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Abstract. Absolute continuity of measures p,, generated by a 
random field and a Markov stopping set z, is considered. The 
analogue of Sudakov lemma i s  proved. Moreover, with some additio- 
nal assumptions on z, the abthor proves the absolute continuity of 
the measure p, with respect to the measure p,, on the u-algebra F,. 

Results obtained in the paper make it possible to characterize 
efficient (in the sense of Cramer-Rao-Wolfowitz inequality) sequential 
plans for some random fields. 

INTRODUCTION 

Suppose we observe a realization w, E W of the stochastic process X, till 
a random Markov moment r defined on the space of realizations W I  The 
process X, generates in the space W the measure pe depending on the 
unknown parameter 8: 

In papers 181, [I  11, [13], and [I61 it was proved, under some additional 
assumptions, that the distribution m, of the random vector (7, S(z)) is 
absolutely continuous with respect to moo (Sf is a sufficient statistic for the 
parameter 6, defined on the space of realizations w,, S E  [0, t]). It was given 
the form of the density function dm,/dm,,. Moreover, in 131, it was proved 
that -pO is absolutely continuous with respect to p,, on the a-algebra F,. Thus 
(z, S(7)) is sufficient for the parameter 8. These theorems made it possible to 
characterize efficient, in the sense of the Cramer-Rao-Wolfowitz inequality, 
sequential plans for some classes of stochastic processes (see [q, [9], [Ill- 
Elsl, C171, and C181). 

In this paper we consider the problem of sequential estimation for 
random fields. We define a Markov stopping set z (Definition 1) as a random 
compact set on which-we observe the realization w , ~  W of the random field 
Xs, S C R ~ .  It is proved that the distribution me of the random vector 
( p ( ( z l ) ,  Sb)) is absolutely continuous with respect to me, (S(K) is a sufficient 
statistic defined on the set of realizatjons w,, s~ K, where K is a compact set 



contained in R ~ ,  ( T I  is the Lebesgue measure of the set T, and p is some Bore1 
real function). The form of the density function drnddm,, is given (Theorem 

1). Moreover, it is proved {Theorem 2) that the measure p8,  generated by the 
random field X,, is absolutely continuous with respect to pO, on the u -  

algebra F, generated by the Markov stopping set T. The statistic (p(lzl), s(~))  
is, therefore, sufficient for the parameter 0. Although the thesis of Theorem 1 
may be deduced from Theorem 2, they are formulated separately because the 
first theorem is proved with less restrictive assumptions on X and z (without 
conditions ( 5 )  and (6)). Theorems 1 and 2 allow to prove the Cramer-Rao- 
Wolfowitz inequality. Afterwards, we consider the random field of the 
Omstein-Uhlenbeck type, which is a generalization- of the stochastic process 
examined in C11-J. For this random field, using results of Stefanov [15], we 
have proved theorems characterizing efficient sequential plans. 

The problem of efficient sequential plans for a random Wiener field and 
a Poisson field is reduced to the problem of efficient sequential plans for the 
W*ner process and the Poisson homogeneous process. 

In Sections I and II we prove some auxilliary lemmas extending the 
well-known results from the ldimensional time-parameter case to the 2- 
dimensional case, which seems to be new in the sense of Definition 1. 

I. SUDAKOV LEMMA FOR RANDOM MELDS 

Let us consider a random field X,, S E  R2. k t  W be a set of realizations 
of a random field X,. This random field generates the measure p, defhed on 
(W, F), where F is a a -algebra of subsets of generated by the-cylindrical 
sets. 0 E A  c R' is a parameter. 

Let X be a family of compact sets X contained in R2 satisfying the 
following condition: 

) There exists a countable family of compact sets Pi(n) with a diameter 
6 [Pi (n)] -. 0 for n -* oo such that for every K E  X there exists a finite 
minimal unique covering C, of K by the sets Pi(n) for which 

m 

C,+ c C, and n C ,  = K. 
n= 1 

Remark  1. Condition (1) is satisfied if we take , 

Pi(n) = CX;~, xi i+,I  ~ C Y ; ,  Y ~ + I I ,  

By FK we denote a a-algebra of subsets of W generated by the 



cylindrical sets {w: (w( s , ) ,  w  (s,), . . . , w(s,J) EB),  where B EB,, and si G K  
(i = 1, 2? . . . , n). 

p f  is a restriction of the measure /.to to-the a-algebra F,. 
Assume that & is absolutely continuous with respect to the measure do 

and that 

where g is a continuous function; S(K, . )  is a mapping which is F,-  
measurable and, for every nonincreasing sequence of compact sets& L K, 
S(K, ,  w) -, S { K ,  w)  p, a.s. -for- every 8 E A; p is a Bore1 function from R+ into 
R ;  1K1 is the Lebesgue measure of the compact set K. 

Defin i t ion  1 (see [4]). A Markov stopping set T is the mapping z: W 
-. X such that (w: z (w)  G K ) E  FK for every K E  3'". 

Remark  2. Let (a, F) be a measurable space. Fz,  Z E  RZ, is a family of 
sub - u - algebras of F whch satisfy some other conditions specified in [5]  and 
[lo]. These papers define a Markov stopping point as a mapping Z: W 
3 R: u (m) for which {w: Z{o) < z }  E F, ( < is a relation of partial orde- 
ring in R2). If X =  (K , ,  z s R : )  = { [ O ,  z ] ,  Z E R ; ) ,  Fz = FKz and z (w)  

= [0, Z(w) ] ,  then .t is a Markov stopping set [0, z ]  = { s f  R$ : s < z).  

LEMMA 1 .  For every Markov stopping set t t h r e  exists a sequence of 
Markov stopping sets z ,  such that t,, , (w) c t, (w) and z,(w) L T (w). 

P r o  of. Since z  (w) E X for every w E K let z ,  (w) = C, (w), where 
C ,  (w) E X is the unique covering C, E X of the set z (w). Let K E X. We have 

(w: z , ( w ) ~ K } =  u (w: T ( w ) G C , } E F ~ ,  where C , E X .  
C,cK 

Hence t, is a Markov stopping set. By (1) we infer that z,,, (w) c z , (w) 
and r ,  (w) L z  (w)  for every w E W 

LEMMA 2. {w:  Z ,  (w) = C:) EF for every Cf E 3'. 

Proof.  We have 
"," 

LEMMA 3. The mapping S(z(-) ,  .): W +Rr is F-measurable. 
s 

Proof.  Since 



the mapping S ( r , ( . ) ,  a )  is F-measurable. By (2) and Lemma 1 we have 

lim S (zn(w), w) = S(z (w), w )  p8 a.s. for every B E  A. 
n+m 

Remark  3. The mapping 171: W+ R+ is F-measurable. 
For any Markov stopping set T we define the mapping f = (p(lrl), 

S ( T ,  1) and the measure me on (R x R', gR ,,) b y  the formula 

for every BE BU and u = ( p ( u ) ,  s ( u ) ) ~  U = R x Rr. 
THEOREM 1.  The measure m, is absolutely continuous with respect to the 

Pro  of. Let p:, z = 1, 2, . . . , denote the values of the function p(lz,l), and 

We define the measure m:,, by 
I 

m ~ , , ( B ) = m ~ ( ~ n . ( ( p ( u ) , s ( u ) ) :  p ( ~ ) = ~ : ] )  for every B E B ~ ,  

where ml; is the probability measure defined by (3) for the Markov stopping 
set z,. 

We have 

m;,z(B) = C po(lw: ( ~ 2 ,  S(Cn, w ) ) E B )  n I.' n ) .  
C " € l  C n 3 ~ z  

Introducing the function S,: W-t R xRr such that, for every  WE^ 
S, (w) = (p," , S (C,, w)X we get 

where 

11 = S; I @ ]  n YCnpr, 1, = s; (B) n fw :  p(lr,(w)l) = p;) .  
Z 

We, have thus proved that mi,, 4 m;l,,,. Hence 



Sequential estimation 

The theorem is proved for a Markov stopping set t,. 
By (2) we have 

lirn S (zn(w), w) = S(T (w) ,  w)p ,  as.  
n-m 

Let h be a real function defined on the set U. Assuming h to be 
continuous and bounded, by the Lebesgue theorem we have 

~ e n c e  the sequence of measures rn; is weakly converging to the measure 
me, 

Now we use the following lemma (see 181): 
Let rn, be a sequence of probability measures, weakly converging to the 

measure m, and let g ( p ,  s) be a continuous nonnegative function. Then the 
sequence of measure mb, having densities g ( p ,  s) with respect to the measure 
m,, is weakly converging to the measure m' with the density g (p, s) with 
respect to the measure m. 

By this lemma the proof of Theorem 1 is completed. 

11. ABSOLUTE CONTINUITY OF THE MEASURE ON THE a-ALGEBRA F, 

We assume that for every K ,  and K ,  belonging to X, K ,  c K,,  there 
exist an n and a finite minimal covering C,E X of K, by the sets Pi(n) such 
that 

(5)  
and 

(6) {w:  T ( w ) = K } E F ~  for every K E X .  
LEMMA 4. If thefamily X  satisfies (3, then z  is a Markou stopping set if 

and only $ [w:  z  (w) c K) E FK for every K  E A'". 
Proof.  Let z be a Markov stopping set. By (5) we have 

( w :  Z ( W )  c K ]  = U U {w: z (w)  C C , ] ,  
n C , J Y  

where C,  c K ,  {w : z (w) G C,) E Fcn c FK . 
So (w: z(w)  ~ K ) E F ~  for every K E X .  
Now let (w : z (w) c K) E F ,  for every K  E X. Then ( w  : z (w) c C,,) E FC, 

for every C,E X and ( w :  z(w) G K )  = n (w:  Z ( W )  c C,). 
n 

Since Fcn \FK,  we have n ( w :  z (w)  C C , ) E F K .  
1 

6 - Prob. Math Statist. 9.1 



D e f i n i t i o n  2. Let z  be a Markov stopping set. By FT we denote a a- 
algebra of the sets V E  F such that V n  i w :  T ( w )  c K )  E FK for every K E .f. 

LEMMA 5. If the family X satisfies (51, then V E F ,  if and only if 
( ( w :  z ( w )  c K) n V )  E F ~  for every K E .X, 

Proof .  Let V E F , .  We have V n { w :  Z ( W )  G K ) E F ~  for every K E X .  
BY (51, 

v n fw: t ( w )  c K] = V ~ ( U  lJ ( [ w :  5 (w)  G c,))) 
n Cn.X 

= u  U ( V ~ { W : ~ ( W ) E C ~ } ) E F ~ ,  where C n c K .  
. . .. n Cn& 

Now assume that V n  {w : r (w) c K }  E F ,  for every K E X. We have 

vn [w:  T ( W )  E K ]  = V n ( n  ( w :  ~ ( w )  c Cn})  = n ( V n  { w :  z ( w )  c C,)) 
n n 

EF,, F K ,  

hence V n  { w :  T (w)  G K) E FK for every K E X .  
LEMMA 6. Let z be a Markov stopping set and z, be a sequence of Markov 

stopping sets defined as in Lemma 1. I f  the family X salisfies (9, then 
Fr,+l cF;, ,  Fr = flFr,. 

n 

Proof. We have: 

T (w)  G T,,+ (w) G 2,  (w)  for every w G W, 

{w:  zn(w) G K )  G {w: z,+ (w) s K )  for every K E X,  

{ w :  a , ( w ) ~ K ) c ( w :  z ( w ) ~ K }  for every n and K E X .  

Let V E  F,, + , . We have 

-. 
V n  { w :  z,(w) 5 K )  = (vn { w :  zn+,  ( w )  s K )  n { w :  zn(w) c K ) ) E  F K .  

SO VE FTn and Frn + c F,,. 

Let VE F,, which means that, for every K E X, 

V n  f w :  z,(w) G K )  = ( ~ n  { w :  T ( W )  5 K )  n [ w :  r n ( w )  G K ) ) E F ~ .  

Hence, for every n, VE F,, and F, c n Frn. 
n 

Now let V E  0 F,,. We have 
n 

V n  { w :  z ( w )  c K )  = vn(U ( w :  rn (w)  c K ) )  = U ( V n  { w :  T,(w) c K ) ) E F ~ .  
n n 

By Lemma 5 we see that V E  F,. So n FTn c F,  and F, = n Fin 
n n 
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LEMMA 7. Jf T is a Markov stopping set for which (6) is satisfied, then 

v ~ F , = . ( V n { w :  T ( W ) = K ) ) E F ~  for every K E X .  

Proof.  We have V n  (w :  z(w) = K )  = (vn {w: r ( w ) ' ~  K )  n ( w :  ~ ( w )  
= K ) ) E  F,. 

LEMMA 8. If z is  a Markov stopping set, then {w:  T, (w)  = C,} E F,,. 
Proof. Let K E X ,  We have 

{w:  T ~ ( w )  = C,) n {w: z,(w) Y) K }  = {w: zn(w) = C, A C,  s K) 

LEMMA 9. If the family X and a Markov stopping set t satisfy (5 )  and (6), 
then the mapping S(z(-),  -): W+ Rr is  F,-measurable. 

Proof. We will prove that S (t, ( .), . ) is I;,n - measurable. 
Let K E X and x E R. We have 

Now we will show that S ( T ( . ) ,  - )  is F, -measurable. We can assume that 
the a-algebras FK are g-complete CT-algebras for every OE A and every K E 3". 
We have 

= ( ( w :  S(K, w)  < x) n {w: z (w)  = K))W 

u ( ( w :  s(z(w),  W )  < X) n { w :  z (w)  c ~ 3 ) .  
By (6) and FK-measurability of the mapping S(K, .) we infer that 

{w:  S(K, w) < x) n (w:  z(w) = K)€FK.  

Since S (zn(w), w )  - S (t (w), w)pB a.s. as n -+ cc , there exist sets Cs and 
D, c W of the measure p, equal to zero such that 
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Hence 'HI: S ( T ( W ) ,  w) < x{ n Iw: r ( w )  c K )  € F x  if and, only if 

But 

S (T, ( . ), . )  being Frn - measurable. 
By p: we denote the restriction of the measure p, to the 0-algebra F,. 
THEOREM 2. Assume that for euery K E  X the measure pf is absolutely 

continuous with respect to the measure ,u& and that 

where g is such rhat, ,for every nonincreasing sequence K ,  L.K ( K , ,  K E  .X), 

If T is a Markov stopping set satisfying (5 )  and (6), then pi is absolutely 
continuous with respect to pi, and 

Proof. First we prove that 2 G ,u& We have, for every B E F , , ,  

p 2 ( ~ )  = p , " ( ~ n  { w :  7,(w) = C , ) )  
CH6f 

where I, = B n ( w :  z,(w) = C,). Therefore 

Further we use Dohler's idea [3]. Let us define the sequence (< -,, F,,) 
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= (d$'/d&, F,,) This sequence is a martingale. Since 

Em EPoo c-, = 1 > - m, 
n+m 

we see that d y ~ / d p ~  is coverging in L, and with probability 1 (see 171). By 
the assumptions on g we infer that 

42 lim - 
n+-  dP% = g b ,  ., 0, 80). 

Looking at g (z ( ,), -, 0, 8,) as S (s ( .), .), we conclude from Lemma 9 
that g (z, -, 0, UO) is F,-measurable, which gives the thesis. 

Remark 4. The thesis -of Theorem 1 may be obtained as a consequence 
of Theorem 2, but Theorem 1 is proved with less restrictive assumptions on 
X and t (without conditions (5)  and (6)). Therefore we have formulated both 
these theorems separately. 

In. THE CRAIMER-RAQ-WOLFOWITZ INEQUALITY 

In this section we assume that, for every K E  .X, yt -4 pf0 and that the 
density function takes the form (2). 

Def in i t ion  3: Let h: A -- R, h f const. An estimator f of the parameter 
h(0 )  is a function f: U -- R which is a,-measurable. 

Remark 5. Theorem 2 implies that the random vector (p(lzl), S(z)) is a 
sufficient statistic and we can restrict ourselves to estimators f being only a 
function of u. 

Defin i t ion  4. By a sequential plan we call the pair (r, f (p (lrl), s(T))), 
where T is a Markov stopping set and f (prlrl). Sfr)) is an estimator of the 
parameter h (9). 

THEOREM 3. Let (r, f (p(lzl), ~ ( z ) ) )  be a sequerltial plan, where f ( /~(lr l l ,  
S (TI) is an ur~hiased e.~tirl~aror for [he fiinction h (0) i.e. 

We also assume that the density function g(u, 0, 0,) sarisfies some reyirllr- 
riry conditions which guarantee the following equalities: 

Then 
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Equality in (11) holds at some 0 jf and only if 

where Vg is a gradient with respect to 8, V(u,  8) = VB(ln g ( u ,  8 ,  00)) is a 
uector-row, l (0)  = E, V* ( - , 8) V (  . , B), and * denotes the transposition of a 
matrix. 

The proof of this theorem, being analogous to that in [I], is omitted. 
Defini t ion 5.  A sequential plan ( T ,  f (p{trl), S(z ) ) )  is said to be ef$cient 

m 0 if (12) holds at this 0. 
- Defin i t ion  6. A sequential plan (T, f I p  (Jrl), S (r))) is efficient for 0 G A 
if (12) holds for all B E  A. In this case the estimator f is called eflcient, and 
the function h(B) - eficiently estimable. 

BV. EFFlCIENT SEQUENTIAL PLANS FOE RANDOM FIELDS 
OF THE ORNSTEIN-UNLENBECB TYPE 

Let X(t,, t,), t , ,  t2 2 0, be a homogeneous Gaussian random field with 
the mean value 8 and correlation function 

The measure generated by this field is denoted by po. This measure is 
defined on the space (W, F), where W is the set of continuous functions w 
defined on R$ . 

By K, we shall denote the rectangle [0 ,  t] x [0, t ] ,  t 2 0.  
The measure 2 is absolutely continuous with respect to the measure 

g# for 8, = 0 and in [19] it is derived that 

where 
t 

S(K,, w) = w(0 ,  O)+w(t, O)+w(O, t ) + w ( t ,  t ) + a J w ( u ,  O)du+ 
0 

I t t t t 

+a S W ( U ,  t )du+Bjw(O, v ) d v + f l [ w ( t ,  ~ ) d v + a B J J w ( u ,  v)dtrdv. 
0 0 0 0 0 

Further, we assume that X ( , 0, 0) = 0 with probability 1. Under this 
condition the random variable X ( t ,  , t,) has the normal distribution 

The considered random field generates the measure p, on the space 
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(W, F), where W is the set of continuous functions w defined on R:, for 
which w (0, 0) = 0. 

It is easy to see that the measure p? is absolutely continuous with 
respect to the measure pf; for 0, = 0 and the density function takes the 
form 

where 

Remark 6. If this random field varies along one axis only, then it is 
identical to the process considered in [ll]. 

Let X' = { K , ,  t 3 0). By F we denote the class of Markov stopping 
sets z with respect to the family of c-algebras {F,,),>,. Let us observe that 
the Markov stopping set t must not be defined by (S(K, ) ,  p(lK,()) only. 

Our aim is to examine the properties of efficient sequential plans 
(.?f ( ~ ( 1 . 1 ) ~  ~ ( 4 ) )  for ~€9- 

IV.1. The Wald identities. We assume that the function $: U x A -+ R, 
% -integrable for every 8 E A, satisfies some regularity conditions which 
guarantee that 

We then have 

If $(p(lrl), S(.r), 0) = 1, we get the first Wald identity: 



. i., 

% 7: 

., ' 

Let . 

Then 
2 '  

(18) ~ ( d  - BP O ~ I ]  = E. P (irl). 

Let $ (p(t.rI), Sb?, e)  = S ( T ) .  Then 

So we have 
d 

(203 Var,S(r) = 16Eep(lzl)+328-Eep(lrl)+ 1602 Varep(lz l ) .  
d0 

Putting $ (p(l.tJ), S(z), 0) = p(lzl), we obtain 

IV.2. Properties of efficient sequential plans. By Theorem 3 and formula 
(18)  we have 

This inequality becomes equality at some 8 if and only if 

f (u)  = k (0) - s (u) - 8 p  (u) + h (8) mo as., 6 I - .  

where k (8)  # 0. 
THEOREM 4.  I f  a sequenriaI plan (r, f (p(jzl), S(z)),  r~ Y, is efficient at 0 , ,  

then there exists a constant k ,  such that 

(24) h(8) = kl ( 8 - 8 , ) E , ~ ( l ~ l ) + h ( ~ 1 ) .  

Proof. By (23) we have 

Taking the expected value E, and using (17) we obtain the thesis. 
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THEOREM 5. If a sequential plan (T, f (p(lrl), S(T)), z E Y, is efJicient, then 
there are constants al ,  a2, and a3 such that 

where a: + a: # 0 and a3 # 0. 
Proof.  If a sequential plan (z,f(p(lzl), S(T)) is efficient, then it is 

efficient at some 0, and 8,. By (23) the following equalities hold: 

Subtracting one equality from the other, we obtain 

which gives the thesis. 
Let GKt denote the u-algebra generated by the process 

( S  (Kt,), P(IK,I)), at - Evidently, G K l  F K ~ .  
By 59 we denote the class of Markov stopping sets with respect to the 

family of a -algebras \GK,]t,O. Using the same arguments as in [17] and 
[15], we obtain the following 

COROLLARY 1. If a sequential plan ( ~ , , f  (p(lrl), ~ (z ) ) ) ,  r g  .F, satisfying 
regularity conditions (which guarantee the Wald identities), is efficient, then 
T E  ?7 and the measure m, is accurnularal on the line (25) .  

Let 

t, = inf lt : p((K,I) 2 r) and (S,, G., PO)~>O = (S (Kt), GK+, PO). 

The process (S,, G,, pClg),20 belongs to  the exponential class of processes 
considered in [15], where a full characterization of efficient sequential plans 
for this class of process was given (Theorem 2). Since p(lK,I) is a strictly 
increasing function of r, we see that the analysis of the efficient sequential 
plans (T; f (p(lr~), S(T))), T E  9, is equivalent to the analysis of the efficient 
sequential plans for the process (S,, G,, po). Therefore, we can use the 
mentioned result of Stefanov [15]. 

Def in i t ion  7. We say that (z, f ( P ( ~ ~ ~ ) ,  s(T))) is a simple plan if z(w) 
= Kt for almost all w E W 



Defini t ion 8. We say that (-ro,f(p(~z,~), S(2,))) is an  oblique plan if 

for almost all w E W with respect to pO.  

Defin i t ion  9. We say that (r.,, f ( p  (lrx,l), S ( r , ~ ) )  is an inverse plan if 

z,, (w) = min (Kt E X :  S ( K t ,  w) = x0} 

for almost all w E M! 
LEMMA 10. I f  B = 0 and 5 y  < 0, then p0 ((J (w: z,, (w) = Kt)) = 1. 

1 

Proof.  We introduce the Markov stopping time z,,,: 

zlVo (w) = inf (r: S(K,, w) = yp((K,1) + 6 )  for almost all w E W. 

We consider only the case 6 > 0 and y < 0 (the second is analogous). 
We have 

Simple but uphill calculations lead to the conclusion that the random 
variable S(Kt, .) has the normal distribution with E, S (Kt)  = 0 and 
Var, S ( K t )  = 0 (t". Thus 

which completes the proof. 
LEMMA 11. I f 6 = 0 ,  then pO(U (w: T,,(w)=K,))= 1. 

t 

Proof.  Let T,,,~(W) = id (t: S(Kt, w) = x,] and xo > 0. We choose the 
sequence y, I 0, as n +a. zlro we denote the Markov stopping time: 

We have, for all w E W T;,, (w) < z;L1 (w) and lim T:,~ (w) = rl, , ,  (w). 
n+m 
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By Lemma 10 we have p, ({w: (w)  < a)) = 1. Hence 

= p o ( n  {w: z:,~(w) < a)) = lim po({w:  T:,~(W) -= a)) = 1. 
n n-+m 

Thus Lemma 11 is proved. 
Let T,,, (w) = inf ( r :  S, (w) = yr+ 61, r,,,, (w) = inf { r :  S,(w) = xo) .  
By previous considerations and the mentioned result of Stefanov [15], 

we can formulate the following corollaries. 
COROLLARY 2. I j  a sequential plan ( r ,  f (p(lzl), Sls))), T E  F, is eficient, 

then thme exist constants a,, a,, bl, and b2 such that h(I3) =(a1 B+a2)/(b, B 
+b,) is efFciently estimab-le'function for this plan. 

COROLLARY 3. I3 # 0 and d (40-y) > 0, then Ee(~,I2 < m and the 
regularity conditions, guaranteeing the Wald identities, hold. 

COROLLARY 4. If I3 # 0 and x, 0 > 0, then E, 1 ~ , , 1 ~  < 00 and the regularity 
condition% guaranteeing the Wald identities, hold. 

COROLLARY 5. A simple plan is eficiant. 
Indeed, f (~(Itl), S (9) = a s  (Kt)  + b, (4) = 4 ~ 0 ~  ((Kt11 + b, var, f ( p  (lKtl)Y 

s tKJ) = 16aZ p(IK,I)- 
COROLLARY 6.  An oblique plan is efficient. 

COROLLARY 7. An inverse plan is $$dent. 

) Indeed, f(B(!'d). S (r.d) = up (bxol) + b, h (8) = ax0/4d + h Var, f(p.(lr,,l), 
S (T,,)) = a2 x,,/4e3. 

TV3. Sequential plam efficient at a given value 8,. By the previous 
theorems, the sequential plan (7, f (p(lzJ), S (T))) is efficient at a given value 6, 
if and only if 

and if the function h(6) is efficiently estimable at 81, then h(0) = k1 (8 
-01)Ee~(l~I)+h(el). 
' 

Consider the cIass of all sequential plans, efficient at 81, for the function 
h(8) for which-E,p((z() is the same. We denote this class by 8,. So, if the 
sequential plan (T, f (p(lrf), s(T))) belongs to go, then 



By (17) -(19) we have 

Var, f (PII~).  3 (TI)) 

For all plans ( r ,  f ( P ( ~ ~ l ) ,  s(T))), belonging to go, the constants A and B 
are the same. So we can say that the smaller at 0 is Var,p(lrl) the better is 

. the plan (t, f (p(lr(), S (t))) belonging to go, because the variance at d of the 
estimator f (p(lzl), S ( r ) )  is then getting smaller. 

V. EFFICIENT SEQUENTIAL PLANS FOR W31SSON AMP WIENER FIELDS 

Def in i t ion  10. Let be a family of bounded Borel subsets of RZ. 
Assume that the family {N{A) ,_ ,  } of random variables has the following 

R Z  properties: 
1" for an  arbitrary set of disjoint bounded Borel subsets Al, AZ, . . ., A, 

of R2 the random variables N(A,), NIA,), .. ., N(A,)  are independent; 
2" P ( N  (A,)  = k) = {A IAil)k exp(-I IAil)/k!. 
Nc = N ( K z )  is called the Poisson rand0rn.fieh.l if K, = [O, tl] x [O, t 2 ]  for 

any 1 = (t,, t , ) ~ R t .  
Def in i t ion  11. Assume that the collection of random variables 

( W{A) b \ has the following properties: 
z 

1" for an arbitrary set of disjoint bounded Borel subsets A,, A,, . . ., A, 
of R2 the random variables W(A, ) ,  W(A,), ..., W(A,) are independent; 

2" the random variable W(A) is normally distributed with EW(A) = 0 
and E w 2  ( A )  = 1 At .  

Then = W(K,), Z E  R:,  is called the Wener ranclnrn ,field. 
Let .X be the family of the squares K, c R2, with /K,I = V .  In this case 

Nu = N(K, )  is the homogeneous Poisson process and W, = W(K,)  is the 
Wiener process. With the same arguments as previously, the problem of 
characterization of efficient sequential plans for the random Poisson field and 
the Wiener field can be reduced to the problem of efficient sequential plans 
for the homogeneous Poisson process and the Wiener process. 
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