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Abstract. Let D((0, 11') denote the space of all functions on 
(0, I]' with no discontinuities of the second kind. We prove weak 
invariance principles in the space D((0, 11') for processes of the form 
Jh(H,+,( t))dF,(t) ,  m, n 2 1, where F, and G, are two independent 

. empirical distribution functions of independent, identically distribu- 
ted sequences of random variables, 

and where h belongs to a certain class of functions on the open unit 
interval. The appropriate topology in D((0, 11" is given by uniform 
convergence on compact sets. This type of processes is central in 
nonparametric statistics having applications to two -sample linear 
rank statistics and signed rank statistics. 

In this paper we prove several weak invariance principles for a certain 
type of stochastic integrals which arise from ranking procedures in nonpara- 
metric statistics. These integrals can be written in the form 

(see section 2 for definitions), thus the corresponding random functions for 
the invariance principle are functions in two variables from LO, 1)'. It turns 
out that the important aspect of the problem lies in the behavior of the 
functio-ns h: (0, 1) -+R. En view of the result of DupaE and mjek [9], 
our final result in section 8 is optimal concerning the imposed condition on 
h. It is also worth noticing that Schulze-Pillot's [l8] approach using the 
convergence in "weighted supremum norm" of the two-sample empirical 
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process cannot lead to a result of the same generality. Another difficulty 
arises from the behavior of the random functions near (0, O), which is 
overcome by using a topology of uniform convergence on certain compact 
sets. In some cases of functions h, however, the usual topology of uniform 
convergence suffices. 

Weak invariance principles, as proved in this paper, have not appeared 
in literature. Schulz~Pillot's work will remain unpublished, hence we shall 
briefly mention some of his results in sections 3 and 9. Though the 
motivation to the present investigation comes from statistics, most of the 
material presented here does not depend on it; in any case this motivation 
will be apparent for-specialists. Sections 2 and 10 illustrate these connections. 

- The paper is organized as follows: Section 2 contains the definition of 
random functions based on the two-sample linear rank statistics. Section 3 
gives a brief introduction to weak convergence in those function spaces 
which are necessary for the purpose of our study, The limit process which 
appears in subsequent sections is investigated in section 4. It is a Gaussian 
process, indexed by points in {(r, s), 0 < r, s 6 1) v {(O, O)] with continuous 
paths. Section 5 contains a first invariance principle for (1.1) in D([O, l j2) for 
certain differentiable functions h. In section 6 we derive an approximation 
theorem for general functions h and use this result together with the result of 
section 5 to derive an invariance principle for absolutely continuous h. 
Finally, in section 8, an invariance principle for general h is derived (like in 
[9]). As mentioned before, section 9 contains results of the unpublished work 
of Schulze-Pillot and section 10 is devoted to some applications. 

2 TWO-SAMPLE LINEAR RANK STATISTICS 

Let X i ,  i 2 1, and x, i 2 1, be two independent sequences of indepen- 
dent and identically distributed random variables with continuous distribu- 
tion functions F and G, respectively. Since F and G are isomorphic to 
Lebesgue measure on (0, I), without loss of generality we can assume that F 
and G are absolutely continuous and 

(2-1) (F(x)+G(x))/2=x, O d x G 1 .  

Let F ,  and G ,  be the empirical distribution functions based on 
XI,  . .., X, and &, . .., Ym, respectively. Let R(i, n, m), 1 d i 6 n, be the rank 
of X, among (XI, . . . , X,, Y1, . . . , Yd. Let n + m  = N, and consider the scores 
a(i, n, m) satisfying 

(2.2) a(i,n,m)=h(i/(N+l)), I d i G N ,  
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where h: (0, 1 )  -. R denotes some Lebesgue measurable function to be speci- 
fied later. Denote the linear rank statistics T,T, by 

where the scores a ( .  , n, wr) satisfy (2.2) or (2.3). Write 

and - 

(2.6) > H*(t) = AF(t )+( l -A)G( t ) ,  0 < A 6 1. 

Then, if the scores are given by (2.2), we can rewrite q:,,, as 

Let 

For NE N define the random functions S, (h) by 

if r < 1/N,  
S N ( ~ ,  r ,  s) = {!- ' I 2  C f l  q,N,m.l,m (h) if r 2 IIN. (0 6 r, s < 1) 

By definition, S,(h) is a random function with values in D([O,  I]') ,  the 
space of all right continuous bounded functions in [0, 11' having at most 
discontinuities of the first kind. We wiI1 be interested in the weak convergen- 
ce of SN(h) with respect to the uniform topology in a special case, and with 
respect to the topology of uniform convergence on certain compact sets - in 
the general case. 

We need to put some restrictions on the score functions h. We assume 
that h is right continuous and has bounded variation on every compact set 
contained in the open interval (0, 1). We then can write h = hl - h,, where h, 
and h, are nondecreasing right continuous functions having bounded varia- 
tion on every compact set in (0, 1). We also assume that h, (112) = h, (1/2) 
= 0 (the last assumption and the right continuity are really no restrictions). 

If h, and h, are integrable with respect to [ t ( l - t ) J - ' 12d t ,  we put 

llhll = {(lhl (t)I+lh'(t)O(t(1 -t))-112 ' i t .  
Denote by X the set of all functions h with llhll < a. It is clear that if 

h E X, then j h2 (t) dt < ao and 
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In the sequel, we shal use the Vinogradov symbol " 4" instead of 
Landau's "0". Thus a 4 b means that a/b is bounded. 

If k~ AY is absolutely continuous, then h can be approximated (in the 
norm 1 1  ( I )  by functions which have bounded continuous second derivatives. 
In general, every h can be approximated by functions of the form hlI,,,-, ,  for 
E > 0. 

Since h~ &' has bounded variation on each compact set and satisfies 
h(1/2) = 0, we can rewrite T,,, (see Pyke and Shorack 1151) as 

-. 

where 

3. FWPICITON SPACES OF UMFQRM CONVERGENCE ON COMPACT SETS 

For 0 < x 6 1/2 let 

and let 

E = E,  = (0, 1 J2 u {(O, 0)). 
O<x61/2 

Note that, Ex being a compact subset of [O, lI2, we can consider the 
space D(E,) of all functions (on Ex) which are "right continuous" and have at 
most discontinuities of the first kind (see [14)). D(E)  denotes the set of all 
"right continuous" functions having no discontinuities of the second kind. 
More precisely, if ~ E D ( E , )  (resp. D(E)) whenever rkJr and skis, then 
lim f (rk, sk) = f (r, S) and otherwise lim f (rk, s& exists (if r, -. r and sk - s). 
n-m k -m 
Note that f IE, E D (Ex)  whenever f E D E). 

Let d, denote the Skorohod metric on D(E,) and let 6, denote the 
uniform metric on D(E,), These metrics extend to metrics d and 6 on D ( E )  
by the following definition: for g, f E D(E)  let dx (f, g) = dx (f Illx, glE,) and 
8, (f, 9) = 8, (f IE,, glE,). l"llen 

-- - ._ _ 

and 
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Both the metrics d and 6 are bounded; d metrizes the topology of 
Skorohod convergence on each of the E,, and S metrizes the topology on 
uniform convergence on every E,. We note the following 

LEMMA 3.1. D(E) is complete with respect to both metric!, and the s p c e  
C(E)  of continuous functions is a closed sepurabie subspace. Moreover, the 
space (D(E), d )  is separable. 

D(E) can be described as the Sclosure of all functions which are finite 
linear combinations of indicator functions of the form I E d l  x A 2 ,  where each 
A, is either an interval of the form [ai, b,) or [I). 

We now discuss weak convergence in D(E) with respect to both metrics 
d and 6 to the extent it--is needed in the following discussion. 

Let -{Z,, n >  1) be a family of random functions with values in 
D ([O, 11"). Since the map D([O, 11') + DIE), given by f -. f I E, is continuous 
with respect to the Skorohod topology on D([O, -11') and the metric d on 
D(E), and also continuous with respect to the uniform metric on D([O, 112} 
and the metric 6 on D(E),  weak convergence of Z, + Z ,  in D ([0, 1)') implies 
the weak convergence in D(E) with respect to the corresponding metric. In 
particular, we shall show (in Section 5) the weak convergence in D([O, 11') of 
S,(h) to some Gaussian process when h satisfies certain conditions. Later, in 
Section 7, we shall show that the above fact implies weak convergence in 
D(E) for a large class of score functions h. Also, as a consequence of the 
weak convergence of the empirical process N- IJ2 [ r N ]  (FIrw ( t )  - F It)) to a 
Kiefer process in D([O, 112), we infer its weak convergence also in D(E). 

We also note that the embedding (D(E), S) -t ( D ( E ) ,  d )  is continuous, so 
that the weak convergence in the 6-metric implies that in the d-metric. 
Conversely, we can argue as in [2] that a sequence Z, converges weakly in 
(D(E), 6) to Zo if it converges weakly in (D(E), d)  and Z0 has its support on 
Cb(E), the space of bounded continuous functions. This follows from the 
general fact that if Zo has a separable range in (D(E), d), then the Borel fields 
given by 6 and d coincide when restricted to that separable range. 

If Do c D(E) is separable, then the Borel a-field is generated by the 
projections (see 121, Section 18). In particular, a random function X with 
values in Do is measurable if l I o X  is measurable for every projection. The 
random functions S,(h) clearly have a separable range as they use only the 
points. ( k / N ,  j / N )  (0 < k, j < N) in E, and hence they are measurable. 

We shall always reduce the weak convergence in D(E) to that in 
D([O, 13'); this way we can avoid speaking of tightness. In order to do so, 
we shall use the following well known lemma: 

LEMMA 3.2. Let Z ,  and U,, n 2 1, be random functions with values in 
D(E) and suppose that U, converges weakly to Uo with respect to 6 (resp. d). 
If; for any E > 0, lim P(6 (Z,, U3 2 E )  = 0 (resp. lim P(d (Z,, U,,) 2 E )  = O), 
then 2, converges weakly to Uo with respect to S (resp. 6). 
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If (P , ,  n 3 O j  is a family of probability measures on D ( E )  such that 
P,(C(E))  = 1 (n 2 1) and P,  -. Po weakly with respect to 6 or d, then 
Po (C (E)) = 1. 

The following Iemrna is a straightforward extension of Lemma 3.2: 
LEMMA 3.3. Let Z ,  be random functions in D(E) .  Suppose that for each E 

>, 0 there exists a sequence Ui, n 3 I, of random finctiom and a random 
function Ue such that 

weakly in D ( E )  with'mspect to S and such that -. 
(3.6) P@(z,, U " J 2 q ) < q y Z n ( ~ )  for any ~ 2 0 .  

If'  there exists a random function Z such that -0." -+ Z as E -+ 0 in 
probability and if lim a(&) = 0, then 2, converges weakly in D (E) with respect 

r. -0 
to 6. 

4. THE PROCESS Z(h)  

Let the distribution functions F and G be fixed. Let be a class of 
score functions h ~  2 such that, for any 0 < A < 1, the functions F o H; and 
G o H i  are almost surely differentiable with respect to d (hl (d]vl denotes the 
totaI variation measure given by the signed measure v). This assumption 
always holds if h is absolutely continuous. 

We shall write dF/dH,  and dG/dHA for versions of the Radon-Nikodym 
derivatives satisfying 

dF dG 
-OH;' = ( F o H y l ) '  and -OH;' = ( G O H , ~ ) ' ~ I ~ I  a.s. 
 HA dH,  

For h~ 2, define a process Z(h) on E by Z ( h ,  0, 0) = 0 and 

where XI  and X2 are two independent Kiefer processes on C([O, 1j2) with 
expectdtions zero and the covariance structure given by 

and 
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LEMMA 4.1. The process Z ( h )  has the same distribution as the process 
- Z ( h )  and the process Z*(hll where 

If h is absolutely continuous a d  hh' is integrable, then Z ( h )  has the same 
distrihutinn as 2: ( h )  where 

- - . . r +- [ h' (0 ( s Y  H:;s) (t)) AF (Hi;,s) (t)) r+s  b 

Proof.  Since for any Kiefer process X' under consideration, - X has 
the same distribution, it follows that Z ( h )  and -Z(h) have the same 
distribution. That Z P ( h )  has the same distribution as Z ( h )  follows by a 
change of variables in (4.1). 

Finally, if h is absolutely continuous and if h' is Lebesgue integrable, 
then from (4.2) we obtain 

r 
+- [hf(t) -3'-1 (r, H i ; , )  (t)) r+s  

which proves (4.3). 
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The integrals with respect to the Brownian bridge component of the 
Kiefer process were first defined by Filippova [lo] for functions h satisfying 
J h2 (x) dF (x) < m (resp. J hZ (x) dG (x) < GO). Indeed, if h' is integrable and 
belongs to A?, then by (2.9) it is easy show that these integrals are finite in 
our special case. It is also dear that the processes of the form 
J f (t) X ( r ,  t) dv (t), where v is some measure and f some square integrable 
function, have continuous paths and are in fact Wiener processes with zero 
expectations and covariance 

- E Sf (0 X(r, t) dv (4 Sf ( t)  Wr' ,  t) dv (0 

Since, in (4.11, H,(,,,(t) depends continuously on r and s, the processes 
Z(h) must have continuous paths. They are obviously Gaussian and centered 
at their expectations. Their covariance structure is given by the following 

LEMMA 4.2. We have 

ssf 
(4.4) EZ ( l a ,  r ,  s) Z (h ,  r', sf) = min (r, r') 

(r + s) (r f  + s?' 

rrf + min (s , sf) 
(r + S) (r' + sf) 

j f(F 0 H,;,ts,)'.(u) ( F  0 Hi:,,))' (v) x 

and IEZ (h,  r ,  s) Z (h,  r', sf)l 4 11 hIl2, where " 4" depends on r, r', s and sf.  
Proof.  Let r < r' and s <sf  (the other cases can be proved analogous- 

ly). Then 

E z ( ~ ,  r,  s ) ~ ( h ,  r', sl) = E (t) TI (r t) dh  HA(^,^) 0)) - 
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rr' dF dF 
(4 [I---- - +(r + S )  (r l  + sl) * d ~ l r , ,  d ~ ~ ( r , , s - j  

(4 x 

x E x 2  ( ~ 9  ~1 x2 (sf, 0)  dh(Hacr,.yj (u)) d h ( H ~ ( , , , , , ,  ( ~ 1 ) .  
Since E X ,  (r ,  u) 6 (r', v) = r min (F(u),  F [u)) ( 1  - max (F (u), F ( v ) ) )  and 

E X2 (s,- U) X2 (sf, v) = s min (G (u), G (0)) (1 - max(G (u), G (v))), (4.4) foIlows 
b y  change of variables. -- -- 

If h is nondecreasing, then both the integrands in (4.4) are bounded by 
C{r ,  r', s, s3 1(h(I2, where C ( r ,  r', S, s') is a constant, indepe~dent of h, but 
dependent on r, r', s, s'. Since the norm ( 1  1 )  of h on &' is compatible with the 
Jordan decomposition of h, it folIows that 

IEZ(12, r ,  s ) Z ( h ,  r', s31 < 11h1I2. 
I f ,  in (4.11, r/(r +s) is  fixed, so are H,lr,sl and s/(r + s). Hence, for any fixed 

c (0 .= c < l), 

is a sum of two independent Wiener processes with covariance structure 
given by Lemma 4.2. In particular, the variance is given by 

where 

+ 2c (1 - c) j j I ( F  o H; l)' (u) (F o H i  I)' (v) (G o H,- l) (u) x 
U C V  

- .  - .  . x (1-G OH;~(V) ) ) -dh(u )dh(v ) ,  
provided d h  has no point masses. 

We also need the following 
PROPOSITION 4.3. If h l ,  h2 €2, then 

In particular, if h,: n 2 1 )  converges to h in norm, then Z (h,,) - Z (h) in 
probability with respect to 8. 
3 - Prob. Math. Statist. 9.1 
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Proof.  We shall use the representation of Zjh) given in Lemma 4.1. It 
is sufficient to show that E[d(Z(h), o)]' 4 llhll for k ~ 2 .  

Fix 0 < x < 4 and denote by I (z )  the closed interval with endpoints 
H i  ' (z) and H;?, (z), 0 < z < 1. Assume h s t  that - given a fixed z E (0, 1) 
- F ( H i  (2)) 2 G (H; l(z)). In this case I (z) = [H,? (z), Hi (z)] and it fol- 
lows that 

max I X2 (s,  H G ; ~ ~  (2))1 6 max 1 x2 (s, Y)I . 
Ir.s)*x 0 c s b  l , yd (z )  

Since 

{sup ) ~ ~ & y ) l ~ :  0 < s < 1) and 
Y d(z )  

are non-negative submartingales, applying Doob's inequality twice ( [ t i ] ,  
p. 3 14), it follows that 

(Note that G (H; (z)) # 1). Now, since 

x[1-G(H;?,(z))] < 1- (1 -x )F(H;! , ( z ) ) -xG(H;! , ( z ) )  = 1-2, 

therefore 

In order to prove the corresponding inequality for X , ,  let us first 
assume that G (H;?, (t)) < F (H;!, (t)) holds as well as F ( H i  (z)) 
2 G ( H i  (4). 

Here we use the fact that {XI (1, y)'/~(y)': YEI(z)) also is a non- 
negative (backward) submartingale and we obtain 

- E max I ( r ,  ff;~:.~ @ ) I 2  < 1 6 ~  (XI (1, HT!. (-4))' 
( F  (H- (z)) (r.s)EEx 1 - x  

Here F (H;!, (z)) # 0. Moreover, 

E (xl (I, H;!, (z)))' = F (H;!, ( ~ ) ) ( i  - F (IT;?, (2))) < (1 -XI- ~ ( 1  -z), 

z = (1 - x) F (H;!, (z))+xG (~;_l,(zj) < F (H;!, (2)) and xF ( H i  (zj) < z. 
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Consequently,. 

Let now G(H;?, (z)) > F ( H ; ~ ,  (z)}. Then by continuity, there exists a 
to E [ x ,  1 - xj with G(H;,l (z)) = F(H;,' (z)). Put I ,  = [H;?, (z), to] and I ,  
= [ to ,  H i  (z)]. Then, on I ,  , G(to) 2 F(t , )  and the argument showing (4.7) 
(interchanging F with G and replacing X2 by XI )  gives 

E max I X 1 ( r ,  y)lZ < 1 6 ~ - ~ ( 1 - x ) - ~ z ( l  -z). 
0 <?< l , y d l  

On I, we can use-. the argument for (4.8) to show an'analogous 
inequality . Hence 

Finally, if I; (H; (z)} ,< G ( H i  ' (z)), we interchange in the preceding 
arguments F by G and X, by X2 and obtain 

E max (r, H~:~)(Z)) /~  6 3 2 . ~ - ~ ( 1  -y)-l.z(l -z), 
( l . ,s)EEx 

I 

(4.10) E max I x2 (s, H i ; ,  (z))12 
(*,s) a* 

<32~-~(1-x)- 'z ( l -z)  for any O < z < 1 .  

By our assumption, (GoH~,?,)) '  and (F OH,(,?,))' are bounded functions if 
(r, s)EE,. From this and (4.10) we obtain finally (if h is non-decreasing) that 

: E sup (Z* (h, r ,  3))' 
(r .s)EEx 

s2 
G 2 SUP -- (J(GOH~,?,)'(Z) x J 3 2 ~ - ~ ( 1  - ~ ) - l  J z m d h ( z ) +  

(r,s)eE, (r + sI2 

where C(x) denotes a constant with a polynomial dependence on x-l .  
Clearly, the same inequality holds for general h because of the definition 

of the norm 1 1  (1. Choose r n ~  lV such 
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Then 

2 112 
(E(~(Z*(IZ),  o ) ) ~ ) ~ / '  = { ~ ( f  r n i n ( ~ - ~ ,  sup ~ * ( h ,  r, 3)) ] 

k =  2 (r,sl J x  

proving (4.6). 

5. AN INVARIANCE PRfNCIPLE FOR cZ-SCORE 
-. -.- 

THEOREM 5.1. Let the score fknction h of clms C2 satisjy 

(5.1 IhU(t)l G K ( t ( 1  -t))-l+' 

for s o h  q > 0 and K > 0. Then, the processes SN(h), N 2 1,  converge weakly 
in D( [O,  11') with respect to the ungorm metric to the process Z ( h )  defined in 
(4.1). (Hers Z (h)  can be considered on C([O, 112)). 

The proof of this theorem is based on the following lemmas. 
LEMMA 5.1. We have 

1 

where 

Proof.  By the Mean Value Theorem, for some 5 in the interval given 
by HA(,,,) ( t )  and Hkrgs(t) we have 

(Note: h'(5) is bounded.) 
LEMMA 5.2. We have 

r 
(5.5) lim E sup [ [ r ~ ]  N -  '1'- 

N - t m  O<r.s<l 
f 'lh' (HA(,,, ( t ) )  - h' (HAr,, ( t ) ) )  x r + s o  

x !F,,, (t) -P(t))- dF (t)12 = 0 ,  
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r 
(5.6) lim E sup [ [ I N ]  N-'1'- 

H - r w  O < r , s 4 1  
( i 'h ' (HA0 (4- h'(HAr,s ld)) x r + s  

Proof. For 0 < t < 1, 2/N < r d 1 and 0 < s d 1 there exists some 5 in 
the interval given by Hur,,,(t) and HAr,$(t) with 

Since 
N 

E sup (F.  - F (t))' G n- ' F ( f )  (1 - F (0) -+ (log N) F (t)  (1 - F (t)), 
l < n < N  n= 1 

I it follows for q = [log NJ2 that 

x (E rnax I F , ( U ) - F ( ~ ) ~ ~ ) ' ~ ' ~ F ( U ) ) ~  
l C n 6 N  . . 
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1 

Q [log NJ-' { ~ ( t  (I -t))-1fZ+"dt)2 
0 

by the CauchySchwarz inequality. 
In the derivation of the above inequalities we have used the following 

facts : 
(i) for 0 < I ,< 1, H A  (t) (1 - H, (t)) 2 RF (t) (1 - F (t)); 

- (ii) if q / N < r < l  and O G s G 1 ,  then: 

. (a) for G (t) 2 F (t), 

H L ( ~ )  G H q r , ,  (t) 6 F ( t )  , and H (f) 4 Harps (t) C F (t), 
(q+W 2(q+Nl 

(b) for G (t) 2 F (t), 

F ( t )  =S HA,,, (0 < HL (t) and F (t) d H,r,s (t) G H ( t )  . 
q + N  2 ( g + N )  

The proof of (5.6) is analogous to that of (5.5) and is therefore omitted. 
LEMMA 5.3. If F(t) 2 G(t ) ,  then for any r r' and sf < s, 

HA,,, (t) < H , , , , , ,  (t), and if F (t) < G(t), then for any r < r' and st < s, 

HA,,,, (t)  3 Ha,,*,,, (t). 
Since the proof is straightforward, it has been omitted. 
LEMMA 5.4 We have 

n m 

(5.7) lim E max ( N -  ' I 2  (n + m)- {hT(Hr_ (Xi) I~,~,,, - 
N + m l S n , m S N  i=  1 j= 1 n f m  

1 1 

n +  rn 0 n + m  0 n f m  

n m 

(5.8) lim E max (N-'I2 (n+ m)-I {h' (HL(Xi) Ilyjclil - 
N + m  l S n , r n < N  i =  1 j =  1 n+ rn 

- h' (-(Xi)) G (Xi) - J h' ( H l ( t ) )  lryjhrl dF (t) + 
n + m  0 n + m  

Proof.  Write 

0 n + m  0 n f m  
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and 

We first estimate E max N (n+ m)-' w:,,. Define 
l < n , m  

where W- j ,k  = y, -P = 0 for jy k 3 0. 
It is easy to check (by induction) that 

and, for 1 6 a < b G N and 1 ,< u < u < N, 

Because of independence, the square integral of the second and third 
summands is 
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and the square integral of the last summand is 

(5.10) -@ (b - 4' 5 I( . fh ,u -fb,u)2 ( x ,  Y )  ~ F ( x )  ~ F ( Y ) -  

To estimate the double integrals, it suffices to estimate 

[ [ ~ ' ( ~ & ( x ) ) - h ' ( ~ ~ ( x ) ) l ~  b+u  ( 1 ~ ~ 4 ~ ~  - F ( x ) ) ~ ~ F ( x ) ~ F ( Y I -  

Considering different cases, it can be shown that 
- 2 + 2~ 1 h' ( H L  (x ) )  - b' (HL (.))I 4 [ [(HA (4 (1 - H L  (x)) } 

b i  u b+ u b+v 
+ 

+ ( ~ & ( x ) ( l -  HL(x))J-'+ "1 . I H ~ - ( X ) - H L ( X ) I ~  
. . b+u b+u b f u  

-2+2q 
G(u-u)~[(~+u)-~(~+v)-~~~(HL(x)(I-HL(x))~ b + ~  b + u  + 

- 2 + 2 q  
+ ( b + ~ ) - ~ ( b + ~ ) - ~ b ~  {HL(x)( I -H&(x))]  b + ~  1; 

and since 

b(b+v)-I F ( x ) ( ~ - F ( x ) )  4 HL(X)( I -H&(x)) ,  b +  t )  

and 

b ( b  + u)- ' F (x)  (1 - F (x)) 9 H A  (x) (1 - H A  (x ) ) ,  
b + u  

we obtain 

(5.11) [[ ( fbw- f ,u )2(x ,  y )dF(x )dF(y )  6 ( ~ - u ) ~ ( b + u ) - ~ ~ [ t ( l - t ) j - ~ ~ ~ ~ d t  

~ ( v - u ) v ~ - ~ ( ~ + u ) - ~  j [ t ( l - t ) ] - 1 + 2 q d t .  

The square integral of the fkst summand is bounded by 

a2 1 S ( X u  - h u  -Lo +f,J2 ( x ,  Y )  df ' (x )  dF (Y) .  

We now fix x; the it is easy to check that 

U 
( H L  ( x )  - HL ( $ 1  d (b  - a) 

b+u a + u  (b+u)(a+u)' 

v 
I H L ( x ) - H L ( x ) (  < (b-a)  

b + ~  U + V  (b+v)(a+v)' 

I H L  (x)  - H L  (x)l d ( v  - u) 
b  

b+u  b+u (b+~) (b+u) '  

and 

a 
/ H L ( X ) - H L ( x ) ~  < (v -u)  

a + o  - a+u (a+v)(a+u)'  
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Thus 

[(hr ( H A  (XI) - Y ( H L  (x)) - h1 ( H L  (x)) c h' (HA (x))] 
b + u  a+ v a+ u 

where the sum extends over j = b/{b + u) and #/(a + v) (cf. Lemma 5.3). 
Consequently, - -. 

I u" JI(S," -h. -A. +L3' d~ (4 d~ (Y)  

since 

we have, e.g., 

and 

Together, with (5.91, (5.10) and (5.11), we obtain 

To estimate E max N -  l (n+  m)- W& we apply Theorem 8 of Mo- 
l S n d N  
OdrndN 

ricz [13]. 
If 2 k - 1  < a <  b < 2k and 2j-I < u < v < 2j, then 

max 6::. - - ",:)< 4. 
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Thus by (5.12) we have for 2k, 2J' < N, 

E rnax N-1(n+m)-2~~m<2k.2j.(2k-1+2j-1)-2.~-11 og 2k log 2j 
~ ~ - l i n < z k .  
2j-1,<,<2~ 

e N -  l (log N ) = .  

Hence 

E max N - l ( n + ~ ) - ~  w:~  3 N - l ( l o g l q 4 .  
1 C n G N  
O d m S N  

To prove (5.7), it remains to estimate 
.. . 

n 

E rnax ( N  - ' I 2  (n + m) - ' (h' (HA (xi)) (1 - F (XI)) - 
1dnSN r =  1 n + m  
O , < m C N  

But, since h' is bounded, this maximum is clearly bounded by N - l ,  
proving (5.7). The proof of (5.8) is similar to that of (5.13) and is therefore 
omitted. 

LEMMA 5.5. We haue 

= 0 in probability, 

where S ( t )  is any point in the interval given by HArss ( t )  and N ( r ,  s) 
N ( r ,  s)+ 1 rf,,,,,,, (0 

Proof. Using (5.1), we have 

Next, 
I 
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< sup f i r s  1 - ( 1  
- 1 t q  . ( 1  - 

N ( r ?  s)+ 1 

Now, from  heo or em--4.1 in 171, we have for each r and s 

Consequently, 
1 

(5.16) E mmax & r ~ ~ , [ s q  It) - 
1 < [ ~ N J $ N ~ / ~ / ~ O ~ N  0 
O < [ S N ]  d N ~ ~ ~ / I o ~ N  

Now let E > 0 be fixed. Then, using (5.16), we obtain 

1  

4 &-'(log N ) - ' + P (  sup nN-1 /21 (K1(< ) (  x . 

~ ~ / ~ f l o p N d n < N  0  ! 
o r ~ ~ / ~ / l o ~ N b m <  N 

Now let us fur intervals [2k-1, 2k) and [ 2 j - l ,  2 j ) .  Then, using Lemma 5.3, 
we have for each 2'-' < n < 2' and 2 j - I  < rn < 2 j ,  

+ ( H  2 k - 1  ( t ) ( l - H  2 k - 1  ( I ) ) ) - l + ?  
I 2 k - l + 2 j  . z k - l + d  

and so, 

(5.18) E max ~ ( H ~ ( X ~ ) ( ~ - H ~ ( X ~ ) ) ) - ~ "  
2 k - 1 s n d 2 k  i = l  " f m  n+ m 
2 j - l < , ~ 2 j  
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Let 
n 

Then, using formula (5.18) and Markov's inequality, P ( N ) )  
- t , j l o g l \ i  

4 (log N ) -  ' and on 0 (B,~(I\J))C, we have for each n, in 
k.j 

(5.19) n{(~~(t)(L-~~(t)))-~'"~.(t)<2(n+m)(logN)~. n+ m  n+ m 

Now let 

AN = { sup sup n3I81 F,  ( t )  - F (t)l < 1 and sup sup rn3I8IG, ( t )  - G (t)l < 1) . 
N ' / ~ < ~ < N  ' N ~ / ~ Q ~ $ N  

Then, by the law of the iterated logarithm for the empirical processes, 
we have lim P(A",) = 0 and on AN we have for n 2  log N or for m 

N+m 

2 N i/2/log N, 

using (5.14), (5.15), (5.19), and (5.20), we have on AN n [n Bk5j (v] for n 
k,j 

2 NitZ/log N or m 2 N1/2/logN, 

n+m 
InN- h" (t (L)) ( B , , , ( t )  - H L  ( t )  dFn ( t )  

D n+m+l n + m  J I 
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Thus, with N sufficiently large, we have 

on the set A, n [n B,,j (N)"].  Since the measure of its complement tends to 
k. j 

zero, (5.17) tends to zero as N -+ m . This completes the proof of the Lemma. 

LEMMA 5.6. We have 

Prodf.  Since h' is bounded, the proof follows trivially. 
Pro of of Theorem 5.1. Since h is of class C,, we obtain from Taylor's 

theorem - 

1 

'" h' H, (r)) ( N ( r ,  s) 
cCrN1 N -  1 ( r,s s)+ 1 q r W , [ ~ N l ( ~ )  - H A r , s ( t ) )  x 

0 

where c ( t )  belongs to the interval given by HAr,.(t) and N ( r ,  s )  
N ( r ,  s)+ 1 fi[rw,[sm ( t ) .  

Making some routine computations, we obtain 

where 

r  
ENI ( ~ 3  S )  = - [ hr (Hi(r,sj ( t ) )  CrNI N -  ' I 2  (FrrW ( t )  - F ( t ) )  dF (t) - r + s  b 
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1 r 
ENS (r, = CrW N -  'I2 J(ht (Harm3 (f)) - h' (HAIF,. ( t ) ) ) - ( ~ , . ~  ( t )  - 

o r+s  
- F (t))dF (t) ,  

1 r 
E ~ 9  6, 3) = [sNI N -  J(K (Harss ( t ) )  -'h' (HA(r,s) (t)))- ( t )  - 

0 r + s  
- G (0) dF (0, 

and 

. Now, using Lemmas 5.5, 5.6, 5.4, 5.1, and 5.2, we notice that ENi - 0 in 
probability with respect to the uniform metric for i = 3 to 9. Furthermore, 
since 

it foIIows that E N , ,  as well as E N , ,  -t 0 in probability with respect to the 
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uniform metric. Thus the weak convergence of S,(h) will follow from that of 
ENI + E m .  

Since EN, and EN, are independent random functions, we have to show 
that EN, and EN,  converge to the corresponding integrals replacing the 
empirical processes by independent Kiefer processes. We consider only 
EN, (r ,  S )  because for EN, (r ,  s) the same argument applies. 

Consider the map @: D([O, 112) + D ([0, 11') defined b y  

If f is a continuous..function, then clearly $ is continuoui'at f with 
respect to the uniform metric on D([O,  1J2) because dlhl is a finite measure. 

Let X be a Kiefer process on C([O,  11') with covariance E X ( u ,  v )  = 0 
and E X ( u 7  u)  X ( u l ,  v') = min (u , u') F (0) (1 - F (v')) for 0 4 u, u' G 1 and 
o < v , < v 1 < 1 .  

Since X has continuous paths and since [ rN]  N -  lt2 [Firm ( t )  - F (t)]  
converges weakly in D ([0, 1 J2) to X(r,  t )  with respect to the uniform 
topology, Theorem 5.1 d Billingsley [2] shows that # [ ([vN]  N -  ' I 2  ((FI 14. (t)  
-F(t))]  converges weakly in D([O,  11') to @(A'-) with respect to the uniform 
topology: 

r 1 

~ [XI ( I ,  $1 = I+S Sh'(H*CS, X ( f - 9  t )  dF(t)  - j X(rY fq;d (t))dh(t) 
0 

COROLLARY 5.1. Set 

1 

- j h (HLfr,,) (t)) dF ( t )  otherwise. 
0 I 

Then converges weakly in D([O,  11') with respect to the unijbrm 
metric to the process Z ( h )  defined in (4.1). 

COROLLARY 5.2. Let the scores a,(i, n,  m) satisfy (2.3), where h satisfies 
(5.1). T h n  the statistics 
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where T* is defined in (2.4), converge weakly in D ( E )  with respect to the 
ungorrn metric to Z(h).  

Proof.  Set 

Then, by (2.3) and the definition of the Riemann integral, it follows that 
1 

lrN N -  lt2 Lh (HA(r,r) ( t ) ) -  hN,n,m (Hi(r,s) (t))] dF ( t )  0 
0 

uniformly in r and-s. Similarly, 

uniformly in r and s. The proof follows. 
Replacing, in (5.2213 E?; ,* i , , [ s~  by fhN(,,s),[,ru],[si,i-, (HA,,,, ( t ) )d~( t ) ,  the con- 

vergence of i , ( h )  to Z(h) is again in D([O,  1 1 2 ) .  

6. Tm CONTINUITY THEOREM F(PW S, 

The random functions S, ( h ,  ., .) define operators S,: X -. L2 (P, D (E,)) 
for every N 2 1 and O < lc < 1/2. We shall show in this section that the 
family ISN: N 2 1) is uniformly continuous for fixed x. This result will 
provide an easy argument to extend invariance principles for S,(h) from nice 
score functions h to more complicated ones. 

THEOREM 6.1. Let 0 < K. < Then there exists a constant C (x) such 
that for every score function h~ Z and every N 2 1 

Remark. This theorem is an extension of a theorem of Denker and 
RGsler [5], which says that E(S,(h, r, s)y d const-ilhli2 for every fixed r, 
SE(O, 1). 

The theorem will be proven by a series of lemmas. If r < 1/N, then by 
definition, S,(h ,  r ,  s) = 0 for every s. Also, if s < 1/N,  then 

uniformly in r ~ ( 0 ,  1) (and 0 < s < l/N), since h E X. Therefore, it suffices to 
show (6.1) in the case where r 2 1/N and s 2 1/N. We shall assume in the 
following lemmas that r, s 2 1/N; especially (r, s ) ~  Ex means, more precisely, 
that ( r .  s ) E E ,  and P, s 2 I/N. 
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We begin with an easy observation (cf. Lemma 5.3): 
LEMMA 6.1. If (r, S ) E  Ex,  then 

and 

(6.3) H z  (t) G  HA^,, (t) d HL (t)  if F (t) < G (t), 
2 + x  2+ x 

where, as before, Ar,# = [ r N ] / N  ( r ;  s), N (r, s) = [ r N ]  -k [ sw.  
Proof .  Since pl <r/(r+s) < l -x ,  

Using this estimate, where r and s are exchanged, we also have 

and it follows that 

Lemma 5.3 states that F(t) 2 G(t), r < r', s' < s + HrI(,+,, (t) < Hr8,(r.+,,, (t) 
and F (t) d G (t), r d r', s' < s * Hrib + s1 (t) 2 H,,,(,. + (t) . 

Assume now that F (t) >, G (t)  (the case F (t) < G(t) is similar). Choose s' 
= x/2, r' = 1. BY (64,  CsW/([rW + [sw) 2 1 -(I-42) = x/2 and, conse- 
quently, by Lemma 5.3 we have 

On the other hand, choosing s = 1 and r = 4 2 ,  we obtain 
Hx/,2 +x, (0 d HA,,,,, (0. 

LEMMA 6.2. For euery 0 < z < 1 and every 0 < x < '/,, we have 

and 

where 
- 1 

Ix(z) = {y: ~ n { ~ x ( z ) ,  Hz(=)] 6 y d m a x { ~ z ( z ) ,  H ~ ( z ) ) ] .  
2 + x  2 + x  2 + x  2 + x  

4 - Prob. Math. Statist. 9.1 
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= ~ N G  (HZ (z)) (1 - 1 - G (Hi t2  + XI (2)) 
2 t x  l-G(4t2tx,(z1) 

~ o t e  that 1 - G (HZ (z)) # 0, since otherwise 
2 + r  

x 
I ,  z=- 2 

F ( H ~ ( Z } ) ) + - -  G (H; (11) 3 G ( H Z ( = ) )  = i  
2+x 2 t x  2+x 2+w 2+* 

-. 

b=wJse- of F(H4/2 +, (z))p G (H& +, (4). 
Using 

X 2 
1-2 = I - - F ( H ~ ( z ) ) - - G ( H - ~  (=)I< I-G(H;(Z)), 

2 + x  2 + x  2 - k ~  f + x  

and 

we note the left-hand side of (6.8) is bounded by 

The proof of (6.7) is more involved. Assume first that also 
G (If$!!+, (2)) < F (H&+, (2)). Formula (6.10) remains valid replacing G by 
F. Then use the fact that 

is a martingale to obtain 
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(Note that P ( H ~ ( z ) )  # 0, since otherwise 
2 + x  

We also have 
2 

HL(Y) 2 i r  (1 -HL(Y)) 2+x  2 T j - ; I F ( ~ )  (1 - F (y ) ) ,  

x - 1 
and - F (HL (z)) < z . 

2+x 2 + x  

Consequently, the left-hand side of (6.7) is bounded by 

2+x 

We still have to prove formula (6.7) in the case where 
G ( +  ( z )  > F + (z)). The function u - F - G)  (H: ( 2 )  is conti- 
nuous In u, where 4 2  + x)  ,< u < 2/(2 + x). By our present assumptions, there 
exists a u0 such that (F - G) (H: (2) )  = 0. Splitting the interval I, (z) 
= [H,:,,., (z) ,  H;t2+x, (r)] into two subintervals J ,  = [ H , : ~ , ~ ,  (z) ,  HH;b (z)] 
and J ,  = [H,,'(z), H,;:2+x)(z)], we can argue on J ,  as previously In the 
proof of (6.8) for G and on J ,  as before. This completes the proof. 

LEMMA 6.4. FOP every 0 < x < there exists a constant C, (x) such that 
for every h~ 2f and every N B 1, 

Proof.  We may assume that h is non-decreasing. Using 

we have 
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where I, denotes the above integral with integration over 0 < z 6 2N/(2N 
+ 1) and where 1, denotes the above integral with integration over 2N/{2N 
+ 1 )  < z  < 1. 

Let us first estimate I,. Since z > 2N/(2N+ 11, we have ( (N( r ,  s) 
+ 1)/N ( r ,  s)) z > 1, and hence 

It follows that 
1 1  

- 
2N+ 1 

1 1  

since 
1 1 2N 

I-z <-,,/G<-Jm for .zap 
f i  J;hi 2 N f l '  
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We 'now estimate I,. Let I , 

1 if HA ( t )  < z < N(r, s) 
r . ~  N ( r ,  s )+l  f i [ rq , [s~  (t), 

N ( r ,  s) 
N ( r ,  s)+ 1 f irr~ ,~sm (0 < z  HA^,^ (t)? 

0 otherwise, 

Then 
2N 1 1 1  

- 
ZN+1 1 

I C r N l a ~  l = ( J J %.a (ty 2) d [rW Frrw (0 dh (z)l 
2N 

0 . -  0 - 
2N+l 1 ' 

W ( r ,  s) J Jl~r,aIt,  211 dfi lr~,[s4 ttl d h 0  
A0 
ZN+ 1 

= N(r ,  S) l ~ ? N J , [ s ~  (H;: (11)- 
0 

It is easy to see that 

; 
It follows' that 

ZN - 
2N+1 

IcpwI~I I ~ ~ ~ @ I I ~ I I + N ( ~ . S ~  o Ifi[,w,[m(~c;(z))-zldh(l), 

and so 
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By Lemma .6.3 it follows finally that 

II M jCh[Ny(ryd * max - 
( r , s ) a ~ %  ,/K o P ,  s)+ 1 ~ln,l.rm (4)- h ( H ~ ~ , ~  (o)] dpIrIvl (t) 11 

L z ( 0  

LEMMA 6.5. For euery 0 < x < 1/2 there exists a constant C2 ( x )  such that 
fur every h ~ #  ~ n d  euery N 3 1, 

Proof. Let h be increasing. Then, integrating by parts, we have 

It follows from Lemma 6.3 that 

< C:12(x) Ilhll. 

The proof of Theorem 6.1 follows from Lemmas 6.4 and 6.5, since 
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1 7. A N  iNVARIANCE PRINCIPLE FOR AIHOLUTELY CONTINWIPZIS SCOWS 
I 

In this section we list some (more or less) immediate corollaries to 
Theorems 5.1 and 6.1 Replacing Theorem 5.1 in the arguments below leads 
to general invariance principles to be proved in section 8. 

THEOREM 7.1. Let h~ X' be an absoEuteIy continuous score function. Then 
SN(h)  ( N  2 1 )  conuerges weakly in (D(E) ,  S )  to the process Z ( h )  defined in 
formula (4.1). 

Proof.  As remarked in section 2, the score functions of class C Z  with 
bounded continuous second derivatives are dense in the space of all absolute- 
ly continuous score functions. By Theorem 5.1, for such a score function h, 
SN(h) + Z(h)  weakly in D([O, 112) equippcd with the uniform topology. But 
then, the restrictions of SN (h) to E converge weakly with respect to 6 (see 
section 3). Hence we have established the theorem for a dense subspace of 
absolutely continuous score functions. 

Now let  EX be an arbitrary absolutely continuous score function. 
Given E > 0, choose a C2-function h, with continuous bounded second 
derivative such that llh - hE/( < E. Since S,(h) - SN(hE)  = S,(h - hb, Theorem 
6.1 implies (cf. 3.4)) that 

- 

Since the constants C (I lk)  do not depend on the functions in 2, there 
exists a k ( ~ )  with 

(C (ljk))'" E < 2-k(e) [ k ( ~ ) ] -  for a11 k G k ( E ) .  

Hence 

which tends to zero as E -. 0. 
Note that (3.6) is satisfied with a(&) = 2-2k(e)+2 and (3.5) holds because 

of the previous discussion. 
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It follows from Proposition 4.3 that Z (h,) - Z (h) in probability. There- 
fore, by Lemma 3.3, S,(h) converge weakly to Z(h) .  

The following result is an equivalent formulation of Theorem 1. 
THEOREM 7.2. For n, r n ~  N,  define 

I f  h ~ #  (cf. section 4), then the weak convergence of' Sn(hj tp Z ( h )  in 
(D(E),  6) is equivalent to the weak canumgence of $,,(h) to Z ( h )  in ( D ( E ) ,  6 )  
as a/(m +- n) converges to s o m  0 < A < 1, where the distribution of 2 (h) is 
given by 

P r o  of. Given n, m EN, put N = n + m and 1, = n/N.  Assume that 
(S,(h), AN) + ( Z ( h ) ,  A) weakly with respect to S x l  1. Since the map $: D ( E )  
x 10, 13 + D  (E), defined by $ (f, u) (r, s) = f (ur, us), is continuous at every 
pair (f, u) EC(E) x 10, 11, , (h) = ( S  (h), A )  converges weakly in 
( D  (El,  6) to $ (Z (h), A)  = Z (h) (see Theorem 5.1 in [2]). 

Conversely, if S",,, (hj +Z(h]  as n/(m+ n) + 1, for N E N  choose n, m such 
that (N/n) 41, ~ ( 0 ,  1) and (N/na) +(RI,/(l -A)). Similarly ;LO before, it follows 

' 

that 

Nr Ns 1 
SN(h ,  r, S) = E g n m  (by 7, ;) +- m Z ( h ,  A, Rr, Alhs) 

and the theorem foIIows since a- l f 2  Z (h,  ar, as) has the same distribution as 
z (h). 

COROLLARY 7.1. Let  EX be absolutely continuous and let G ( h )  be 
dejined as in (5.21). Then SN (h) converges weakly in (D (E) ,  S) to the process 
Z ( k )  de$ned in (4.1). 

Proof. This follows from Theorem 7.1 and Lemma 3.2 together with 
the estimate on p. 65 of [5] for each Ex: 

COROLLARY 7.2. Let the scores. aN(i ,  my n) satisfy (2.3), where h~ # is 
absolutely continuous. Define the statistics SN(h) as in (5.22). Then 3, (h) 
converges weakly in (DIE), 6 )  to Z ( h )  defined in (4.1): 

Pro  of. The proof immediately follows from Theorem 7.1 together with 
the arguments used to prove Corollary 5.2. 
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In this section we prove similar to Theorem 7.1 invariance principles for 
.certain scow functions he 2. The proofs of the theorems appearing here are 
independent of sections 5 and 7. We just replace Theorem 5.1 by Proposition 
8.3 below, which gives the invariance principle for score functions with finite 
total variation norm on (0, 1). Denote - by f i - I  AE--_ the left continuous inverse of 
the distribution function I? , ,  (n, m 3 1). 

LEMMA 8.1. k t  h ~ & .  Then for (r, s )EE;  with r, s 2 1/N we have 

cmd where the integrand is defmed to be zero if 

I 8 4  H A r n s  (%h,rsm ('7)- t = 0. 

Remark. The integrand (8.1) is a measurable function as an ekment in 
D.([O, lj3) equipped with the supremum metric due to using f instead of t. 
This will become clear in section 9. 

Proof. By the definition of SN(h), (8.2) and integrating by parts we 
- observe that 

use the identity 
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and the convention (8.3) to, obtain 

> 

Here we used the fact that BI,rrl,rnm(A~~,tsB(fi) = So (8.1) follows. 
Like the processes Z(h),' defined in section 4 can only be defined for 

special pairs (h, F )  of score functions h a d  continuous distribution func- 
tions F, the invariance princlipk to be pioved in this section needs a 
restriction on h and F which we state now as condition 

(A) For every 0 < l, < 1 the'derivative (Foe1)' exists, dlhj a.e. (equiva- 
Ikntly h e a, and for dlhl as. t ~ ( 0 ,  1) { (FoH;  I)': 0 c A < 1) is uniformly 
(ii, A) continuous at t. I I I 4 

This condition is satisbd-if HH;' is differentiable on (0, 1) and has a 
'vntinuous extension for some Ad ~ ( 0 ,  1). Indeed, we have 

- - 

Thus fF o Hi '1' is contibum has s continuous extension to fO,1]  and 
far a.e. t it is uniformly contimw. It follows now that the condition for 
(h, F )  is always satisW if F = & or if the followhg holds: I; and G have 
continuous densities f and. 9 an6 there exist intervals (q, fit), 1 < i < PI, 
qatisfjiingi t . 
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g g (ii) Ern - - - lim - (1 < i < n-1), 
x tai f (4 x4ai f (4 

I (iii) lim - B(x' and lim - 
! 

exist. 
x tB. I 

f ( x )  x3an f (4 
We leave it as an exercise to show the implication. (These remarks are 

I 

I contained in [18]; cf. also section 9). 
I LEMMA 8.2. Ler 0 < x < 1/2. If h and F satisfy condition (A), then 

(8.4) lim max 1 ~~ihSSNl (0) - F VGr,: ([I) 
N -*m (r,s)&F* HA,,# ~%&,[N, (g)- 

N(P.s )  2 +E 
. . "I for d lh] almost all t, P a.e. and 

(8.5) lim max 
N- tm  (r,s)EEX 

N(r,s) 3 

for d]kl almost all t, P a.e. 
Moreover 

mar 1 F ( f i i ~ , [ ~ ~  ca)-w;:(t)) 
(8.6) 

@,$)ax  HA^,^ ( ~ i & , [ s h ' ]  (0) - 
and 

for dlhJ almost all t .  
Proof.  We first show (8.6). The proof of (8.7) follows ;eplacing F by G. 

B y  (2.1), F ( x )  + G ( x )  = 2x. Hence F' (x) < 2 whenever F is differentiable at x. 
Since h E 2, F o Hi,! , )  is d lhl a.e. differentiable. Consequently, 

(F o Hi:,,)' ( t )  = lim F (Hi;, ( t  + 4) - F ( H i ; , )  0)) 
E LO E 

Q A(r,  s)-I lim 2 ( ~ 3  3) [F  (Hi:,)  ( t  + 4)- F (Hi :s )  (t))] 
E 

+ 
E 10 

Similarly, if u 2 v, then 0 Q (F (u) - F (v)) $ HAr (u) - HCs (v )  implies ,s 

by (6.4) Formula (8.6) follows from both estimates. 
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We now prove (8.4) ((8.5) is similar). B y  (6.4) we have [rw-l 
6 2%-' N ( r ,  s ) - I  < 2%-I N - ~ ~ ~  and [sNj- l < 2x-  ' N -  IJ4, and therefore 

It follows that 

lHA(r,i) (@~k,[~Nl(o) - - H~(r,s)  (fi~&,[sw ( 0 )  + HA(r,s) (HG,; (l))I 

and 

Therefore, it suffices to show that 

uniformly in (r, S ] E  Ex such that N ( r ,  s) > N1I4. 
Since h and F satisfy condition (A), we have for d]hl a.e. t :  Given 

E > 0 31 > 0 such that for all 0 < A  < 1 and all 161 < q for which 
(F o H; l) '( t  + 6 )  is defined, 

I ( F O H ; ~ ) ' ( ~ + ~ ) - ( F O H ~ ' ) ' ( ~ ) J  < E. 

Since I; o HY1 is absolutely continuous, it follows that I F ( H ;  I ( t  f6)) - F ( H ;  ( t ) )  -(F o H ; l ) ' ( t ) (  
S 

and this holds uniformly in 0 < 1 < 1.  
Since 
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uniformly in (r, s)E Ex and N(r, s) 2 N1I4, we have H,(r , , , (~;r ' - ( t ) )  - t as N 
+ w (uniformly in (r, s) EE,) with NIr ,  s) 2 and hence, for d lhl a.e. t ,  

uniformly in (r, s) as N -. co d Jhi a.e. 
Also, since ~ , ~ , , ( f i ~ & , , ~ ~ ( Q ) - t t ~  uniformly in (r, s ) f E ,  with N(r, s) 

3 N1I4, 

uniformly in ( r ,  s) as N +a, d lhl a.e. 
It follows that (8.9) is 

and tends to zero as N m uniformly in ( r ,  s) EE, with N ( r ,  s) 2 N'l4, d 1/11 
a.e. This proves (8.4). 

I h o ~ o s m o ~  8.3. h and F satisfy codition (A) and kt h have bounded 
total variation noma on (0, 1). Assume that t b  der ly ing  probability spqce is 
rich enough such that thepe exist two ilulependernt Kitrfm processes Xs and X2 
such that unifirmly in (r ,  t), resp. (s, t), 

in probability. 
Then, for any 0 < x < I/& 

S 
(h, s , r) + - j (G 0 ~ d ; r t ~ ) Y  (t) xi (r r Hi:s) (t)) (t)  - r + s ,  

converges to zero in probability as N - a. 
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Proof. We shall use the representation (8.1) of S, (h) from Lemma 8.1. 
Observe fkst that, by (8.2) and the proof of (8.a 

- 

Next write 

Since all paths of XI and X2 are uniformly continuous, A,(r, s, t), 
B,(r, s, t) -. 0 as N - oo uniformly in t and ( r ,  s ) ~  E, with N ( r ,  s) 3 NYq. In 
view of (8.6) and (8.7) it follows that 

where C ( x )  denotes some constant depending on x and the total variation 
norm Ildhll of dh. 

By  Lemma 8.2, (8.4), and (8.5), and the dominated convergence theorem, 

1 

lim J max F (fi&,rxm (0) - F (Hi,:  (0) -(F0H;:~~)'(t)1dlh)(fl  = 0 a.s 

N - - o r - s )  ax I  HA^,^ (fii&,fsw (0) - t 
N(r,s) B N ~ / ~  

and similarly for G. 
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Now, we set 

max IXi(u,v) l<M ( i = 1 , 2 ) ,  
(4,u)d0,112 

and ' 

1 rnax 
G (fi~:,,~~~ (8) - ~(ff;,: ( t ))  - ( ~ o ~ ~ ~ f ~ > ~ ( ~ l d l h l ( t )  <&}. 

- . ~ ( r , s )  3 ~ 1 , 4  1 ( f i ~ & S w  (8) - ' 
/ (p,s)EEx 

Here we may choose M, depending on N,  in such a way that M -. co 
and P(R"N)-.O as N+m. 

By (8.10) and (8.13) it follows that on R, 

It is easy to see that we can extend the maximum in (8.14) over all 
(r, s)EE, and this proves the proposition. 

THEOREM 8.1. Let h and F satisfy condition (A) and let h  have bounded 
total variation on LO, I]. Then S,(h) converges weakly in ( D ( E ) ,  6 )  to the 
process Z(h) dejned in (4.1). 

Proof.  We may assume that the probability space is rich enough. By 
Skorohod's theorem and the weak convergence of empirical processes to 
Kiefer processes, there exist independent Kiefer processes XI and Z2 such 
that the assumption of Proposition 8.3 is satisfied. Denote by Z(h)  the 
process defined in (4.1) with the two specified Kiefer processes. Then by 
Proposition 8.3 we have, for any 0 < x < 1/2 and any E > 0, 

Let E > 0 and q > 0 be given. Choose ko such that E - 2ko 2 ~ / 2  and then 
No such that, for N 2 No, 

max ISN(h, r ,  s ) - Z ( h ,  r ,  sjl 2 
(r.s) €Ex  
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It follows that 
91 

P ( ~ ( s N ( ~ ) ,  Z(4) 2 6 )  = P ( C  min[2-'', SlIk(SN(h) ,  Z(h))] L E) 
k =  2 

The weak convergence follows now from Lemma 3.2. 
THEOREM 8.2. Let h and F satisfy condition (A). Then SN(h) converges 

weakly -in (D(E),  6) to Z(h)  defined in (4.1). 
Proof.  If h~ .H, then, for any 8 > 0, 

has bounded total variation. Moreover, if (h,  F )  satisfies condition (A), so 
does {h,, F). We can proceed as in the proof of Theorem 7.1 to prove our 
claim. 

COROLLARY 8.1. Let la and F satisfy condition (A)  and let gN(h) be defined 
as in (5.21). Then G ( h )  converges weakly in (D(E) ,  6 )  to  Z(h) defined 
in (4.1). 

Proof.  This follows from Theorem 8.2 as in Corollary 7.1. 
COROLLARY 8.2. Let the scores aN( i ,  m,  n) be defined by (2.31, where ( h ,  F )  

is as before. Define the random function gN(h)  by (5.22). Then gN(h)  converges 
weakly in ( D ( E ) ,  6) to  Z ( h )  defined in (4.1). 

Proof. This follows as Corollaries 5.3 or 7.2, using Theorem 8.2 instead 
of 5.1 or 7.1. 

9. THE INVARIANCE PRINCIPLE OF T. SCHWLZE-PILLOT 

To the best of our knowledge, no invariance principle of the form given 
in sections 5, 7 and 8 has been proved except some of the results of Schulze- 
Pillot {18]  in his Ph. D. thesis and, maybe, some very special cases. Since the 
results of Schulze-Pillot have never been published elsewhere, we shortly 

I sketch his results. 
SchulzePiliot uses the approach of Pyke and Shorack 1151 to prove 

limit theorems for the two-sample linear rank statistics. The linear rank 
statistic can be represented as an integral over the two-sample empirical 
process. We used this representation in (8.1), however in the present proof 
only in the case of score functions with bounded total variation on (0, 1 ) .  
Contrary to this easy case, a general score function needs a more careful 
handling of the two -sample empirical process, that is, an invariance principle 
with respect to some dominating function q has to be proven. 

5 - Prob. Math. Statist. 9.1 
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This requires to enlarge E to E x[O, I], to replace D(E) by D,(E 
x [O, 11) and to define a suitable metric on D, ( E  x [D, 11). We will start with 

this description. Denote by d the set of all functions q: [0, I] -. W, which 
are continuous, non-decreasing on the interval [0, I/,] and non-increasing 
on the interval [I/,, 11, and (see [IS]) which satisfy 

I 

(9.1) J[q(t)12dt < co. 
0 

As in section 3 let us d e h e  a metric d, as 

for two functions f and g defined on E x [O, 11. In order to make d, well 
defined, use the convention 0/0 = 0 and a/O = co for 0 < a < co . Clearly, d, 
defines the topology of uniform convergence with respect to q on each of the 
sets E, x [ O ,  11, 0 < 3, 6 l / i .  This means that dq( f!, f )  + O  if and only if, for 
every 0 < A < I/,, [q(t)]-'(Lit-, s, t)-f (r, S,  t)) converges to zero uniformly 
in (r ,s)€EA and 0 G t G  1. 

In analogy to the definition of D (E) denote by D, ( E  x [O, I]), the d, - 
closure of all simple functions of the form 

where A: for i = 1, 2 is again an interval [a!, b:) with 0 ,< qk, b: ,< 1 or {I), 
and where A", [Cay b:] with 0 <a:,  b: < 1. It is not hard to see that 
functions in D,(E x [0, 11) have only discontinuities of the fist kind and that 
C,(E x [0, I]), the space of continuous functions on E x [0, 11, is a closed 
separable subset. 

Let 9, denote the Borel-0 -field generated by d,. If Lll is a separable 
sbbspace, then 93, n D' is generated by the projections (cf. [2], 18)). Thus, 
the random functions X taking value in D1 c B,(E x [O, 11) are measurable 
if, for every projection K :  D,(E x [0, 11) -* R, nf = f ( r ,  s ,  t), where (r, S)E E 
and 0 4 t < 1, the function K O X  is measurable. 

In particular, the two-sample empirical process appearing in (8.1) is 
measurable. 
, In the situation described in section 2, Pyke and Shorack [I51 defined 
the two -sample empirical process as 

19-31 AJlt2 [Fm (&;A (0) - F ( H i ;  (0)J - 
-. 

More generally, Schulze-Pillot defined the two sample sequential empiri- 
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cal process A, (r, s, t) by 

for N E  N, (r, s, t ) ~  E x [0, 11. Here, similarly to (8.2), 

Since t^ can assume only the values i/(N + I), Frrq (g) has a 
separable range and so bas F(H.I,,~(~)). It follows that A,(r, s, t) is D,(E 
x [0, I]) -measurable. We-may, therefore, speak of weak convergence of A, 

with respect to d, .  
Let X,  and X2 be two independent, standard Kiefer processes on 

C[0,1]2,i.e.EXi(s,t)=O(O~s,t~1)andEXi(s,t)Xi(s',t~=t(1-t')x 
rnin(s, s3 (0 G t ,  t' 6 1, 0 < s, st < 1). For each 0 < 1 d 1, FH; and GH; 
are monotone and hence a, (t) = (FH; I)' (t) and b, (t) = (GH; l)' ( t )  exist a.e. 
with respect to t and satisfy a, 2 0, b, 3 0 and Aa,+(l -A)b, = 1. We now 
Put 

(9.5) -4 (I.? s, t) 
I 

! 

i 
= (1 -a 0 - 3  s)) h*(r,d (t) =fl (r ,  FHii,f,, (0) - 2 (r? $1 a,,,, s 2  (3, GH,(,ts, (0) 

1 for all (r, s, t )  E E x [O ,  I ] ,  where a, and b, are defined. (Note that integrating 
over A with respect to dh yields a random variable with the same distribu- 
tion as in (4.2) provided h~ 2.) For the hypothesis of the next' theorem 
compare section 8. 

THEOREM 9.1 [18]. Suppse that, for every 1 E [0, 11, FH; is digerentiab- 
le in the open interval (0, 1) and that, for some 0 < I ,  < 1, a,, has a 
continuous extensioh on [O, 11. Then: 

(a) for any q~ Q, A is D, (E x [0, I]) - measurable and has continuous 
paths ; 

(b) AN converges weakly in (D, (E x 10, 1 J), d,) to A, provided q E Q. 
It is clear that A is a Gaussian process and its covariance structure is 

easily deduced from its definition. 
Let h~ i% and denote by d lhl the total variation measure of h. Let q~ Q 

such that J qd JhJ < a,. Then every f E D, (E x [0, 11) is integrable with respect 
to d)h( in its last coordinate, i.e., for every (r, S)E E, [ I f  (r, S, t)l d jhl (t) < co. 

The map I,: D,(E x [0, 11) +D(E),given by I,(f)(r, s) = Jf (r, s, t) dh(t), 
is, continuous and, by (4.2) and (9.3, 
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whenever this is well defined (cf, section 4, i.e. h~ 2 in particular if h is 
absolutely continuous). 

THEOREM 9.2 [IS]. Let  EX and assume that there exists a ~ E Q  with 
Jqd ]hl < cc . Then under the assumptions of Theorem 9.1, SN(h)  converges 

I weakly in ( D ( E ) ,  6) to Z(h) given in (4.1). 
I 

If h can be written as a difference h, - h, of two monotone functions 
I satisfying 

(9.7) 
- 112 + q  

lhil < K(t(1 -[)I 

for some K > 0 and q > 0, then there exists a q~ Q with fq(t)dlhl ( t )  < m. 
Formula (9-.7) is not necessary to guarantee the existence of such a 

.. , function ~ E Q  as remarked in [Is]. But not all functions h = h, -h2 with 

satisfy the above condition on q. This is one extension of Theorem 9.2 by 
Theorem 8.2. On the other hand, since we do not depend 'on the weak 
convergence of the two -sample sequential empirical process (9.4), we do not , 

need the stronger assumptions on the differentiability in Theorem 9.1 for 
proving Theorems 8.1 and 8.2. Finally, we would like to remark that 
Theorem 5.1 seems to be completely new. 

Pyke and Shorack [16] have shown that SN(h,  m,, n,) converges to a 
normal N(0, a') distribution for some specified aZ if m, and n, are random 
variables satisfying certain conditions. We first give a proof their result, using 
Theorems 8.2 and 7.1. This also extends a result of SchulzePillot [18]. 

THEOREM 10.1. Let m, and n, be integer valued random variables ( N E W  
satisfying 

(10.1) 0 < mo < m, < . . . Q mN < N, 

and 

- (10.2) lirnN-'mN=AO and limN-ln,-tl-A, 

in probability for some 0 < R, < 1. 
If (h, F) satisfies the assumption of Theorem 8.2 or of 7heorem 7.1, then 

SN(h, mN/N, nN/N) converges weakiy to a normal distribution N(0, a2), where 
a 2  is given by 
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i.e. the limiting distribution is given by Z(h, A,, 1-1,) which is the sum of two 
independent normally distributed random variables. 

P r o  o f. We have N - I  (m,, n,) E E unless mN = 0 or n, = 0, and so the 
limit distribution for S, (h ,  mN/N, n,/N) can be obtained from S,(h) as 
follows. Let $: D ( E )  x E -. R denote the map $ (f, r, s) =J(r7 s). Since, by 
Theorem 8.2, SN(h) -+ Z(h)  weakly in ( D ( E ) ,  d), we obtain (using Theorem 4.4 
of [2]) that 

in (D ( E )  x E, (5 x 1 ) x I). -where 1 I denotes the usual metric in R. 
We observe that $ is continuous (with respect to this metric) at all 

points f E D (E) which are themselves continuous and all points (r, s,) E (0, 11'. 
Hence 

weakly (in R) by Theorem 5.1 of [2]. Letting c = 1, = r in (4.5) we see that 
Z ( h ,  A,, 1 -Io)  is normally distributed. The variance is explicitly given there. 

In order to prove an invariance principle in the situation of the last 
theorem we need a bit stronger assumptions. 

THEOREM 10.2. Under the assumptions of Theorem 10.1, replacing (10.2) 
by 

m~ n~ 
- +do and - + 1 - I o  a.s., 
N N 

it follows that S,(h, mI,&N, q,dN) conljerges weakly to a Wiener process 
W with variance given by (10.3). This convergence is in D([O, 11) with respect 
to the zingarm metric. 

Proof. We proceed as in [18]. Define a random function with values in 
by 

(i.e. YN has values in D([O, 11, E), the space of functions v :  [0, 11 -+ E having 
at most discontinuity of the first kind). By (10.4), YN -+ rp a.s. with respect to 
the sup-metric 11 11, in D ([0, 11, E), where q ( u )  = (uA,, u (1 -Ao)). 

Again by Theorem 4.4 in 121 we have 

weakly with respect to the metric 6 x (1 11,. 
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&fine now $ 1  D(@xD(CO,llYE)-tD(CO,ll) by $( .L t ) (u l  

i 
- f ( t l ( u ) ,  r,cu)L where  ED(@, r =(t,, C ~ ) E D ( C O ,  11, E), o G u G 1. 

Unfortunately @ is not continuous at points (S, cp), f E C(E) ,  with respect 
I 
! t o  the uniform metric on D([O, 11) and the metric 6 xi1 ! I r n  on DIE) 

! xD([O, 11, @. However, we can argue as follows. Let  EN be so large that 
r E 0 ~ [ k - l ,  I-k-'1. Define @,: D ( E )  xD( [O ,  11, E)-D([O,  I ] )  b y  

$ ( f ,  t) if {(LO, 11) c El,k, 
k f 7 0 (  otherwise. 

We claim that $, is continuous on C ( E )  x {q). Let f , ~  C(E). Then, given 
E > 0, there is an- Q > 0 such that 

- 8  . 2 ' ,  1 
I sup ( f o ( r , s ) - f 0 ( r f , s 3 1 < ~ / 2  and l / k - ~ 2 - .  

r-r '  <q 
1s-8.1 <a 2k 

(~,$d1/2k 
(r '3s ' )a1/2k 

Now let f E D (E) satisfy' 

sup I f  (rY s) -fo (r ,  s)l < &/2 
(rms)a]/k 

and let 5~ D([O, 11, E) satisfy lit - yll a, < q. Then, if t (10, 11) c El,,, we 
have 

= sup I f  (6 (4) -fo (C (u))I + SUP I f 0  (C (4) -fo ((P (u))l 
O d u S l  O C u S l  

sup If ( r ,  s) -fo (r ,  41 + sup If0 ( r ,  s) -fo (r', s')l < E .  
(r ,s)d l / k  (r,~),(r',s')&~/zk 

ir-s[,]rr-s'l <q . 

On the other hand, if 5 ([O, 11) + El/,, we have 

since y, (u) = (do, u (1 - A,)) E Ell, (because uAo/(uAo + u (1 -1,)) = lo E [k- , 1 
-k-'1). Together with (10.5), we conclude from Theorem 5.1 in [2] that 
I lr , (S~(h) ,  y ~ ) + $ ~ ( Z ( h ) ,  cp) = $ ( Z ( h ) ,  q) for every  EN with A , ~ [ k - l ,  1 
-k-'1 weakly in (D ([0, 11,I) ( 1  ,), where (1 1 1 ,  also is used for the supnorm 

I on D ([O, 11). Note that ( Z  (h), cp)  (u)  = Z (h,  do, u (1 -A0)) will have the 
desired properties because of (4.5). 
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It, therefore, remains to show that for every e 3 0, 

(10.6) l i m G  P ( H $ , ( s , ( ~ ) ,  y ~ ) - $ ( S , ( h ) ,  YN)I~, 2 E )  = 0. 
k - c n  N - m  

This follows from the estimate 

11 such that 
- k + m N + m  

mrun $ [ k - ' , I - k - I ] )  
m [ u ~  + [UM 

m, such that - &[k-l, 1-k- I ]  
k +m m1+ n1 

m 1 such that - $Lk-', 1 - k - ' ]  
m1 f nl 

since m,fl -c I, and n J E  + 1 -;I, as.  
THEOREM 10.3. Let Y, be random variables with vnIues in (0, 2) such that 

Y, -, A, a.s. Then SN(h,  YNr, YNs) converges weakly in (D(E),  6) to the process 
Z ( h ,  A,r, l o s ) ,  ( P ,  S )  EE,  provided ( h ,  F )  satisfies the assumption of Theorem 8.2 
or %orem 7.1. 

Proof.  Again by Theorem 4.4 of [2] ,  we get that (S,  (h),  YN) -. (2 (h),  1,) 
weakly with respect to the metric 6 x 1 1 .  

Define the map $: D(E) x LO, 11 -. D ( E )  by $(f, u)(r,  s) = f (ur, us). 
Clearly, $ is continuous at every point (f, u ) g C ( E )  x [0, I ] .  Our claim 
follows again from Theorem 5.1 in 2 since $ (SN(h) ,YN) ( r , s )  
= sN(h, YNr,  YNs) .  

As in [16], tests for symmetry may be considered as a variation of the 
two - sample problem. Let 5 ,  , 5,, . . . be independent, identically distributed 
random variables with common continuous distribution function n satisfying 
0 < x(0) < 1. Define, for NEN, 

1 if the i-thsmallest of l(l l ,L., l(Nl 
- z ~ , i  = is from a positive 5, 

0 otherwise 

With a,(i), 1 < i < N, as scores, the statistic 

1 
(10.7) TN = - aN (i) Z,, 

Ni='  

serves to test the symmetry of K. 
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In order to write this statistic as a two -sample linear rank statistic, 
define X, (rci) = Cikc,,,(w), 1 < k < m,(w), where i, (m) = rnin i j  i, , (o) 
Itj (w) 2 0) and rn, to) = 101 ti (w) 2 011. Similarly, Y, is defined using the t j  
<O. Let n,(w) = N - m , ( w ) .  The sequences [X,],,l, I Y , j k 3 ,  and [Pkjka1 
are independent, where P, = lEO,,,) o&. The common distribution of the X, 
is given by 

F (x) = n(x)-n(OI, x.&(,, 
l - n ( q  

and that of the &'s is given by 

i.e, the distributions are conditional distributions given 5;  2 0, resp. <, < 0. 
If no = P(C1 2 O), then Fk(k 3 1) are independent and identically distributed 
Bernoulli random variables with parameter no. 

Clearly, ZN,i  = 1 if the i -  th smallest among X,, . . ., X.,, Y,, . . ., Y., is 
an X-observatioa and then i is the rank of that observation. Therefore 

if the scores are given by (2.2) (cf. 2-41, and hence we may study the statistic 

We first prove the following 
LEMMA 10.1. !f (h, F) satisfies the assumptions qf section 8, then 

where an is defined as in (9.9, i.e. a, = (F OH,')' whenever it exists. 
P r o  of. We have 

d F o ~ ; l ( t ) -  F OH,-,' (t) 
-[SFo~;l(t)dh(t)](A~) = lim j 
d l  0 ,+lo 0 A-A. 

dh ( t )  

as in the proof of Lemma 8.2. Hence it suffices to show that, for d (hl almost 
all t. 

FOH,-l( t ) -~o~,- , ' ( t )  - aA, (t) (G o HZ (t )  - F o H;: (t)) . 
A- A, 
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Write 
F O H ; ~ ( ~ ) - F O H , - , ~ ( ~ )  

The first factor converges dlhl a.s. to (F  oH;)'(t) = a,,(t)  and the 
second factor can be written in the form 

H ~ , o W ; ' ( t ) - t  - - O~,-A)F(H;~(~))+(~-A,)G(H,~(~)) 
R - Ro 

-. - -  A -,aq 
= G (H;  ' It)) - F ( H ,  ( 2 ) )  

and converges to G (H; (t))- F (Hi: ( I ) ) )  as i, +A, by continuity. 
The following theorem extends a result of Schulze-Pillot [18]. 

THEOREM 10.4. In the situation described above, Iet (h ,  F)  satisfy the 
assumptions of section 8. Then, the statistics CN(u), defined by (10.8), converges 
weakly in ( D  (LO, 1 I), 11 I ) , )  to the process 

where W denotes a standard Brownian motion independent of Z (h), which is 
defined in (4.1). 

Proof. We will proceed as in the proof of Theorem 10.2. D e h e  the 
random functions Y,(uj = ( q , d N ,  q,dN) as before and write 

and 

I N ( ~ )  = 0 if AN(u) = x0 (0 < u < 1). 

Integration by parts gives 

(1 0.1 1) 



74 M. Denker and M. L. P u r i  

, Let us define the map t,b : D (E)  x D ([0, 11) x D([O, 11, E) x D ([0, 11) 
+D([O, 11) by $(f, g, cp, rl)(u) = f ( ~ l ( u ) ,  cpz(u))+g(~)?(u) for O6ud 1, 
f E D (E), g, q E D ([O, 11) and cp = (rp, , rp,) E D ([0, I], E). Here the difkulty of 
the non-continuity of $J occurs again, but we can proceed as before. 

Let k be so large that no€ [k-l,  1 - k - l ]  and define 

where co (u) = (m0,  u (1 - nd), and 

. By Theorem 8.2 we have S, (h) -+ Z (h) weakly in (h ( E ) ,  6). The strong 
law of large numbers implies that RN(l) + xo a.s., consequently YN - cpO 
uniformly in u a.s. The application of Donsker's theoreq yields V, 

+ Jw W weakly in (D([O, l]), ) I  ll,), and since (P , ] , , ,  is indepen- 
dent of (X,, 1.',: n,  rn 2 I), Wis a standard Brownian motion, independent of 
Z (h). Setting 

the strong law of large numbers and Lemma 10.1 imply that lNvk - yok a.s. 
From Theorems 4.4 and 5.2. of [2] it follows that 

weakly with respect to the metrics 6 on D(B), 11 11, on D([O, 11) and on 
D([O, 11, E). $, is continuous at all points Cf, g, rp,, q) with f E C(E) and g, 
VE C(C0, 11) (cf. the proof of Theorem 10.2). Using Theorem 5.1 of [2], we 
obtain, for 0 < u < 1, 

weakly in (D(CO, 111, I I  tl,). 
Since 

p(llz-z(h, . no, -(l-n*))- J G A G J Y V ~ ( - ) W ( . ) I ~ ,  5 4  

= P (  sup I J w y ( ~ - v , ( u ) ) ~ ( u ) l $ r ) - ~  a s k - m  
0 < u < k - l  

(since Iim W(u) = 0 a.s.), we obtain 
u -0 

h ( ~ ( h ,  . ( l-nd);  J m W  rpo, YV,)+Z. 
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weakly in ( D O ,  I ) ,  1 1 )  and hence it is left to show that 
$k (SN (h) ,  VN, YN, IN vk) - # (SN (h) ,  VN, YN, IN) converges to zero in probability 
with respect to the metric (1 11, on D([O, 11) (cf. the proof of Theorem 10.2). 

Let E > 0. Then 

The k s t  term tends to zero using the same arguments as in the proof of 
Theorem 10.2. Since I - &(u) -. 0 as k + co uniformly on compact sets in 

(0, I), by Lemma 10.1 and by the weak convergence of VN to rl: 
we infer that max VN(u) lN(u) is bounded and - 

.. . . 
max VN ((U ZN (u) -+ 0 as uo --r 0. 
u s u o  

Consequently, the second term tends to zero as well. Therefore 

lim ~ ( l l h ( ~ ~ ( h ) ,  YN, &, I , vk ) -$ (S~(h) ,  %, &, 1 ~ ) l l ~  2 c) = 0. 
k + m N + m  

i 
I This completes the proof of the theorem. 
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