x (1—G o H; ' (v))}dh(u) dh(v),
provided dh has no point masses.
We also need the following
ProrosiTioN 4.3. If hy, h, €, then

4.6) E[5(Z (k). Z(hy))]* <{lhy —hy|.

In particular, if {h,: n > 1} converges to h in norm, then Z (h,) — Z(h} in
probability with respect to 6.

3 — Prob. Math. Statist. 9.1
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Proof. We shall use the representatlon of Z(h) given in Lemma 4.1. It
is sufficient to show that E[5(Z (h), 0)] < ||h|| for he #.

Fix 0 <x <3 and denote by I(z) the closed interval with endpoints
H;'(z) and H;!,(2), 0 <z < 1. Assume first that—given a fixed ze(0, 1)
—F(H;'(2)) > G(H;; ' (2)). In this case I(z) = [H; 1, (2), H, '(2)] and it fol-
lows that

max |, (s, Hyly @) <  max  |A5(s, y).

(r,5)eE,, . 0<s<1,yel(2)
Since

{suplfz(é;'y)|2:0<ssl} and {(I"(l y)) yeI(z)}

yel(z) (1 G( ))

are non-negative submartingales, applying Doob’s inequality twice ([8],
p. 314), it follows that

: 1-G H7L, )\
B max|5 . Hido @' < 16B(3(0. 17 @ (i ) -

(r,s)eE,,
‘ [ - (Note that G(H, !(z)) # 1). Now, since
| E(A,(1, #;'(2) = G(H; ' (2)(1-G(Hy 1@) < (1—»)"tz(1-2),

1—z=1-%F(H;*(2))—(1—3%)G(H; ' (2)) < 1 -G (H; ' (2)),
x[1=G(Hi L, (2)] € 1-(1—%) F(H{1,(2))—»G(H 1, (2)) = 1 -z,
therefore
@1 E max |, (s, Hyly @) < 1667 2(1—2)"1z(1—2).

(r:s)eE,,

In order to prove the corresponding inequality for 7y, let us first
assume that G(Hil,()) < F(H;l.(t)) holds as well as F (H“(z))

G(H, ' ().
Here we use the fact that {2 (1, y)*/F(y)*: yel(z)} also is a non-
negative (backward) submartmgale and we obtain

. ; F H;l 2
o ,E(ggxwl (r, Hily @) < 16E (7, (1, HTL, ()’ (H) .

Here F (Hll‘ 1,(2)) # 0. Moreover,
E(oA (1, H;_i,,(z)))2 =F(H1,@)(1-F(H1@)<1-»"'z(1-2),
z =(1—%) F(H{,(2)+xG(H{, () < F(H{1,(z)) and xF(H;'(2)<z
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Consequently, :
(4.8) E max | (r, Hyly @) < 16%72(1—%) 1 z(1—2).
(r,s)eE,, N
Let now G(Hil,(2)) > F(H;!,(2)). Then by continuity, there exists
toe[x, 1—x] with G(H,'(2)) = F(H,,'(2)). Put I, =
- [t0:

[Hi,(2), to] and I,
< 1(2)]. Then, on I,, G(to) > F(to) and the argument showing (4.7)
(1nterchang1ng F with G and replacing ¢, by £,) gives

E max |[X(r, y))*><16x 2(1—x)"'z(1-2z).
0<r<1,yely .
On I, we can use the argument for (4 8) to show an anangous
inequality. Hence
4.9)

E max |, (r, Hyly Q) < 32x—2(1—x)-1z(1—z).
ns)EE, '
Finally, if F(H,'(z))< G(H;

1(z)), we interchange in the preceding
arguments F by G and %", by %, and obtain

E max | (r, Hily @) <32~ 2(1—%)"'z(1~2),
(r,s)ekE,, o

i

(4.10)

E max |45 (s, Hily @)

(r,s)eE,,

<32 *(1—%) tz(i—z) forany 0<z<l.
By our assumption, (GoHy;.,) and (FoH;,,) are bounded functions if
(r, s)eE,. From this and (4.10) we obtain finally (if 4 is non-decreasing) that
~ E sup (Z*(h, r, s))2

: oo
(r,5)eE,,
<2 sup = il (j(GoHl(,s,) () x /32 (1= T /(1 =2) dh(2) +
(r,8)ek,,
+ 2 sup r” ——(J(FoHz ) (2) /325~ 2(1— x)_l\/z(l—z)dh(z)
(rSEEx(r'l'S

C(%)llhllz,
where C(x) denotes a constant with a polynomial dependence on ™!

Clearly, the same inequality holds for general k because of the definition
of the norm || ||. Choose me N such

- X CA/MY <|lh~ 12 < 2m7t

ksm
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Then

(E(5 (z*(h), 0))2)1/2 = {E(f min(27%, sup Z*(h, r, s)))z}uz
k=2

(r,s)eE,,
< Y CWRMW R+ Y, 27F < |2 +27m 1 < 2|K)112,
k=2 k>m )

proving (4.6).

5. AN INVARIANCE PRINCIPLE FOR C?-SCORE
THEOREM 51 Let the score function h of class C? satisfy
(5.1) W@l <K(t(1-1)

1+n

for sbﬁe.-n > 0 and K > 0. Then, the processes Sy(h), N > 1, converge weakly
in D([0, 1]%) with respect to the uniform metric to the process Z (h) defined in
(4.1). (Here Z(h) can be considered on C ([0, 1]1%)).

The proof of this theorem is based on the following lemmas.

LemMma 5.1. We have

(5.2 lim sup [rN]N"”2| (h(Ha @)= h(H,, (0)}dF ()] =
Now OSrsit
(5.3)
Al,im Ofugl [rNIN~ 1/2| {h(Hyps ) —h(H,, [(0))} d (Fiem O—F@) =0,

r=1/N

where
(54) Ars =[rN]/N(r, s).

Proof By the Mean Value Theorem, for some ¢ in the interval given
by H,,(t) and H A, (t) we have

'h H;,q(®)—h | = |W ()| |H 5 (1) — Hz (t)|
N
< |Hypw O —H,, 0] < (;AE( ]S) r:—s {AE;F JS)_r+S ) <N, 5"

(Note: K'(¢) is bounded.)
LEmMMA 5.2. We have
1

(5.5 lim Esup [[FrNIN~ 1/2— j W (Hap (D) — K (le,s(t))} X
0

N-wo O0€r,s<1

x {Fym ()= F (1)} dF (1)]* =
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1

f K (Hl(r.s) (t)) -K (1;1',1_'_‘_g (f))} X

r

| (5.6) lmE sup [[SN]N 172

N—-w O0<rs<1

r+s 0

2
Proof. For 0<t <1, 2/N<r<1 and 0<s<1 there exists some ¢ in
the interval given by H,, ,(t) and H 2,5 () with

i (Hagr, (@) =1 (Hy, (@) = (B ( é)uHM,s,(t) H; (o)

2K —l4n . -
[f’N] ({ - ( l(rs)(t)(l H}L(rs)(t))} + .

[Nr] 144
g Han (1= 1, O))*")
Since '
N
E sup (F,()-F(@)' < ¥ n"*F(0)(1—F () <(log N)F(1)(1—F (1)),
1<n<N n=1 '

it follows for q = [log NJ? that

E /;Ep [["N] N~ 1/2 [{hl(Hl(r 9 (®)— W (H A )} x
o<t '

X {Fm (t) —F(t)} dF (I)le

1
< U sup([rN] N~ 122 Ih’ (H .5 (u)) —W (H Ars (u))l X
0

x |E max IFn(u)—F(;f)lz}vlfzdF(u))z

1sasN

. 1
<N~ 'log N(fsup {(HM,,S, @) (1= Hypg @)™ " (’_:_—SF(u)(l —-F(u))+

o s

o 1/2
+(H,, @) (1-H,, )" [rN] — = FW(l-F@)) SdF@)’
- ’ N{r, s)

1
“Hog N(fsup {(Hyp0 )1 = Hyey )"+
0

rs

+(H,, ,(0(1—H, (1)) """} dF (o)

1
<N~ log N([((1—p) M2 *"de)*+
. 0
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#N- llogN{j( o O0-H o))" ar )}’

<[log N1t {j(t(1—t))‘”“"dt}2

by the Cauchy—Schwarz inequality.
In the derivation of the above inequalities we have used the following
facts:

() for 0SA< 1, Hy(t)(1-H, (1) = AF()(1— F(t))
(@ if g/N<r<land 0<s<1, then

. (a) for G < F (t)
H_ 4 ()< Hypy(®)<F@) and H_ ¢ (O<H, (<F(Q),
- @m ' G+ M
(b) for G(t) = F(1),
FO<Hya@<H o (@) ad FO<H, O0<H (.
2+ N
The proof of (5.6) is analogous to that of (5.5) and is therefore omitted.
Lemma 53. If F(t)2G(t), then for any r<r and §<s,
Hy,o(t) < Hyy i (t), and if F(t) < G(t), then for any r<r and § <s,
H).(r,s) (t) > H}.(r',s’) (t) )
Since the proof is straightforward, it has been omitted.
LemMA 5.4 We have

(57) lmEmax (N (n+m) 1 Z Z {h’( n (X)I[X <X~

N-owol<n,m<N i=1j=1

~H(H_»_ (X))F(X) jh’( o (0) I, <,]dF(t)+jh'( : (t))F(t)dF(t)}) 0,

(58)  LmEmax (N""2(nm) Y Y {h’(H_:_(X,-)IiYiSX]

N-w 1<nm<N i=1j=1

W (H_~_(X))G(X)- yh'( _n_(O)fy;<adF )+

+ [W(H_»_(1)G()dF ) =
Proof. Write
-f;l,m(u, U) = ( n (u))I[,,\u] ( n (u))F(u)—

1

— (W (H_s_(0)Iy<qdF )+ [ W (H_»_(9)F(t)dt
0 n+m 0 n+m
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and

i f;l,m(Xin XJ)

i#zj=1

We first estimate E max N~ !(n+m)~2W32,. Define

1€nm

Wy = VVn.m_ W:—l,m_ m.m—l + I/Vn—l,m—l (": mz 1):

where W_;, =W, _, =0 for j, k > 0.
It-is easy to check (by induction) that

_Z Zw“

k=1 j=1
and, for 1<a<b< N and 1<u<v<N,
b v b v b—1 v
X Y oy= Y Y Wi-Y Y W-
k=a+1 j=u+1 k=a+1 j=u+1 k=a j=u+1
hb—1v-1
Z Z Wit 2 X Wi,
k=a+1 j=u k=a j=u

v v—1
) Wi — W)+ Z (Wo.;— W)
Jj=u

Jj=u+1
= m,u - m,u — m,v+ VV;,u
b
= Z (fb,v(Xi: Xj)_ﬁ;,u(Xia X}))_
ixj=1

- i (f;z,v(Xis Xj)_fa,u(Xia Xj))

irj=1
= i (fl‘),v _fl‘a,u —f;z,u +f;1,u) (Xi’ XJ) +
i#j=1
+ Zl Zl(fl;v fbu)( )+ Zl Z(ﬁ)u fi)u)( J)+

+ Z Z (fow J‘L..)(X;,X

! ' " i=a+1 j=a+1 ' E
i£j

Because of 1ndependence the square integral of the second and third
summands is

(59)  <ab—a) [ [(fo—fou)? (x, Y AF () dF (3)
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and the square integral of the last summand is
(5.10) < (b—a) [ [(fow—Tou)* (x, Y)AF (x) dF ().
To estimate the double integrals, it suffices to estimate

| (H 2 ()= K (H 2 () (I <~ F ()" dF (x) dF (3).

Considering different cases, it can be shown ‘that

—-2+2y

o (H 2 ()~ R (2 () < [{H 2 ((1—H 2 ()} "™+
HH (- H 2 )T 20— H 2 ()
< (—u?[(b+u) 2(b+v)"2b? {HHLu(x)(l_H,;{—,;(X))}_z“"-l-

+b+u) 2 (b+0)"2b? {H2_()(1—H2_(0)} "™

and since

b(b+v) 1 F(x)(1—F(x)) < HB,%(x)(l —Hﬁ*.;(x))’ '
and

b(b+u) ' F(x)(1 —F(x)) < Hbi_u(x)(l —Hb_:;(x)),
we obtain .

(511)  [[(fro—fod*(x, ) AF () dF () < (0—w)* (b+w)~2 [[t(1 -]~ **"dt
<@—-wob '(b+uw)  [t(1—0)] ' "4t
The square integral of the first summand is bounded by
az jj(.ﬁm _f;m —'f;w +.f;zu)2 (x’ y) dF (X) dF (y)

We now fix x; the it is easy to check that

u
- I <(@® —a)m,

gt 0~ s

‘ v
[Hi (9= Ho2 (9 < b =)

s )~ o O < 0= oy

and

|H_2_(x)—H_2_(9] < (v—1)

at

4
(a+v)(a+u)
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Thus

[ (H__(0)— I (H2_(x))— k' (H_s_(x))+ K (H_2_(x))]"

<(v~u)<b~a)[ “__ v }[ a__,

(b+u)(a+u) (b+v)(a+v)jj(a+v)(a+u)
b z+z

+m—l(2(ﬁf (x)(1—H;(x))”

where the sum extends over j=bj/(b+u) and af(a+v) (cf. Lemma 5.3).
Consequently, -

@ [ [(fon = SouFou ) dF (9 4F ()

) ~1+2y +v bt
«(u%u)(b—a)(j(t(l—t)) : dt)(max (Zj—%’ a+::)+1)

since

2[ u N v ]l b N a
a b+w(a+uw G+v)(a+v)||G+v)b+uw) (a+v)(a+u)

1 <(a (a+ +1 and<( b 2(b+u+1'
<4 <
f at+v/) \b+ b+u/ \a+v ’

we have, eg.,

b

b
i Tysa— F(X)) dF () =5~ F () (1= F()

and

ﬁbuF(x)(l—F(x))s b ()[1-H2_(x)].

Together with (5.9), (5.10) and (5.11), we obtain

. .
d 2 a+v b+u
(5.12) E(:=;+1j=;+1 W) <(b—a)(u—u)max(b+u, a+v>'
To estimate E max N~ '(n+m) 2W}2, we apply Theorem 8 of Mo-
1€n€N
0<sm<N '

ricz [13].
If "'<a<b<? and 2 ' <u<v<?2 then

at+u b+u
max( , )<4
b+u a+v




- where £ (t) is any point in the interval given by H 2, (0) and

- (5.14)

42 M. Denker and M. L. Puri

Thus by (5.12) we have for 2%, 2 < N,
E max N~!(ntm) 2 W2, <2221 +271) 2. N~ iog 2log 2/

2k~ lgp<gk

2i=1gm<aj
- < N~ !(log N)2.
Hence _
(5.13) E lTaicN N~ '(n+m) 2W2, < N~ '(log N)*.
0<m<N

To prove (5.7), it remains to estimate

-1/2
E max (N
1sn<N
. 0sm<EN

(n+m) ! Z {h’(

)(1 F(X))

— W (H 2

But, since k' is bounded, this maximum is clearly bounded by N~
proving (5.7). The proof of (5.8) is similar to that of (5.13) and is therefore
omitted.

LEMMA 5.5. We have -

Mix, < dF )+ [1 (H_n_(t) F ()dF ()})".

-

lim sup [rN]N~ 1’2[h"(f())(—Jy(r’—s)—H[,N],[sN}(t)—H,lr’s(t))zdF[,N](t)

N—-w r,s¢[0,1] N(r, S)+1
=0 in probability,
N{(r, s)

mﬁrrm.rsm ®).

Proof. Using (5.1), we have

1 N . 2
h" (& (t)) (‘mr(':;)—i_)l Hipn s () —H g (t)> dFppn (2)

+n N 3 y
<§ [(HA O(1-H, ) (N—(r—(rs)%ﬂr{rm,tsm(t)x

ey N , o N\ + 27 ‘N 2 ‘

Next,

1 N , N N , N - 1‘+n
(5.15) ] (I\T(r,(;s)s-f)—l Hy i (0) (1 —‘]W’.’("S)%H [rN1,IsN] (t))) x

0
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2
X (% i ranisn (O —H s (t)) dF . (t) .
N{r,s) - 2 N(r,s)
<o (5t Hemian O =ty 0) §(o 341 Homant0>
N(r,s) - mltm
X (1 —M%&H[rnl,[snl (t))) dF,zq (D)
N(r,s) - EN(r, s)+1 7 —1+n.
<8 l:p (W—IHUN].[SM (t)—Ha,,s(t)) W g(t(l —1)) - dt.

Now, from Theorem 4.1 in [7], we have for each r and s

N . ) 2 2 N "
(, /N (r, 5) jh" q0) (N( 0‘)21H[rm,[sm(t)—HA,,s(r)) dF[,.N](t)) < [r(l'\‘[ ]?-
Consequently, o ,
(516) E max ([rN] N-1/2 }h"(f(t)) ( “N(r, )
0

1 <[rN}$SNY/2j10gN N(r, s)+1
0<[sN1< N1/ 2fl0gN

b4/ sy (8) —

2

. |
—le,s(t)) dF[,N](t)) <(log N)™2,

Now let & > 0 be fixed. Then using (5.16), we obtain

. n+m 2 v
517) - P N~—1/2 h” (——————— dF,(t) = ¢ )
517 2 sy v 12 [ RN (e A0 0>¢)
0<msN )
<e 2(logN)"2+P( . sup nN~2 |h" (&) x
NU2j0gN<n<N 0
oer/z/logN<m$N E
2
(JLH _H )dF"m;s).
ntm+1 " TwEm

Now let us fix intervals [2*~1, 2*) and [2/~!, 2/). Then, using Lemma 5.3,
we have for each 2*"'<n <2 and 2"l m <,
(H o O(1-H 2 )" <(H O - H_z_(t))) Ty
k

2 +21_

(H 21 ()(1-H_2k-! -t @)
I —142J o zk 149
and so,
(518) E max Y (H.» (X)(1-H_» (X))
2k—lgpgoki=1 n¥m ntm
2i-lgms2i ’

1+n ‘
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2k
SEYH » X)(1-H » X))

i=1 2k+2j—1 - 2k+2j 1

1+n

+EZ( k-t (X)(1—H p-1 (X)) ™"

i=1  Sk=143] 2k—=14 2]
<242 [(t(1 1)) " dr.

Let
Z":(H n (X)(1— H_» (X,))) P> (264-2))(log N) ).

nt+m

-
B,;(N) = { max
2k~ lgp<ok i=1
2= Vgm<ad

Then, using formula (5.18) and Markov’s inequality, ).

o k,j<logN
<(logN)~! and on ﬂ(B,,j(N))C, we have for each n, m

P(B,;(N))

(5.19) nf(H_n r)(l —H_1_(1))” "TaF, (8) < 2(n+m)(log N)3.

Now let

supn’8|F,(t)—~F(1)) <1land sup supm?®|G,(t)—G()| <1}.

NU4smgN 8

A
=

sup
Nl/dgagy 1

Then, by the law of the iterated logarithm for the empirical processes,

we have lim P(4%) =0 and on Ay we have for n > N'?/log N or for m

N-ow
> NY2/log N,

(520) | () B2 (t)J
n : m
<n+m+‘H—m(F,,(t)—F(t))+m(G,,(t)—G(t))

< (n4+m) 1 [1+n%8 +m?8 + N14].
Using (5.14), (5.15), (5.19), and (5.20), we have on Ay N[\ B, ;(N)] for n
k.

> NY2%/log N or m > N'*/logN,

n+m 4 "
n+m+1 ™"

Var.o)

1
nN "~ 1/2 j‘hu(é(t))(
0

1
<f—4_—w’—_—(n+m)‘2(1+n5’3+m5’3+N1’4}2+
NG

+N- 1/2(n+m)_2(1+n5/8+m5’8+N1/4)2(n+m)(10g N)® < N~ Y4(log N)2.
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Thus, with N sufficiently large, we have

i (£ )(—”m A, ()~ H (t))zdp 0| <
su m\f)— n n
N1/2/lng1\lf)~...n~...N \/> n+m+1 " n+m
ﬂer/Z/l(‘lgN\M\

on the set Ay n[ﬂ B, ;(N)]. Since the measure of its complement tends to

zero, (5.17) tends to zero as N — co. This completes the proof of the Lemma.
LEMMA 5.6. We have

N-U2 1 .
(ﬁm _r (H s (t)) Hipyyism (8) dFppn (t))z =0

Proof. Since &' is bounded, the proof follows trivially.

Proof of Theorem 5.1. Since k 1s of class C,, we obtain from Taylor’s
theorem

lim E max
N—ow O0€rs<€1

_ t N(r,s)
SN(h, r, S) = D"N]N 1/2[£h(m

H [rM.[;N] (t)>dF i (£) =
1
_ (j)h(le’s(t))dF(t):l

1
= [PNIN"Y2 [h(H,, (0)d(Fym () —F(©O)+

1 N(r, R
+[rN]N~12 (J; W (le,s (t)) (J\f(r,(;s)s-l)—l Hipn s (0) — H,lm (t)) X
X dFpn (1) +
1 ' 1 N . 2
+5[rN] N‘l/lgh"(f(t)) ((—(r)i)—l [rN],[sN](‘)—Hz,,s(t)> X
- X.dF[rN] ®,
N(@r,s) -~

where £ () belongs to the interval given by H ir,s(t) and mH[rN],[sN] (®).

Making some routine computations, we obtain

11
SN(ha r, S) = Z ENi(r’ S),
i=1

where
1

Ey,(r,s) = [ "(H A(rs) t)) [rNIN~ 1/Z(F[rN](t) F(t))dF(t)—

So
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- f [rN] NT12 (F[rN} (Hﬂ_(rl.S) (t))_ F (Hi-_(rl,S) (t))) dh (t)’
o
1
Ena(r, 8) = i [ 1 (H 5 ) [sNTN~Y2(Gyoy (6) — G (1)) dF (0),
0

1 L A
Ens(r, s) = > [PNINTY2 [R" (S (@) (N](V_(")i_% s (8) —
0

—HA,,S@) dFyo 8,

) Eps(r, s) = [FNTN™ 12 fh' (HA ( )) 1 ﬁ[rN],[sN] () dF 3 (1),

N(r, 9)+
Y2 [rN]
Eys(r,s) =[rN1N~ Ih( t)N( )(F[rm(t) F(t))d(Fym(®)—F 1),
ENs(" s)=[rN]N~1/? _fh'(HA ( ))]\E( ])(G[sm(t)—G(t))d(Ftrm(t)—F(f)),

Ey,(r, s) =[rN]JN~12 I(h (H Aps (©)—h(H;q, (t))) d(Fum({t)—F (t))=

Eng(r, s) =[rN]N~1/2 j(h/ (H Arg (1)— (H ir,s) (t))) (F vy (O —
—F(1))dF (1),

1
Eno(r, s) = [sN]JN~? g(h/(H Ars (t)) hl (H Alr.s) (t))) (G[sN] -
-—G(t))dF (1),

Eyio(r, s) = [rN] NAI/Z( rN] ’

N(r, s) r+s)jh(les(‘))(F[rN1(t) —F(1)dF(p),

. and

N L A
By, 9) = [SNIN 2 (—A—E(—])—;—S—)M (H,, ,(0) (Gian ()~ G (0)dF (0.

______ Now, using Lemmas 5.5, 5.6, 54, 5.1, and 5.2, we notice that Ey; — 0 in
probability with respect to the uniform metric for i = 3 to 9. Furthermore,

since .
kNl v
[PNINTH2 N(r,s) r+s

it follows that Ey;, as well as Ey;; — 0 in probability with respect to. the

= O(N~1?),
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uniform metric. Thus the weak convergence of Sy(k) will follow from that of
Eny+En;.

Since Ey; and Ey, are independent random functions, we have to show
that Ey, and Ey, converge to the.corresponding integrals replacing the
empirical processes by independent Kiefer processes. We consider only
Ey;y (r, s) because for Ey,(r, s) the same argument applies.

Consider the map gl/' D([0, 11 — D([0, 1] defined by

W[f 10, 8) = —-j W (Hy,0/®) f (r, )dF () - ff (r, Hm,s)(t))dh(t)

If f is a continuous_function, then clearly ¥ is continuous at f with
respect to the uniform metric on D([0, 1]%) because d|h| is a finite measure.

Let o be a Kiefer process on C([0, 1]%) with covariance EX (u, v) =
and EA (u, v) X (W, v) = min(u, ) F(v)(1-F (@) for 0<u, v'<1 and
O0s<v<gv<1.

Since " has continuous paths and since [rN]N~Y2[Fx()—F (9]
converges weakly in D([0, 1]%) to X '(r,t) with respect to the uniform
topology, Theorem 5.1 of Billingsley [2] shows that ¢ [([rN]N~ 12 (Finy(8)
— F(#)] converges weakly in D([0, 1]%) to ¥ (') with respect to the uniform
topology:

YLA(r, s) = —fh'(Hurs)(t))Ji’ (r, )dF (&) — fﬁi’ (r, Hz(rs)(t))dh(t)

s 3. dG
B r+s0dH,1(”)

(t) A (r, 1) dh(H g 4 (1))
CoROLLARY 5.1. Set
0 ifr<1/N,

_ _ N .
(5.21)‘ Sw(h, 7, 8) =1 -N]N- 1/2[jh(ﬁ—(;-(%)i—lH[rmsm())dF[er(t)—

- J" h(H .4 (1)) dF (t)} otherwise.
J .

Then- Sy(h) converges weakly in D([0, 17%) with respect to the uniform
metric to the process Z(h) defined in (4.1).

CoroLLARY 5.2. Let the scores ayl(i, n, m) satisfy (2.3), where h satisfies
(5.1). Then the statistics
0 ifr<I1/N,

52 Sy(h,r,9)=
(522 w(h, 1, 5) {[rN]N_”Z(TE,N][sN] ET{n sn) otherwise,
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where T* is defined in (2.4), converge weakly in D(E) with respect to the
uniform metric to Z(h).
Proof. Set ,
i i+1

= ay(i if te| —-—, ———— ), i=0,..., )
P (0) = ax (i, m, m) l.te[ +m+1’ n+m+1) e

Then, by (2.3) and the definition of the Riemann integral, it follows that

[PNIN™Y2 [[h(H ) () = By m (Higrsy ()] dF () = O
0 el V

uniformly in r and-s. Similarly,

N o
[7‘N] N- 12 ( Tsm— fh (mr‘(%% Hipnysmy (t))dF[rN] (t)) -0

uniformly in r and s. The proof follows.
Replacing, in (5.22), ET},N] (5N by [hyg.s), ey (H ) (t))dF (2), the con-
vergence of SN(h) to Z(h) is again in D ([0, 1]?).

6. THE CONTINUITY THEOREM FOR Sy

The random functions Sy(h, -, ) define operators Sy: # — L, (P, D(E,))
for every N> 1 and 0 < < 1/2. We shall show in this section that the
family {Sy: N >1} is uniformly continuous for fixed . This result. will
provide an easy argument to extend invariance principles for SN (h) from nice
score functions /4 to more complicated ones.

THEOREM 6.1. Let 0 <x <!/,. Then there exists a constant C(x) such
that for every score function he # and every N > 1
6.1) E max (Sy(h, r, s))2 < C(e)|[h)2.

(r,s)eE,,

Remark. This theorem is an extension of a theorem of Denker and
Rosler [5], which says that E(Sy(h, r, s))2 < const - ||h]|*> for every fixed r,
se(0, 1).

The theorem will be proven by a series of lemmas. If r < 1/N, then by
deﬁmtlon SN(h r, s) = 0 for every s. Also, if s < 1/N, then

S =N"Y2[rN L [rmh( ! l'htdt 0
Ninrs) = [r ]([ N & W)_(j; ® )"

uniformly in r €(0, 1) (and 0 <s < 1/N), since h e . Therefore, it suffices to
show (6.1) in the case where r > 1/N and s > 1/N. We shall assume in the
following lemmas that r, s > 1/N; especially (r, s)e E, means, more precisely,
that (r. s)e E, and r, s = 1/N.
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We begin with an easy observation (cf. Lemma 5.3):
LemMma 6.1. If (r, s)eE,, then

(6.2) Hx ()<H, (0<H2() ¥ GO<FQ
+x ’ 2+

and o

(6.3) H2 ()<H, 0)<SH> (@0 ¥FO<GO,

where, as before, A, =[rN]/N(r,s), N(r,s) = [rN]+[sN].
Proof. Since »x < r/(r+s) <1-—x%,

[PN]+[sN)_,  [sN] _ ( 1 ) L
[N [rN] <1l+4+- 1+[rN] <2kt

Using this estimate, where r and s are exchanged, we also have

PNl . [sN] 3
NN - L oNieNg S LT
and it follows that

_ [*N1
[*NI+[sN1

Lemma 5.3 states that F(t) > G(t), r <1, 8 <s=H,p44(t) < Hyjye 44 (0)
and F() S G(t), r <7, 8 5= Hyp14(t) = Hypyr 46 (0).

Assume now that F(¢) = G(t) (the case F(t) < G(t) is similar). Choose s’
=u%/2, r =1. By (64), [sN]([rN]+[sN]) = 1—(1—%x/2) = /2 and, conse-
quently, by Lemma 5.3 we have

H, O)<H» ()=H2(1).
' s 2¥x

(64 %/2 < < 1—x/2.

On the other hand, choosing s=1 and r= /2, we obtain
H,y34.(t) < Hi.,r‘,' (®).

LemMMA 6.2. For every 0 <z <1 and every 0 <x <'/,, we have

(65  max |Fum(H;L(2)~F(H;L(2) < max max [Fym(y)—FO)

V(r,s’)eE,‘ 0<r<1 yel,(z)

_and

(6.6) max |G (H; L (2)—G(Hy L (2)) < max max |Gum()—GO),
(r,5)eE,, 0<s<1 yel,(z)

where '

() = {y: min {H % (), H » (2)} <y <max{H_: (3 H £ (3}}.

4 — Prob. Math. Statist. 9.1
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Processes indexed by two parameters S1

<SG @)-6 T L ) (g2 dly

1-G(Hylz+4(2)

1-G (H 2—/(2 +x) (Z)))
1-G (H #/(2+x) (Z))
Note that 1—G (HL (2)) # 0, since otherwise

2+ )

=4NG( h (z))(l G(H x ()))(

x 2 -1
z*mF( X (Z))+"‘_G( " (z)) G(H ﬁ@)"
because of F(Hyl1.(@) > G(Hyh (@) N
Using

x (y)(l H (y)) G(y)(l G(»),

2
l*—-Z—l—mF( 2+x(2))———-G( n (Z)) 1— G(H x (.Z))

and
, . .
(l—G(Hz_i;(z)))m <1-z,

we note the left-hand side of (6;8) is bounded by

2+u(1

‘ B —(-2), |
16N2+”z(l-—z) ( xl—z ) (2+u)3N s,

The proof of (67) is more involved. Assume first that also
G(Hz,(“,,, (@) < F(Hyhun (2)). Formula (6.10) remains valid replacing G by
F. Then use the fact that

{Nl Fx0)~(1-FQ)
F(y)

is a martingale to obtain

(2)<y<H * (Z)}

EmaxNz(FN(y) F(y)) EmaxNZ(1 Fu()—(1~ F(y))) F(Hx ()).

vel () vel (@) F*(y) _
! _ - 2 F(H;}(2+x)(z)))
< 4N?E(1. FN(Hz_ix(z) )-(1~F (H L (2)) (———F(HZ/W )

. S B -1 F(Hgiz+(2)
=4NF(H_2_()(1 »F(H;%,‘(z)» (Hm) '
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(Note that F (H (z)) # 0, since otherwise

2 FHZ @) 45 G(H @) < F(H 3 () =0)

Z =
24 e 24+ VET”

We also have

2
H?i_u(y)(l _Hz—i,,(y)) > mF ) (1-F(y),

_— _ _
TR T O G @) <)
and 2+%F(Hz: (2) <

‘Consequently, the left-hand side of (6.7) is bounded by

24x
z

16N2+%z(1 z)< % )2_ N(z:xf (1__)

We still have to prove formula (6.7) in the case where
G(H3j2 42 (2) > F(Hzjz 4, (). The function u— (F—G)(H;'(z)) is conti-
nuous in u, where »%/(2+x%) < u < 2/(2+x). By our present assumptions, there
exists a uo such that (F—G)(H,'(z))=0. Splitting the interval I,(z)
= [H2j4x(2), Hylb+(2)] into two subintervals J, = [Hib 4 @), H,,0 (2)]1
and J, = [H,,‘O1 (2), Hylb+,(2)], we can argue on J; as previously in the
proof of (6.8) for G and on J, as before. This completes the proof.

LeMMA 6.4. For every 0 <x <1/, there exists a constant C, (x) such that
for every he # and every N =1,

N{(r, -
E { (m)ag [r/];IV] th (N (r(rs)j)— 1 Hi,nyism (t)>dF[rN1 (-
rS)eE, o ’

1

—[h(H i (&) dF (1)

0

2 |
} < C; G2

Proof. We may assume that h is non-decreasing. Using

J‘I;I)Z,z).(Y) dh(y) (z> 1/2)} _ z "
— I dR(y) (2 <'/2) § dn(y),

172

h(z) =%

we have

1 N .
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N(r,s)
1 {N(r 5+ 1 A [Nr1,[sN1®) H"r,sm
0

_f dh(z)— j" dh (z)} dF,m )
1/2 1/2
N(r,s)
N(r Nr.s) + 1NN ®

-

dh(z)—

1

o

N(r,s)
o O SN +1 By s ©) Hy, [0

H;, 0 .

N(r.s) - dh(2) dF (t

Ha, OSFE, s)+1H[rN] MO} N j‘ ( )} rm ()
Nr.s) + 1 AIrN],[sN1©

1
I ) I. NG ‘
§{ H;, (‘)*Wﬂpm (M@ g, [sm(%s)’)"‘ﬂl @

o<__;.-

i I I 1 Nr9+l dF[,N] ()dh(z)

N(r.s)
#;, O>5e SFTHEFM M) Hy, “"“”[rm [sNI NG )

=11+12,

where I, denotes the above integral with integration over 0 <z < 2N/(2N
+1) and where I, denotes the above integral with integration over 2N/(2N
+1) <z <.

Let us first estimate I,. Since z >2N/(2N+1), we have ((N(r,s)
+1)/N(r, s))z > 1, and hence

_ N =0.
I{H[rb}][sN]( (I;(f_)s z)<z<H‘_ (z)} .0

< mha
v e
e

It follows that
N1 = |~ j jl{,, (,,<,,[rN]dF[,m(t)dh(z)|

2N+1

11
2_!;’ gI(H;rls(z)gt}dN(r, 8) Hy w1 (1) R (2)

VAN

=N(,s) [ [1-Hpmem (H, @) dh(z)
2N .

~ 2N+1

N(r s) f 1- z)dh(z)+N(r 5) j |H[,N][sm( ;r,ls(z))—z|dh(z)

2N+1 2N+1

N
<22, 9 I B (H5 ()| dh (2.

2N+1

1 2N
» \/—t \/_‘ﬂ/z(l—z) for z > INET

B

since
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We now estimate I,. Let

| . Nt s) -

‘ 1 ifH S——-

\ 1 }.,.,s (t) <z N(T, S)+1 H[rN],[sN] (t),
I (pr.s(ta Z‘) = _ . N(T, S) s

f 1 if N(r, S)+1 H[rN] [sN] (t) <zs HA (t)7
|

0 otherwise.
Then -

£y

N
z

) 2N+1 1
I[fN]III=| (I) (I)lpn(t Z)d[rN]F[,m(t)dh(Z)I

2N

' 2N+1 1 ! R
S N (rs S) ({l g l¢r.s (t: Z)l dH[rN].[sN] (t) dh (Z)
U 2

2N+1

= N(r, s) g lﬁ[r'N],[sN] (HJ._,.tJ (_z))-—

N 1 ‘

-+

It is_easy to see that

" - N(r, 1 N(r, 1 .
oo (Bin (5 5 - )25 | < amn 5

2N

N+
22.51N(r,s)m.in{z, NG, }dh(z) 2./5/Nlh,
0

2N
2N+1

[ zdh(z) < /5/Nh|.

Tt follows that

2N
2N+1

IPN11i <3./5 /N f uhu+N(r s) ; (R (H3 (z))—z|dh(z),

‘and so A
N
|[ N” [ (’%{%{HIM [N-l(‘))—h(HA,,(‘))]dFtrm(t) '

<4./5/Nili+ 5’*’-‘" 3 By (3 (2) 2| dh (2.
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By Lemma 6.3 it follows finally that

- [rN] % (N(r,s) . \-
(:.l-:)gx .\/N b[[h N(T, S)+ 1 H[N']’[Ns] (t))_ h(H‘lr,s (t)):l d.F[rN] (t)

1 .
<4./5h|+N"2 Ilj(m)g‘ [ Hywim (H,  (2)) — 2| dh (2|0
0 (r.8)eky

Ly(P)

1 1
<45l 5 I (Il-max [rN] (F[er (H, @)= F(H;, @) e;+

o+ ” max [sN] (G[sN] (HJ. ! (Z))_ H;. ! (Z) ”LZ(P)) dh(2) =

(r.9)ek,,
<4\/—Ilhll+206’2(x)jx/2(1—z dh(z) = C1 () |All.

LEMMA 6 5 For every 0 <x < 1/2 there exists a constant C,(x) such that
Jor every he # and every N > 1,

2 :
(612) E{(max [h(H,, .(0)d(Fym— n(r)} < C, (1A,

r,8)ek,, \/—

Proof. Let h be 1ncreasmg. Then, integrating by parts, we have
1 1
[h(H, (0)d(Fym—F)(8) = — {(Fom (H (0)—F(H;, }s(t))) dh(z).
0 . R 0

- It follows from Lemma 6.3 that

(E{max [r ; jh(les(t))d(F[,N] F)(t)}2>1/2

(r.s)eE,,

max U N](F[,N](HA L (1)—F(H;1(0)) ||L2(p,dh(z)

1
<
\g rS)eE,, \/N

< CY2 (o) IA)l

The proof of Theorem 6.1 follows from Lemmas 6.4 and 6-5,‘since7
[TN:II[(-N(r,s) . ' )

e h Hy, t) )

(rs)sEx{\/Ng N(r, s)+1 [N],[SN]() i

Lz(ﬂ o

12 _

(E max S%(h, r, 5))

(r9)E,

—h(H,, (t))] dF,m (t)+ [ h(H,, ()d(Fym— F)(t)}

< (CH2(x)+Cy? (x))uhu
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7. AN INVARIANCE PRINCIPLE FOR ABSOLUTELY CONTINUQUS SCORES

In this section we list some (more or less) immediate corollaries to
Theorems 5.1 and 6.1 Replacing Theorem 5.1 in the arguments below leads
to general invariance principles to be proved in section 8.

THeOREM 7.1. Let he # be an absolutely continuous score function. Then
Sx(h) (N = 1) converges weakly in (D(E), 8) to the process Z(h) deﬁned in
formula (4.1).

Proof. As remarked in section 2, the score functions of class C? with

bounded continuous second derivatives are dense in the space of all absolute-
ly continuous score functions. By Theorem 5.1, for such a score function h,
Sx(h) — Z (h) weakly in D([0, 1]%) equipped with the uniform topology. But
then, the restrictions of Sy(h) to E converge weakly with respect to & (see
section 3). Hence we have established the theorem for a dense subspace of
absolutely continuous score functions.
' Now let hes be an arbitrary absolutely continuous score function.
Given ¢ > 0, choose a C2?function h, with continuous bounded second
derivative such that ||h—h| <e. Since Sy(h)—Sy(h,) = Sy(h—h,), Theorem
6.1 implies (cf. 3.4)) that

(E[5(Sx(h, Sy = (E[ 3 min (275 8y5e(Sx (), Sy(h)]))

Since the constants C(1/k) do not depend on the functions in 3¢, there
exists a k(g) with
(C/k)"*e <27 [k(@]™! for all k < k(o).
" 'Hence

(E[5(Sx(h), Sy(h)])* <270+ ¥ 27F = 27k0+L
k>k(e)
which tends to zero as ¢ — 0.

Note that (3.6) is satisfied with a(e) = 272¥9*+2 and (3.5) holds because
of the previous discussion.
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It follows from Proposition 4.3 that Z(h,) — Z (k) in probability. There-
! fore, by Lemma 3.3, Sy(h) converge weakly to Z (h).
; The following result is an equivalent formulation of Theorem 1.

TueOREM 7.2. For n, me N, define

§n,m (h5 T, S)
[rn] (%, ( [md+[sm] . 1 ;
- \/m ( h ([rn] T [sm] T 1 H[rn].{sm} (t))dF[rn] (t) - jh (H ][+[] i (l’)) dF (t)

If he # (cf. section 4), then the weak convergence of Sn(h) to Z(h) in
(D(E), 6) is equivalent to the-weak convergence of S, ,(h) to Z (k) in (D  (E), 9)
as nf(m+n) converges to some 0 <A <1, where the distribution of Z(h) is
given by

- (Z(h r, S))0<rs<1 _( (h A.I‘ (l A)S))0<rs<1

Proof. Given n, meN, put N=n+m and Ay=n/N. Assume that
(Sx(h), Ay) =(Z (h), 1) weakly with respect to & x| |. Since the map y: D(E)
x[0, 1] — D(E), defined by w( S, w) (r, s) = f (ur, us), is continuous at every
‘ pair (f, u)eC(E)x[0, 1], Sm(h) = Y (Sy(h), AN) converges weakly in
* (D(E), é) to y(Z (n), N=2Z (h) (see Theorem 5.1 in [2]).

Conversely, if S, ,(h) —Z (k) as nf(m+n) = A, for NeN choose n, m such
that (N/n) — 1, €(0, 1) and (N/m) —(A4,/(1—4)). Similarly ws before, it follows

that . )
n+m ~ Nr Ns 1
= /2§ (b, =2, Z(h, Ay Ar, A A
VSN(ha r, S) N nm( ’ n m)—’m ( 1 ¥ 1 S)

and the theorem follows since a~ /2 Z (h, ar, as) has the same distribution as
Z(h). '
CoroLLARY 7.1. Let he H# be absolutely continuous and let Sy(h) be
deﬁned as in (5.21). Then Sy(h) converges weakly in (D(E), d) to the process
h) ‘defined in (4.1).
Proof. This follows from Theorem 7.1 and Lemma 3.2 together with
the estimate on p. 65 of [5] for each E,:

s:g N=Y2[rNT | f( j (Hi0 (0)—h(H,, (0))dF (8] <% 2N~Y2(|hj).
COROLLARY 7.2. Let the scores ay(i, m, n) satisfy (2.3), where he # is
absolutely continuous. Define the statistics Sy(h) as in (5.22). Then SN(h)
converges weakly in (D(E), &) to Z(h) defined in (4.1).*
Proof. The proof immediately follows from Theorem 7.1 together with
the arguments used to prove Corollary 5.2.
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8. WEAK INVARIANCE PRINCIPLES

, In this section we prove similar to Theorem 7.1 invariance principles for

* certain score functions he #. The proofs of the theorems appearing here are

independent of sections 5 and 7. We just replace Theorem 5.1 by Proposition
8.3 below, which gives the invariance principle for score functions with finite
total variation norm on (0, 1). Denote by A .m the left continuous inverse of
the distribution function H,,, (n, m > 1). -
LemMma 8.1. Let he s#. Then for (r, s)e E, with r, s = 1/N we have

—[rN] _f{( 1-4,) G (Himy i (1) — G (H;, 1 (1)
N H,, ,(Hemam D)t
X (Foom (it s ()= F (B o (9)) —
F(Hihism®)— F (Hy 1 )

(1 )*r s) H, (Aibom0)—t (Grsm (Hirat tsm (D) — G (Hieiy s (D)) +
F(Hpom (D)~ F (HA,IS())
- dh
H,, ,(Hpmm @)t t)} ®
_.l;where '
82 F=—tL 1 <11 _1<i<N), ¢, 9¢E,

Ny Ne o+l SN 9+l

" and where the integrand is defined to be zero if

(8.3) H,, (Hithem®)—t=0

Remark. The integrand (8.1) is a measurable function as an element in
D([0, 17°) equipped with the supremum metric due to using { instead of .

: ‘This will become clear in section 9.

Proof. By the definition of Sy(h), (8.2) and 1ntegrat1ng by parts we

- observe that

) 1 N 1 .
ﬁ Sw(h, 7, 5) = [h(®)dF i (Hipt o B) — [ h () dF (H;, . (1)
[rN] ) 0

1
= "‘f) (Fum(Aiham (0)—-F(H;,, ®)dh@).
Use the identity »
F (Hi, [sm(f)) ~F (Hz,f,()) (’1 L) G(Hgm, [sm(i)) G(H; ()
_Ha,,, (Hpshem D)t " H,, (H[rm.[sm ®)-t

1==J-”
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and the convention (8.3) to. obtam _
G (i o (D) — G(H; . (®)
H,, (Hphem D) —t
- X[ Fponi (Hih oy () — F (Hizgh 1o )] +

Fihuin D)~ F(H"ls( ) [F[rm (Bpsm D) — F (A o ()] +

* Hz,,s(H[rm.[am @)t
| L P ®)-F(E; 1«»} ah(d

G(Hpw; [aNl(i)) . -G (H ;,rla ®) .
B i 5‘ {(1 ) H,, (H Ier.‘[sN]_ (ﬂ) t LFiem (Hlf”‘"’"] ®)-

_F(ﬁ[:Nl] [sN](i)) +
I;;*r s (F N} (H ettt (D) — F (i m )+
A Ay (F (Hihtam (i)) — Fm (Himsm (ﬂ))

+(1-4.(G (ﬁ mn s D)= Groy (A AL (ﬂ)) +i— t]} dh (t).

Here -we used the fact’ that H[,m [,M(H[,m sm @) =1. So (8 1) follows.

Like the processes Z (h), defined in section 4, can only be defined for
special pairs (h F) of score furictions h and continuous distribution func-
tions F, the invariance’ prmclple to be proved in this section needs a
‘restriction on h and F which we state now as. condition

(A) Forevery 0 <l <1 the derivative (FoH;YY exists, d|h| a.e. (equiva-

=]
D_N]Sn(h 9= [t

F (Aimom (i)) F(H z,.‘ (t))
Hz,,(H[er e (£))- ‘t

lently he ), and for d|hf a.: te(O 1) {(FOH,_ ly: 0 <i <1} is umformly N
i ) continuous at . ;
‘ This condition is satlsﬁed if FH Pri dxﬂ”erentlable on (0, 1) and has 4

' =|;;ontmuous extension for some Ao e(O 1). Indeed, we have

(FH;‘)" v (1"10)(FH101)'°HA°HA
. 1"'1 (10“1)(FH‘_ OHA OH‘,

Thus (FoH Ty is conunupuﬁ. has a contmuous extension to [0 1] and -
S .'for ae. t it is° uniforly continuous. It follows now. that the condition for -
" (h, F) is-always satisfied i F=G orif the following holds: F and G have
- continuous densmes I and g and there exxst mtervals (azi, B) 1<i<n

, ﬁatlsfymg -

(1) {f>0}u{y>0}-v U(auﬂ:),




(84) lim max
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o g% L g(%) L
O o impe USP<nTD
(iii) lim g and lim 99 exist.

xtey J(X) xla, J (%)
We leave it as an exercise to show the implication. (These remarks are
contained in [18]; cf. also section 9).

LeEMMA 8.2. Let 0 <x <1/2. If h and F satisfy condition (A), then
F (it o () — F (H; 1 ()
Now nseby H,, (Hiwem () —t
N(r.s)?‘\t’l_\!
for d|h| almost all t, P a.e. and
G (Hyom (0)— G (H; (1))
Now  (rs)eE, H ﬁ:l D)t
N(r's)as,/z_v j'rls( [ N]![ N] ('))

for d|h| almost all t, P a.e.
Moreover

—(FoHz.) ()] =0

85~ lim max

~(GoHyLY (t)\ =0

F(Hism®)—F (H L)

8.6 max — —(FoHL) ()| < 3x 1
GO T E, A R0
and
|G (Himsm ) — G (Hz L ()
(87) max ( [rNLIsN] ) ( Ap.s )—(G OH;('I’S))’ (t) <3 L

voes, | Hi (Hemem(®)-t

for d|h almost all t.

Proof. We first show (8.6). The proof of (8.7) follows replacing F by G.
By (2.1), F(x)+G(x) = 2x. Hence F'(x) < 2 whenever F is differentiable at x.
Since he #, F OHy'y is d|h| ae. differentiable. Consequently,

-1 _ —1
(FoHjy) (t) = lim F (i (t+ s)z F(Hjy (®)
el0
<A(r, 9~ 'lim A(r, S)[F(Hzyy (2 : &))—F (H;,ly (D)) N
el0 .

1= 4, 9)[G(Hido t+0) — G (Hio(0)]
&

-

<A, ) < wt.

+(
" Similarly, if u > v, then 0<4,,(F@)—F(@) < H,, (w—H, (v) implies

F(uw)—F (@) 1 -1
KAy <2x
H, ,w-H, )

by (6.4). Formula (8.6) follows from both estimates.
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We now prove (8.4) ((8.5) is similar). By (6.4) we ‘have [rN]!
<2 'N(@, ) ' <2 * N Y* and [sN] ' <2x ' N~ 4 and therefore

r N(,s) 1 —1 ar—
1— < <2 LN,
l rs PN 1SN S
s N(r,9) 1 o
1— < < 2" INTUA,
r+s [sN] [sN] %

It follows that
Ha (Hirsty o (9) —t = Hago (Hiaypsm ) + Hagr (H3, L (1)

= l(] r N, S)) [*N] (F(ﬁ[:ﬁl’[sm(f))—F(H;r,ls(t)))_l.

" r+s [rN]1 /N, 9)

N(r, N _ N
- (1 T j— s [SI-V]S) ) I\E ir, ]s) (6 (Huhgom ()~ G (H3,}, (1)

<2 NTUHH, (Hihem D) —1|

and
H,, o (Hihsm D) —Hypo (HL L (E
‘1_ ey [NMN‘](-?)‘ atre ( Ar'S())‘SZK_IN—IM.
H;, (Himm (D) —t
Therefore, it suffices to show that

: : F(Hism ) —F (Hy L (1)

(89) (,‘_'f'[”’ )P, _)1 —(FoH;(,{s,)'(t)‘—»o
H o (Him, s () — Hr,y (H Ars (1))

uniformly in (r, s)e E, such that N(r, s) > N4, .
Since ‘h and F satisfy condition (A), we have for d|h| ae. t: Given
e>0 Iy >0 such that for all 0 <A<1 and all |8 <n for which
(FoH;'Y(t+9) is defined,
(FoH; Yy (t+8)—(FoH;Y () <e.

Since FoH;! is absolutely continuous, it follows that'

F(H;*(t+6)—F(H; (1)
]

—(FoHII)’(t)l

t+d

=61 | [(FoH;l)'(u)—(FoH—1)'(t)]du| <e,

and this holds uniformly in 0 <4 < 1.

Since ‘
r [rN]
r+s N(r,53)

< N~ 1/4
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- uniformly in (r, s)eE, and N(r, s) > N”4 we have Hi(H;, (t))—»t as N
— oo (uniformly in (r, s)€E,) with N(r, s) = N”4 and hence, for drhl ae. t,
(Hi;.'ls(t))_ (Hl(r.s) (t))
Hy,q(H ;,13 ®)—t
_ uniformly in (r, s) as N = o0 dJh ae.

Also, since Hl(r.s) (ﬁ[:h}].[sl\fl (i))—_t -0 umformly in (r, s)e E, with N‘(ra 5) »
> N, "

~(FoHzd,) ()~ 0

F(Hghm®)—F (H s (l‘))
_;,‘H,J-(r.S)(H[rN].[sN] i))
‘uniformly in (r, s) as N = oo d|h| ae.
It follows that (8.9) is

(F (Bt m @)= F (Hido®) o oy o ) |
'( Hy (ﬁ[:NI],[sN](i))—- (FoHg9) (1) | %

(F OHJ.(I' .9)} (t) - 0

. H l(r 3) (H [rN].[sN] (i))
H AMris) (HirN] [sN] (ﬂ) —H,q(H; g (t))
F(H3. (1) —F (Hy, L (1)
+ ( t—Hyg(Hy, :, ®) —(FoH i-(rs)) (t))ax

~He9 (Ha {t))
H Ar,9) (H{rN],[sN] (ﬂ) H Alr,s) (H A— ls (I))
and tends to zero as N — o uniformly in (r s) eE with N(r, s) = N'4, d|h|
a.e. This proves (8.4).

ProposiTioON 8.3. Let h and F satisfy condmon (A) and let h have bounded
total variation norm on (0, 1). Assume that the underlying probability space is-
rich enough such that there exist two mdependent Kxefer processes X 1 and X 5
such that uniformly in (r, t), resp. (s, t), ~ '

N O~ F 0] — 2160 and _[-m [Gum(®~G(1)] — A5(s, 1)
N N

in probability.
=+ - Then, for any 0 <x <1/2,

lsn(h S, r)+—— I (GoHkW () X 1 (X Hu. »(0)dh(t)—

(r s)eE,,
r ; Sy , : - o
Trts j F 'OH;_x'(;;)) (&) A 2 (s, Hyy (t)_)dh(t)
0o - it . -

converges to zero in probability as N — 0.
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Proof. We shall use the representation (8.1) of Sy(h) from Lemma 8.1.
Observe first that, by (8.2) and the proof of (8.6),

F (Hiom () — F (Hz, 1) - _
(8.10) Hz,.,(H[rN] @)=t (=<2 "IN, s) 1.‘
Next write
(8.11)

. ) ) | .
Ay(r, s, t) = ‘%[F tro1 (Hizipom (D) = F (Hip iy pom D)] = A _(” Hiry @),

(8.12) By(r,s, 1)

= |7 G oo ®) =6 (b O] 5, Hi 0)

Since all paths of )y and ', are uniformly continuous, Ay(r, s, 1),
By(r, s, ) = 0 as N — oo uniformly in ¢ and (r, s)c E, with N(r, s) = N**. In
view of (8. 6) and (8. 7) it follows that

1 _ —1
(8.13) max F (- A”){ H[rN].[sN‘](_i)) G(H,lm(t))><

7o EE’i H; H r L t) -t
N(r( s))> N /4 r,3 ( [rN1,[sN} ( )
[1 [rN (Ii[erl,[sN] (t)) —F (H[rN]I,[sN] (t)) l —

[Grony (A )= G (Bibom m)]}dh_m-

B F(Hgm®)~F (H @)
H,, (Himsm @)

1 G(Bham®)-G(HRLO)
s b it 0)~

0

" S)F(ﬁ[:ﬁ].[m @)~ F(H,®)
o H, (Hpmpsm(@)-t
< C() [max Ay(r, s, 1)+ max By(r, s, )+ N"*] -0  as N> oo,

J{.2 (Ss H;(rj;s) (t))} dh (t) o

where C(x) denotes some constant depending on » and the total variation
norm ||dh||- of dh..
By Lemma 8.2, (8 4), and (8 5) and the domlnated convergence theorem,

1 F(Hid o ®)—F(HLL(t
lim [ max ( ‘”‘”‘(_)1) ( "’s())_(FoH;(,ls))'(t)d|h|(t)=o as.
N-ow(Q (r9eE, H).,. s (H[rN],[sN] (i)) —t ’ ,
N(r,s) = N1/4 ’

and similarly for G.



64 M. Denker and M. L. Puri

Now, we set

Ry = {C(x) [max Ay(r, s, t)+max By(r, s, )+ N~ 4] < ¢/3,

max [A;u, <M (=1,2),
(u,0)d0,112 A

F(Hgwyem ) —F (H;, 1 (0) e
= n T _(FoHzL) )|dIh(t) <—
N(r,l:)‘l::”“ le ] (H[:I‘}],[SN] (i’)) —t ( (@] ).(r,s)) ( ) | | ( ) M
(r,9)eE,, ’
and ) )
' G (H [rN),(sN] (i)) (H P 3] ‘ e
max —(GoHZ! Y (nidlh () <—}. .
Nr.s) = N1/4 H, . (H sy (D) —1 M) ' M
(r,5)eE,,

Here we may choose M, depending on N, in such a way that M — o

“and P(R$)—0 as N — 0.

By (8.10) and (8.13) it follows that on Ry

1
814)  max |Sy(h, r,9)+(1—A(r, 9) [(GoHly) () x
(r,S)E,, 0
N(r,s)>N1/4

x Ay (ry Hils) (t}) dh(t)—

1
—A(r, ) {(F OH Y (©) A2 (s, Hyhy (1)) dh (t)l <e
0

It is easy to see that we can extend the maximum in (8.14) over all
(r, s)e E, and this proves the proposition.

THEOREM 8.1. Let h and F satisfy condition (A) and let h have bounded
total variation on [0, 1]. Then Sy(h) converges weakly in (D(E), d) to the
process Z(h) defined in (4.1).

Proof. We may assume that the probability space is rich enough. By
Skorohod’s theorem and the weak convergence of empirical processes to
Kiefer processes, there exist independent Kiefer processes J#°; and 4, such
that the assumption of Proposition 8.3 is satisfied. Denote by Z(h) the
process defined in (4.1) with the two specified Kiefer processes. Then by
Proposmon 8.3 we have, for any 0 <x <1/2 and any & >0,

lim P( max |Sy(h, 7, )—Z(h, r, 5) =€) = 0.
N (r.s)eE,,

Let ¢ > 0 and 5 > 0 be given. Choose k, such that g—20> ¢/2 and then

N, such that, for N = N,,

P(max [Sy(h, r,s)—Z(h, r, s)|>—k—><11/k0

(r,s)ek,, )
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It follows that

0

P(5(Sn(h), Z(R) = &) = P(Y, min[27%, &,,(Sx(h), Z(R)] > ¢)

k=2

kg ko

(Z m.m[l * 51;t(SN(h) Z(h))] 2)\ Z (51/k(SN(h) Z(h)) 2%k ) n.
k=2 0

The weak convergence follows now from Lemma 3.2.

THEOREM 8.2. Let h and F satisfy condition (A). Then Sy(h) converges
weakly -in (D(E), 8) to Z(h) defined in (4.1).

Proof. If he s, then,-for any 6 > 0,

, t_{h(t) if 0<t<1-8,
o(t) = 0 f0<t<forl-0<t<l

has bounded total variation. Moreover, if (h, F) satisfies condition (A), so
does (hy, F). We can proceed as in the proof of Theorem 7.1 to prove our
claim. :

COROLLARY 8.1. Let h and F satisfy condition (A) and let Sy(h) be defined
as in (5.21). Then Sy(h) converges weakly in (D(E), 8) to Z(h) defined
in (4.1).

Proof. This follows from Theorem 8.2 as in Corollary 7.1.

CoroLLARY 8.2. Let the scores ay(i, m, n) be defined by (2.3), where (h, F)
is as before. Define the random function Sy(h) by (5.22). Then Sy(h) converges
weakly in (D(E), 8) to Z(h) defined in (4.1).

Proof. This follows as Corollaries 5.3 or 7.2, using Theorem 8.2 instead

~of 51 or 7.1.

9. THE INVARIANCE PRINCIPLE OF T. SCHULZE-PILLOT

To the best of our knowledge, no invariance principle of the form given
in sections 5, 7 and 8 has been proved except some of the results of Schulze—
Pillot [18] in his Ph. D. thesis and, maybe, some very special cases. Since the
results of Schulze-Pillot have never been pubhshed elsewhere we shortly
sketch his results. ‘ :

‘Schulze—Pillot uses the approach of Pyke and Shorack [15] to prove
limit theorems for the two-sample linear rank statistics. The linear rank
statistic can be represented as an integral over the two-sample empirical
process. We used this representation in (8.1), however in the present proof
only in the case of score functions with bounded total variation on (0, 1).
Contrary to this easy case, a general score function needs a more careful
handling of the two -sample empirical process, that is, an invariance principle
with respect to some dominating function ¢ has to be proven.

5 — Prob. Math. Statist. 9.1
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This requires to enlarge E to E x[O0, 1], to replace D(E) by D, (E
x [0, 1]) and to define a suitable metric on D (E x[0, 1]). We will start with
this description. Denote by &/ the set of all functions g: [0, 1] — R, which
are continuous, non-decreasing on the interval [0, !/,] and non-increasing

on the interval [1/,, 1], and (see [15]) which satisfy

©.1) ; }[q(t)]"‘dt < .

As in section 3 let us define a metric d, as

{2"‘ Lf(r, s, )—g(r, s,"t)|}'

sup
@ S)GE]_/k q (t)

[IESE

for two functions f and g defined on E x[0, 1]. In order to make d, well
defined, use the convention 0/0 = 0 and a/0 = o for 0 <a < 0. Clearly, d,
defines the topology of uniform convergence with respect to g on each of @.,
sets E; x[0, 1], 0 < A < /;. This means that d,(f,, f) =0 if and only if, for
every 0 <A</, [q@®] *(folr, s, )—=f(r, 5, 1)) converges to zero uniformly
in (r,s)eE, and 0 <t < 1.

In analogy to the definition of D(E) denote by D, (E x[0, 1]), the d,-
closure of all simple functions of the form

02 d,(f, 9= Y min

k=2

f= Z o 1 k x 4k k>
’ =1 [En(AI xAz)] xA3

where A¥ fori=1, 2 is again an interval [af, b¥) with 0 < af, b¥ <1 or {1},
and where A% =[a5%, b%] with 0 <a%, b5 < 1. It is not hard to see that
functions in D, (E x [0, 1]) have only discontinuities of the first kind and that
C,(E x[0, 1]), the space of continuous functions on E x[0, 1], is a closed
separable subset.

Let 9, denote the Borel-o-field generated by d,. If D! is a separable
. subspace, then Z, N D is generated by the pro_lectlons (cf. [2], § 18)). Thus,
the random functlons X taking value in D! = 9,(E x[0, 1]) are measurable
if, for every projection n: D,(E x[0, 1]) — R, nf =f(r, s, t), where (r, s)cE
and 0 <t <1, the function noX is measurable.

In particular, the two-sample empirical process appeanng in (8.1) is

-measurable.
. In the situation descrlbed in section 2, Pyke and Shorack [15] defined

the two-sample empirical process as
9.3) N”2 [F.(H,L()- F(Hy%®))

More ge;ierally, Schulze-Pillot defined the two sample sequential empiri-
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" cal process Ay(r, s, t) by

04 Anlr, s, 1) = [\/_][F[,M Ay on O~ FH; (0]

for NeN, (r, s, t)e E x[0, 1]. Here, similarly to (8.2),

f—‘zlG if :E[N#H%) 0<i<ntm, and F=1ift=1.

Since f can assume only the values i/(N+1), Fpy;(Hpaom(®) has a

separable range and so has F(H; 1(t)) It follows that Ay(r,s, t) is D (E
x [0, 1]) - measurable. We_may, therefore speak of weak convergence of AN
with respect to d,.

Let J, and A, be two independent, standard Kiefer processes on
C[0,1]% ie. EXi(s, ) =0 (0 < s, t < 1) and EX(s, ) Hi(s, t) =t(1—1) x
min(s, s) (0<t,<1,0<s,5 <1). Foreach 0 <A<1, FH;' and GH;?
are monotone and hence a,(t) = (FH; ') (¢t) and b, () = (GH; ') (t) exist a.c.
with respect to ¢ and satisfy a, > 0, b; > 0 and ia;+(1—A)b; = 1. We now
put

9.5) A, s, 1)
= (L=A(r, $))baen(t) Ky (r, FHpig (0)— A(r, 8) G, H 2 (5, GH (1))

for all (r, s, )e E x[0, 1], where a, and b, are defined. (Note that integrating
over A with respect to dh’ yields a random variable with the same distribu-
tion as in (4.2) provided he o) For the hypothesis of the next theorem
compare section 8.

~ Tueorem 9.1 [18]. Suppose that, for every Ac[0, 1], FH; ! is differentiab-
le in the open interval (0, 1) and that, for some 0<iy <1, a,; has a

continuous extensioh on [0, 1]. Then:

(@) for any qeQ, A is D,(E x[0, 1])- measurable and has continuous
paths;

(b) Ay converges weakly in (D,(E x[0, 1]), d,) to A, provided qeQ.

It is clear that A is a Gaussian process and its covariance structure is
easily deduced from its definition,

Let he 3¢ and denote by d|h| the total variation measure of h. Let geQ
such that jqd |kl < oo. Then every feD,(E x[0, 1]) is integrable with respect
to d|h| in its last coordinate, i.e., for every (r, s)e E, [|f(r, s, t) d|h|(t) < o0.

The map I,: D, (E x [0, 1]) —DD(E) _given by I,,(f)(r s) = [f(r, s, ) dh (o),
is contmuous and, by (4.2) and (9.5),

(9.6) 1,(4) =Z(h)
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whenever this is well defined (cf. section 4, i.e. he # in particular if h is
absolutely continuous).

THEOREM 9.2 [18]. Let he # and assume that there exists a qe Q with
{qd|h| < oo. Then under the assumptions of Theorem 9.1, Sy(h) converges
weakly in (D(E), 6) to Z(h) given in (4.1).

If h can be written as a difference h, —h, of two monotone functions
satisfying

9.7) Il < K(t(1—1) """

~for some K > 0 and # > 0, then there exists a ge Q@ with _fq(t)d|h| () < 0.

Formula.(9.7) is not necessary to guarantee the existence of such a
function ge Q as remarked in [15]. But not all functions h = h; —h, with
|A: ()l
T Vi(1—=1)
satisfy the above condition on g. This is one extension of Theorem 9.2 by
Theorem 8.2. On the other hand, since we do not depend on the weak
convergence of the two -sample sequential empirical process (9.4), we do not
need the stronger assumptions on the differentiability in Theorem 9.1 for
proving Theorems 8.1 and 8.2. Finally, we would like to remark that
Theorem 5.1 seems to be completely new.

dt <o (i=1,2)-

10. APPLICATIONS

Pyke and Shorack [16] have shown that Sy(h, my, ny) converges to a
normal N(0, ¢?) distribution for some specified o if my and ny are random
variables satisfying certain conditions. We first give a proof their result, using
Theorems 8.2 and 7.1. This also extends a result of Schulze-Pillot [18].

TueoreM 10.1. Let my and ny be integer valued random variables (N € N)
satisfying
(101) 0<m0<m1<..‘.<mN<N,
0<n0<n1$...<nN<N (N?l)

and

(10.2) limN~“'my=24 and lmN 'ny—1-1,

in probability for some 0 < 1y < 1.
If (h, F) satisfies the assumption of Theorem 8.2 or of Theorem 7.1, then
Sx(h, my/N, ny/N) converges weakly to a normal distribution N (0, 6%), where

o’ is given by

(10.3) 6 =E[Z(h, Ao, 1 —10)1%
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i.e. the limiting distribution is given by Z (h, Ao, 1 — o) which is the sum of two
independent normally distributed random variables.

Proof. We have N~ ! (my, ny)e E unless my =0 or ny =0, and so the
limit distribution for Sy(h, my/N, ny/N) can be obtained from Sy(h) as
follows. Let y: D(E) xE — R denote the map ¥ (f, r, s) =f(r, s). Since, by
Theorem 8.2, Sy (k) — Z (h) weakly in (D(E), 6), we obtain (using Theorem 4.4
of [2]) that

my n
(sv0m. ™, ;,) (21, 20, 1Ao)
in (D(E)xE. 3 x| | x| |).-where | | denotes the usual metric in RT
We observe that  is continuous (with respect to this metric) at all
points f eD(E) which are themselves continuous and all pomts (r, s,)e(0, 172
Hence

s(h%i;—,) w(SN(h)";“ ;’V) W(Z (), Ao 1= Do) = Z(h, Ao, 1—1o)

weakly (in R) by Theorem 5.1 of [2]. Letting ¢ = 4, = r in (4.5) we see that
- Z (h, 9, 1—Ag) is normally distributed. The variance is explicitly given there.
In order to prove an invariance principle in the situation of the last
theorem we need a bit stronger assumptions.
TueoreM 10.2. Under the assumptions of Theorem 10.1, replacing (10.2)
by

m
(10.4) ;—»zo and W"’l Ao aS.

it follows that Sy(h, mym/N, n,w/N) converges weakly to-a Wiener process
W with variance given by (10.3). This convergence is in D([0, 1]) with respect
to the uniform metric.

Proof. We proceed as in [18]. Define a random function with values in

E by
m[uN] Npuny
Yy(u) = ( NN )

(i.e. Yy has values in D ([0, 1], E), the space of functions v: [0, 1] — E having
at most discontinuity of the first kind). By (104), Yy — ¢ a.s. with respect to
the sup-metric || [, in D([0, 1], E), where ¢ (u) = (udo, u(1—21,)).

. Again by Theorem 4.4 in [2] we have

(10.5) (Sx(h), X,)— (Z (B, )
weakly with respect to the metric & x|| ||..
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Define now ¢: D(EyxD([0,1], —D([0,1]) by u(/, f)(u)
—f (1), £, (W), where feD(E), & = (&, &,)eD([0,1],E), 0<u<1.
Unfortunately y is not continuous at points (f, ¢), f € C(E), with respect
to the uniform metric on D([0, 1]) and the metric & x|| ||, on D(E)
xD([O, 1], E). However, we can argue as follows. Let ke N be so large that
Aoe[k™!, 1—k™*]. Define ¥,: D(E) x D ([0, 1], E) - D([0, 1]) by

_J(f, 9 if L0, 1)) = Eyy,
Vilf, ) = {w (f, ) otherwise.

We claim that ¢, is continuous on C(E) X {(p} Let foe C(E). Then, given
¢ > 0, there is afi" #> 0 such that

sup Ifo(r, S)~fo(r',s) <¢/2 and 1/k—n=—.
'r—r’ <p 2k
-5 <p
(r,9)eEy sk
(r',s’)eEl/Zk

Now let feD(E) satisfy
sup If(r: S) _fO (7', S)' < 5/2

[ S)EEl/k

and let {eD([0, 1], E) satisfy ||£—¢l||, <n. Then, if &([O0, 1)) < E,p, we
have

JSup Wi (f, ) @) =¥ (fo, @) ()

Osuxl1

< sup W (S, @) —v(fo, YW+ sup W (fo, @) —¥ (fo, @) W)l

O<su<1 \ﬂ\

=, |f (€ ) —fo (€ (u)|+ sup [fo (€ @) —fo (e @)

O<u<t

< sup |f(r, )—folr, )+ sup  |fo(r, )—fo (r’, ) <e.
r.)eEq g (r,9),(r",s")eE 4y 5y
Ir=sllr' =5 <n .

On the other hand, if £([0, 1]) ¢ Eyp, we have
sup Y (f, &) @) — v (fo, @) (W) = sup W (f, ©)(W)—¥ (fo, ©)(u)l

UES'ES ] [ ESTES |

= sup |f(e)—fole @) <e/2

o<u<l1

 since ¢(u) = (uho, u(1—A)< Eyy, (because udof(uio-+u(1—Ao)) = Joe [k, 1

—k™']). Together with (10.5), we conclude from Theorem 5.1 in [2] that
Vi(Sn(h), Yy)— t//,‘( (W), @) =¥ (Z(h), ) for every ke N with Age[k™ !, 1
—k™'] weakly in (D([0, 1], || [l,,), where || ||, also is used for the supnorm
on D([0, 1]). Note that ¥(Z(h), ¢)(u) = Z(h, udy, u(1—2)) will have the

~ desired properties because of (4.5).
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It, therefore, remains to show that for every & > 0,

(10.6) SimBim P ([ (Sw (B, o)~ (Sv (), Yl > ) =0.

- This follows from the estimate

hmlu_l} P (| (Sn (B, Yy)— }/'v(SN(h), Ylle > )

k—w N

< limlim P(Yy ([0, 1]) ¢ Ey4)

k—w N-aw®

~ lim lim P(Elue[O, 1] such that —"'f—¢[k-l 1—k 1])
- koo N MuN) + Niun)

< lim P(HIEN such that

k5@

™ gk, 1_—k71]),,,.
n

m,
-—P(ﬂ{ElleN such that + (,#[k_l 1-k~ 1])

since myfl - Ay and n/l —-1—4, as.

TueOREM 10.3. Let Yy be random variables with values in (0, 1) such that
‘ Yy — 4o a.s. Then Sy(h, Yyr, Yys) converges weakly in (D(E), d) to the process
‘ Z(h, Agr, Ao ), (r, s) €E, provided (h, F) satisfies the assumption of Theorem 8.2
| or Theorem 7.1.

Proof. Again by Theorem 4.4 of [2], we get that (Sy(h), Yy) — (Z (h), Ao)
weakly with respect to the metric & x| |.

Define the map y: D(E)x[0, 11— D(E) by ¥ (f, w(r, s) =f (ur, us).
Clearly, ¥ is continuous at every point (f, u)e C(E) x[0, 1]. Our claim
follows again from Theorem 5.1 in [2], since Y (Sy(h), Yy)(r, s)
= Sy(h, Yyr, Yys). ' '

As in [16], tests for symmetry may be considered as a variation of the
two -sample problem. Let &,, &,, ... be independent, identically distributed
random variables with common contmuous distribution function = satisfying
0 < n(0) < 1. Define, for Ne N, '

1 if the i-th smallest of |&,], ..., [l
e By = ‘ B is from a positive £,
0 otherwise '

With ay(i), 1 <i< N, as scores, the statistic

1 N
(10.7) Iy = N Z ay (i) Z;
i=1

" serves to test the symmetry of =
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In order to write this statistic as a two-sample linear rank statistic,
! define X (@) = & m(®), 1<k <my(w), where i (@) = min {j > i, _, {(w)
l [€;(w) = 0} and my(w) = |{j| &;(w) > 0}|. Similarly, ¥, is defined using the ¢;
<0. Let ny(w) = N—my(w). The sequences (X, }y>1, Yijez1 and {Pelisy
are independent, where P, = 1;o ) 0&;. The common distribution of the X,

is given by
n(x) —n{0)
F(x) =——— -, 20,
W=""70 " =
and that of the ¥’s is given by
o 7(0)—m(—)
= >0

i.e. the distributions are conditional distributions given &, > 0, resp. &, <O0.
If 7, = P(£, > 0), then P, (k > 1) are independent and identically distributed
Bernoulli random variables. with parameter 7.

Clearly, Zy; =1 if the i-th smallest among X;, ..., Xpny, Y1, ..., ¥ is
an X-observation and then i is the rank of that observation. Therefore

my

T, =
N No

N
h (THHmN.nN (t))dFmN(t)

5 if the scores are given by (2.2) (cf. 2.4), and hence we may study the statisﬁc
; (108) Zyw)

_ [uN] (mym ( [uN] o '
- ([uN] fh [uN]+1H,,,[um,,,[m(t))dF,,,[m(t) no(j)h(H,,o(t))dF(t) :

We first prove the following
LemMa 10.1. If (h, F) satisfies the assumptions of section 8, then
d 1

1 L
7 [(!F (H:'(@®) dh(t):l(lo) = ([ a,, () (G(Hi, ()~ F (Hi, () dho),

where a, is defined as in (9.5), i.e. a, = (FoH ') whenever it exists.
Proof. We have

At _ . LFoH;'()—FoH;'()
ﬂ[gFoH/1 YO dr(®)] (o) = ah—f?o 6[ FE— 0

dh(t)

as in the proof of Lemma 8.2. Hence it suffices to show that, for d|h| almost
all ¢,
FoH;'()—FoH, ) (1)

A—Ao

— a;,(1)(GoH; ! (1) F o Hy ! (¢)).

]
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Write
FoH;' ()—FoH;!(?)
A'_A.o
FoH; ! oH, oH; ' ()~ FoH; (1) H, 0 Hy ' ()—t
B H, oH;'(t)—t A—=lo
The first factor converges d|h| as. to (F oH;ol)’(t) =a;,(t) and the
second factor can be written in the form
H, 0 H; ' ()—t _ (o= F (Hy ' () +(A— o) G(H; * (1)
A AO . - A_)"U

— G(H; ()~ F(H ')

and converges to G(H; ' (1))—F(H;/ () as 4 —4, by continuity.
The -followirig theorem extends a result of Schulze—Pillot [18].

Tueorem 104. In the situation described above, let (h, F) satisfy the
assumptions of section 8. Then, the statistics Xy (u), defined by (10.8), converges
weakly in (D([0, 1]), || |l) to the process

Z(w) = Z (h, ung, u(1—mp))— /7o (1 7o) [jF 2l () dh(t)+

+17o ga,,o (t)(G(H,;o1 (®)—F(H;, (t))) dh(®)] W (),

where W denotes a standard Brownian motion independent of Z(h), which is
defined in (4.1).

Proof. We will proceed as in the proof of Theorem 10.2. Define the
random functions Yy(u) = (myxn/N, n,n/N) as before and write

[uN]

N
and

(1010)  Iy(u) = — [F (Hj (1) dh(t)—

(10.9) An(u) = [[;VM]’ Vi(u) =

(Ax@)-7) ©O<u<1)

1
‘g (F (Hiw 0)—F (Hy' 9))dh(2)

A’N‘(u) — Ty

if Ay(w)—my #0,

=01 Ayw=m, (O<u<l).

Integration by parts gives

(10.11) Zy(u) = Sy (h m‘b‘}"’ "‘I‘\}"‘)+ Vi () Iy ().




74 M. Denker and M. L. Puri

Let us define the map y: D(E)xD([0, 1]) xD([0, 1], E) xD([O, 1])
—D([0, 1) by ¥(f, g, ¢, MW =1 (@1 (W), @) +g@n) for O<u<l,
feD(E), g, ne D([0, 1]) and ¢ = (¢,, ¢;)e D([0, 1], E). Here the difficulty of
the non-continuity of y occurs again, but we can proceed as before.

Let k be so large that moe[k™', 1—k™'] and define

W g 0m i ([0, 1]) < Eqp,
Vil g, @, 1) = {-//(f, g, @o,n)  otherwise,

‘where @q(u) = (un,, u(l—no)), and

- 0, 0<t<1/2k,
v (t)=<2kt—1, 1/2k<t<1/k,
1, 1k<t<1.
By Theorem 8.2 we have Sy(h) — Z (h) weakly in (D(E), §). The strong
law of large numbers implies that Ay(1) — 7w, as., consequently Yy— ¢q
uniformly in u as. The application of Donsker’s theorem yields Vy

— /mo(1—mo) W weakly in (D ([0, 1]), || |l) and since {P. x>, is indepen-
dent of (X,,, ¥,: n, m > 1), Wis a standard Brownian motion, independent of
Z (h). Setting

1 1
y=— (5) F(H, ' (t))dh(®)—mo gra,,o () (G (Hy,' (1) — F (Hy! (0))dh(?),

the strong law of large numbers and Lemma 10.1 imply that lyv, — yv, as.
From Theorems 4.4 and 5.2. of [2] it follows that ‘

(SN(h): Vas Y, Iy Uk)_" (Z(h), oV mo (1 —mo) W, @, Yvk)

.weakly with respect to the metrics 6 on D(E), || ||, on D([0, 1]) and on

D([0, 1], E). ¢, is continuous at all points (f, g, @o, ) With fe C(E) and g,
ne C([0, 17) (cf. the proof of Theorem 10.2). Using Theorem 5.1 of [2], we
obtain, for 0<u <1,

('l’t (SN(h), Vw, Yo, Iy Uk)(“)) - (Z (h, uty, u(l —no))'*'\/ o (1 — 7o) Y, (W) W(u))
weakly in (D([0, 11), || [lx)- '

- Since
P(|Z—Z(h, 7o, (1-mo))=/mo(1—70) 70 () W ()]0 >¢)
=P( sup |V/mo(l—mo)y(1—v, (W) W(w)| >¢)—0 as k— o0

o<u<k™!

(since lim W(u) =0 as.), we obtain

u—0 )
UilZ (h, -7, *(1=m0)), /7o (1—70) W, 9o, y0i) = £
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weakly in (D([0, 11, ll,) and hence it is left to show that
¥i(Sx (), Vy, Yy, lvo) =¥ (Sn(h), Vi, Yu,ln) converges to zero in probability
with respect to the metric || ||, on D([0, 1]) (cf the proof of Theorem 10.2).

Let £ > 0. Then

PV (Su (B, Ve Yo ln) =¥ (Su (), Vi, Yo, ) > )

< P(Yy([0, 1] £ E, - 1)+P( sup [V (u) Iy () (1— vk(u))l e).

osu<€l

The first term tends to zero using the same arguments as in the proof of

Theorem 10.2. Since 1—v,(u) »0 as k— co uniformly on compact sets in

(0, 1), by Lemma 10.1 and by the weak convergence of Vy to /7o (1—7) W,
we infer that max Vy(u)ly(u) is bounded and

(1]

[2]
(31

(4]
[5]
(6]
(7]

(8]
9]

[10]

[11}
[12]

max Vy(w)Ily(u)— 0 as ug— 0.

u<ug

Consequently, the second term tends to zero as well. Therefore

lim H P(”./’k(SN(h)’ VN’ YNa lek)—'/’(SN(h)’ VNs YNa lN)”w = 8) =0.

k—-o N-w®

This completes the proof of the theorem.
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