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SEQUENTIAL ESTIMATION IN RANDOM FIELDS

BY
ROMAN ROZANSKI (WRoCLAW)

Abstract. Absolute continuity of measures p,, generated by a
random field and a Markov stopping set 7, is considered. The
analogue of Sudakov lemma is proved. Morcover, with some additio--
nal assumptions on 7, the author proves the absolute continuity of

. the measure y, with respect to the measure y, ) on the o-algebra F..

Results obtained in the paper make it possible to characterize
efficient (in the sense of Cramer-Rao-Wolfowitz inequality) sequential
plans for some random fields.

INTRODUCTION

Suppose we observe a realization w,e W of the stochastic process X, till
a random Markov moment 7 defined on the space of realizations W. The
process X, generates in the space W the measure p, depending on.the
unknown parameter 6. '

In papers [8], [11], [13], and [16] it was proved, under some additional
assumptions, that the distribution m, of the random vector (z, S(z)) is
absolutely continuous with respect to my (S, is a sufficient statistic for the

paratheter 0, defined on the space of realizations w,, s [0, t]). It was given
the form of the density function dme/dm,,. Moreover, in [3], it was proved

that -u, is absolutely continuous with respect to Hg, ON the c-algebra F,. Thus

(v, S(1)) is sufficient for the parameter 6. These theorems made it possible to
characterize efficient, in the sense of the Cramer-Rao—Wolfowitz inequality,
sequential plans for some classes of stochastic processes (see [6], [9], [11]}
[15], -(17], and [18]).

In this paper we consider the problem of sequential estimation for
random fields. We define a Markov stopping set 7 (Definition 1) as a random
compact set on which.we observe the realization wy,e W of the random field
X,, seR% It is proved that the distribution m, of the random vector
(p(rl), S(v)) is absolutely continuous with respect to m,, (S(K) is a sufficient

statistic defined on the set of realizations w,, se K, where K is a compact set
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contained in R? |1| is the Lebesgue measure of the set 7, and p is some Borel
I real function). The form of the density function dmg/dm,, is given (Theorem

! - 1). Moreover, it is proved (Theorem 2) that the measure yu,, generated by the
i random field X, is absolutely continuous with respect to p,, on the o-
|
|
|
|

algebra F, generated by the Markov stopping set . The statistic (p((z[), S(z))

is, therefore, sufficient for the parameter 6. Although the thesis of Theorem 1

may be deduced from Theorem 2, they are formulated separately because the

first theorem is proved with less restrictive assumptions on 2 and t (without

conditions (5) and (6)). Theorems 1 and 2 allow to prove the Cramer—Rao—

Wolfowitz inequality. Afterwards, we consider the random field of the

‘ Ornstein—-Uhlenbeck type, which is a generalization- of the stochastic process

ol : examined in [11]. For this random field, using results of Stefanov [15], we

o have proved theorems characterizing efficient sequential plans.

The problem of efficient sequential plans for a random Wiener field and

. a Poisson field is reduced to the problem of efficient sequential plans for the

Wigner process and the Poisson homogeneous process. ’

In Sections I and II we prove some auxilliary lemmas extending the

well-known results from the 1-dimensional time-parameter case to the 2-
dimensional case, which seems to be new in the sense of Definition 1.

I. SUDAKOV LEMMA FOR RANDOM FIELDS

l
! Let us consider a random field X,, se R% Let W be a set of realizations
| of a random field X,. This random field generates the measure u, defined on
(W, F), where F is a g -algebra of subsets of W, generated by the-cylindrical
sets. €A < R' is a parameter.
Let 2 be a family of compact sets K contained in R? satisfying the
following condition:

(1) There exists a countable family of compact sets P;(n) with a diameter
0 [P;(n)] — O for n— oo such that for every Ke 5" there exists a finite
- minimal unique covering C, of K by the sets P;(n) for which

Cn+1 o= C" and n Cn = K.

n=1

Remark 1. Condition (1) is satisfied if we take

P;(n) = [xt':ia x;c'i+ ] X[y?;- .V?i+ 11,

kL
(g, v = (2— 2—) ki =0, £1, +2, ... (i=1,2,...).

i By Fx we denote a o-algebra of subsets of W generated by the
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cylindrical sets {w: (W(s;), w(sy), ..., w(s,)) €B}, where Be%,, and s €K
i=12,...,n). B

U is a restriction of the measure yu, to the o-algebra Fy.

Assume that ug is absolutely continuous with respect to the measure u{,‘o
and that

duy
dug,

(2) = g(p(IKl)s S(Ks W)J' 07 90)!

where g is a continuous function; S(K,-) is a mapping which is Fg-
measurable and, for every nonincreasing sequence of compact sets. K, ™K,
S(K,, w)— S(K, w) uy a.s. for-every 8e A; p is a Borel function from R, into
R; |K| is the Lebesgue measure of the compact set K.

Definition 1 (see [4]). A Markov stopping set t is the mapping 7: W
— A" such that {w: t(w) = K}eFy for every Ke X"

. Remark 2. Let (2, F) be a measurable space. F,, ze R?% is a family of
sub - ¢ -algebras of F which satisfy some other conditions specified in 5] and
[10]. These papers define a Markov stopping point as a mapping Z: Q
— R3 U {0} for which {w: Z(w) <z}eF, (< is a relation of partial orde-
ring in R?). If A ={K,, zeR%}={[0,z], zeR%}, F, = Fg_ and 1(w)
= [0, Z(w)], then 7 is a Markov stopping set [0, z] = {seR%: s < z}.

LemMma 1. For every Markov stopping set t there exists a sequence of
Markov stopping sets t, such that t,.,(w) c 1,(w) and 1,(W) ~T(W).

Proof. Since t(weA for every weW, let t,(w)=C,(w), where
C,(w)e A is the unique covering C,c A of the set 7(w). Let Ke 4. We have

{w: ,W<csK}= U {w: t(w) =C,}eFg, where C,e A
C,cK

Hence 7, is a Markov stopping set. By (1) we infer that t,,, (W) = t,(w)
and t,(w) ~t(W) for every we W.

Lemma 2. {w: 7,(w) = CJ} €F ., for every CJe X.
Proof. We have "
{w: 7,(w) =C}}
=(fw:tw) =CHn N {w: t(w) §C,})eF 0, where C, = CY.
e C"E‘x’ n

Lemma 3. The mapping S(z(-), *): W = R" is F-measurable.
Proof. Since

S(‘L',,(W), W) = Z S(Cm W) l{w:t”(w)=(,;n}(w)s

CpeX’
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- the mapping S(t,(-), ) is F-measurable. By (2) and Lemma 1 we have
lim S(z,(w), w) = S{t(w), W)y as. for every BeA.

Remark 3. The mapping |7]: W— R, is F-measurable.

For any Markov stopping set © we define the mapping f = (p(lz]),

S(z,)) and the measure m, on (R xR', B, ..) by the formula

3) ma(B) = el {w: (p(ItW))), S (z(w), w)) €B)
for every Be #y and u = (p(u), s(u)}e U = R xR".

THEOREM 1. The measure my is absolutely continuous: with respect to the
medasure Mg, and~ " |

4

dmy
dmg,

Proof Let p?, z =1, 2, ..., denote the values of the function p(|z,|), and
I:,'n,pn = '{W: T,,(W) = Cn A p(ITn (W)I) = p:}
We define the measure mg, by ,
mg.(B) = m3(B ~ {(p(u), sw): p(u)=p?}) for every Be By,

where myj is the probablhty measure deﬁned by (3) for the Markov stopping
set 7,

We have
m&z B) Z Ho (st S(Cm W))EB n YC )

CpeX’ n.p,

() = g(p(u), s(u), 8, By).

Introducmg the function S,: W— R xR" such that, for every weW,
S,(w) = (p2, S C,,, w)), we get

mﬂz B) Z #0( B) M Y n) = Z f (pu S(Cm W))dﬂoo(w)

CpeX Pz CpeX' I
= _‘ Q(P;a S(T,,(W), W))dﬂ()o (w) = Ig pi s, 0, Ho)dmao,z,
I, B

where

L=S'"B)NY, » T=5"B)n w: p(r.w))=pl}.

p»
We, have thus proved that mj, < mg, .. Hence
my(B) = Y. my(B " {(p, 5): p = pl}) =Y m.(B)

=Y [g(el, s, 0, Bo)dmy, . = [g(p, 5, 0, Oo)dm,.
z B B
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The theorem is proved for a Markov stopping set t,.
By (2) we have

lim S(z,(w), w) = S(z (W), w)e as.
Let h be a real function defined on the set U. Assuming h to be
continuous and bounded, by the Lebesgue theorem we have
lim [ h@)my(du) = im | h(p(ra(w)), S(ta(w), w))dptg ()

n—oo 7 n—+o W

= [BITO)), Sz (), w)dug(w) = [ () mq(du).

Hence the sequence of measures m§ is weakly converging to the measure
my.

Now we use the following lemma (see [8]):

Let m, be a sequence of probability measures, weakly converging to the
measure m, and let g(p, s) be a continuous nonnegative function. Then the
sequence of measure m,, having densities g(p, s) with respect to the measure
m,, is weakly converging to the measure m’ with the density g(p, s) with
respect to the measure m. -

By this lemma the proof of Theorem 1 is completed.

II. ABSOLUTE CONTINUITY OF THE MEASURE p, ON THE ¢-ALGEBRA F,

We assume that for every K; and K, belonging to ¢, K; c K,, there
exist an n and a finite minimal covering C,e 4 of K; by the sets P;(n) such
that

) K, =C, K,
and
(6) {w: t(w) =K}eFx for every Ke A"

LemMA 4. If the family A satisfies (5), then T is a Markov stopping set if
and only if {w: 1(w) =« K}eFg for every Ke XA
Proof. Let = be a Markov stopping set. By (5) we have

witw ek} =U U {w: tw) G,
n Cpedt

where C, <K, {w: t(w) =C,} eF¢, < Fx.

So {w: t1(w) = K}eFy for every Ke X
Now let {w: 7(w) = K}eFi for every Ke . Then {w: 1(w) = C,}e F¢,
for every C,e A and {w: t(w) =K} = N {w: t(w) = C,}.

Since F¢, \Fg, we have (\{w: 1(w) = C,} e Fx.

6 — Prob. Math. Statist. 9.1
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Definition 2. Let t be a Markov stopping set. By F, we denote a o-
algebra of the sets Ve F such that Vn {w: 7(w) = Kl e F for every Ke ¥

LEMMA 5. If the family A~ satisfies (5), then Ve€F, if and only if
(fw: t(w) €K} " V)eFg for every Ke X

Proof. Let VeF,. We have V n{w: t(w) < K} eFy for every Ke X"
By (5),

Vaiw: tw) e K} =V (U U (Iw: t(w) =C}))

n "E

= U U (Vniw: t(w) =C,})eFx, where C, K.

Now assume that Vm {w: 1(w) € K}e Fg for every Ke A#. We have
Voiw: t(w) €K} = Vr\( w: t(w) e C }) (Vn w: t(w) < C,})
EFC,, N Fy,

hence Vo {w: r(w) c K}eFg for every Ke A'.

LemMMA 6. Let © be a Markov stopping set and 7, be a sequence of Markov
stopping sets defined as in Lemma 1. If the famzly A~ satisfies (5), then
Frpry ©Fep Fo=(\F,.

Proof. We have

T(W) S Tpr1 (W) S T,(W) for every we W,
{w: r,,(\&) EK} c{w: 1,4,(w) =K} for every Ke A,
fw: 7,(w) =K} = {w: t(w) <K} for every n and Ke A" .

Let VeF, , . We have

Vaiw: 1,(w) €K} =(VAi{w: 1,0, (W) €K} 0 {w: 1,(w) = K})e Fy.

So VeF, and F,  CF, .

Let Ve F., which means that, for every Ke .%,

Va{w: t(w) = K}eFg,

voiw: t,(w) =K} =(Vn{w: t(w) =K} n{w: 1,(w) = K})e Fy.

- Hence, for every n, Ve F, and F, = (\F, .

Now let Ve(\F, . We have

Vaiw: t(w) = K} = V(U {w: 1,(w) = K}) = UV {w: 7,(w) cK})e Fy.

By Lemma 5 we see that VeF.. So \F, cF; and F,=(\F, .
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Lemma 7. If 7 is @ Markov stopping set for which (6) is satisfied, then
VeF,=(Vn{w: t(w)= K‘)eFK for every Ke XA'.
Proof. We have Vn{w: t(w) =K} = (Vo {w: t(w) =K} n{w: t(w)
= K})EFK
LemMma 8. If 1 is a Markov stopping set, then {w: t (w) ,,}EF,R.
Proof. Let Ke . We have

w: ,w)=C,} n{w: 1,(w) =K} = {w: 1,(w) =C, AC, =K}

- _{(b if C,¢K,
-~ lw: 1,w) =C,}eF, if C,=K.

LemMA 9. If the family A and a Markov stopping set t satisfy (5) and (6),
then the mapping S(z(-),"): W— R" is F.-measurable.

Proof. We will prove that S(z,(-), -) is F, -measurable.

Let Ke " and xe R. We have

(w: S(z,(w), w) < x}n{w: 1,(w) =K}

= U_(fw: (a0, W) <x} bz 5,0 = G (o 5, 0) S K}

n

= U {w: S{t,(w), w) <x A 1,(W) = C, A1,(W) =K}

Cn

I

U {w:. S(ta(w), w) <x A 7,(w) =C,}
=( U {w: S(C,,w) <x}niw: 1,w)=C,})eFx, C,<K.
et

Now we will show that § (z(*), -) is F,-measurable. We can assume that
_ the o-algebras Fy are g-complete g-algebras for every 0e A and every Ke £
We have

w: S(t(w), w) <x}n{w: t(w) =K}
= ({w: S(K, w) <x}n{w: 1(w) =K})u
U (fw: S(z(w), w) <x}n{w: 1(w) = K}).
By.(6) and Fg-measurability of the mapping S(K, -) we infer that
{w: S(K, w) <x}n{w: t(w) =K} eFyg.
Since S(z,(w), w)— S(t(w), w)up as. as n— oo, there exist sets C, and

Dy < W of the measure y, equal to zero such that

fw: S(t(w), w) <x}uD,=UU N {w: S(ta(w), w) < x——ll-}u C,.

1 Nn>N




84 R. Rézanski
Hence ‘w: S(t(w), w) <x}niw: t(w) « K}e F if and only if

yun %w: S(t,(w), w) <x—1’}n fw: T(w) = K] €Fyg.
I .

N n>N
But
Uu {w: S(ta(w), w) <x—1}n {w: 1(w) = K} eFg.
! Nn>N R |
= UU {W: S(Tn(w), W) <x—£}mu n :W TH(W) CI(}L
I Nn>N ) l Nn>N

1
= (U U {w: S(t.(w), w) < x——l} N iw: 1,(w) K})EFK,
! Nn>N [T
S(t4(+), *) being F, -measurable.
By up we denote the restriction of the measure g, to the s-algebra F..
THEOREM 2. Assume that for every Ke A" the measure ug is absolutely
continuous with respect to the measure ugo and that

dugy
duf

6o

(7) (W) = g(K’ w, 0, 60):

where g is such that, for every nonincreasing sequence K, ~\K (K,, Ke X,

hm g(Kns "y 95 90) = g(K, y 09.90) “90 a.s.

n—ao0

If v is a Markov stopping set satisfying (5) and (6), then uy is absolutely
continuous with respect to uj, and

dyiy

Hoq, :
Proof. First we prove that te' < ,u;'(']. We have, for every BeF, ,
u'(B)= Y ug"(Boiw: 1,(w) = C,})

CyeX’

(w) =g(z, w, 0, 6,).

(8)

=Y [g(Cpw, 0, 00)duy, = [g(t(w), w. 6, 0)dug,

CpeX I B

where I, = B {w: 1,(w) = C,}. Therefore

) = g (eno), w, 6, 6)
Tn = Tn w F] W, 1) .
dﬂao g 0

Further we use Dohler’s idea [3]. Let us define the sequence ({_,, F.)
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= (dpg"/dpgs, F, ). This sequence is a martingale. Since
lim Euaof,,, =1> —o0,

n—+w
we see that dpug" /du,,0 is coverging in L, and with probability 1 (see [7]). B
the assumptions on g we infer that

lim Th =g(1'-9 T! 0: HO)'

Looking at g(c(+), -, 0, 8,) as S(z(*), ), we conclude from Lemma 9
that g(z, -, 0, 0,) is F.-measurable, whlch gives the thesis. -

Rernark 4. The thesis of Theorem 1 may be obtained as a consequence
of Theorem 2, but Theorem 1 is proved with less restrictive assumptions on
2 and t (without conditions (5) and (6)). Therefore we have formulated both
these theorems-separately. :

IIIl. THE CRAMER-RAO-WOLFOWITZ INEQUALITY

In this section we assume that, for every Ke o, pg < pg, and that the
density function takes the form (2).

Definition 3.Let h: A= R, h # const. An estimator f of the parameter
h(0) is a function f: U — R which is %,-measurable.

Remark 5. Theorem 2 implies that the random vector (p(|7), S(1)) is a
sufficient statistic and we can restrict ourselves to estimators f being only a
function of u. y

Definition 4. By a sequential plan we call the pair (z, f (p(l), S(1))),
where 7 is a Markov stopping set and f(p(|z]), S()) is an estimator of the
parameter h(0).

Tueorem 3. Let (t, f(p(tl), S(1))) be a sequential plan, where f(p(|t)),
S(t)) is an unbiased estimator for the function h(0) i..

Euaf(P(ITD, S(@)=h(0) and Var,,af(p(l‘cl), S(z)) < .

We also assume that the density function g(u, 0, 0,) satisfies some regula-
rity conditions which guarantee the following equalities:

9 - ) [ Volg (u, 8, o)) my,(du) =0
U
(10) Vo {f@)g(u, 0, Oo)my (du) = | f (u): Vo(Ing(u, 0, 8o))my(du).
v v

Then
(n Var, f (p(lzl), S(2) = (Vo(M) I~ (O) (Vo (M)*.
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Equality in (11) holds at some 0 if and only if
(12) )= (VM) I~ (O) V*(u, O)+h(B)my, a.s.,
where V, is a gradient with respect to 0, V(u, 0) = Vy(In g(u, 0, 6)) is a
vector-row, 1(0) = EoV* (-, 0)V(-, 0), and * denotes the transposition of a
matrix.

The proof of this theorem, being analogous to that in [1], is omitted.

Definition 5. A sequential plan (z, f (p(7]), S(z))) is said to be efficient
at 0 if (12) holds at this 0.

Definition 6. A sequential plan ( f(p(), S (r))) is efficient for fe A
if (12) holds for all 6c A. In this case the estimator f is called efﬁc:ent and
the function h(0) — efficiently estimable.

"IV, EFFICIENT SEQUENTIAL PLANS FOR RANDOM FIELDS
OF THE ORNSTEIN-UHLENBECK TYPE

Let X(t,, t,), t;, t; = 0, be a homogeneous Gaussian random field with
the mean value # and correlation function

R((ty, ta, ty+hy, ty+hy)) = exp(—alhy|—B|h,)).

The measure generated by this field is denoted by u,. This measure is
defined on the space (W, F), where W is the set of continuous functions w
defined on RY.

By K, we shall denote the rectangle [0, t] %[0, t], t >

The measure u, is absolutely continuous with respect to the measure

o for 0 = 0 and in [19] it is derived that

dug 62 |
(13) W)= CXP( S(K,, W)——(at+2)(ﬂt+2)),
dllo 8

where

S(K,, w) = w(0, 0)+w(t, 0)+w(0, t)+w(t, ) +o }w(u, 0)du+
. 0

+a_t[w(u, t)du+B}w(0, v)dv+ﬁ_’[w(t, v)dv+o_zﬁ3'_t[w(u, v) dudpv.
V] (/] 0 00

Further, we assume that X(, 0, 0) =0 with probabﬂity 1. Under this
condition the random variable X ({(t,, t;) has the normal distribution

N(6(1 —exp(—alty|—Bltzl), 1—exp(—2xlt;| —2B]t,])).

The considered random . field generates the measure p, on the space
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(W, F), where W is the set of continuous functions w defined on R2, for
which w(0, 0) =

It is easy to see that the measure ue is absolutely continuous with
respect to the measure ye for 8, =0 and the density function takes the

form
d 92

(14) b = exp( S(K,, W)——p(IKtI)),
du 2

where

S(K,, w)y=w(t, )+ w(0,)+w(t, t)+oc'§w(u, 0)du+o i[w(u, t)dﬁ;i-
N 0 (1]

+ﬂtjw(0, u)du—}-ﬁ}w(t, u)du+cxﬁ3'3'w(u, v) dudv,
) 00

atp _af
PUK) =5~ 1+t

Remark 6. If this random field varies along one axis only, then it is
identical to the process considered in [11]. '

Let & = {K,, t >0}. By 7 we denote the class of Markov stopping
sets T with respect to the family of ¢-algebras {FK h=o- Let us observe that
the Markov stopping set t must not be defined by (S(K,), p(K/)) only.

Our aim is to examine the properties of efficient sequential plans

(z. f(p(), S@@)) for teT.

IV.1. The Wald identities. We assume that the function y: U x4 — R,
mg -integrable for every fc A, satisfies some regularity conditions which
guarantee that

d
(15) 2%!]!//(17(“), s(), 0)g (u, 0) mo(du) = f‘—i@(l/'(u, 0)g(u, 9))"10((1_14)-

U

We then have

d
(16)  Egy(p(ich), S(), O)Elng(z’(lfl), 8(x), 6)

d d
=@Eol/f(P(Ffl), S(z), 6)—E del/l( p(it), S(z), 9).

If y(p(zl), S(z), 6) =1, we get the first Wald identity:

‘ 1
7 \ 4 EeS(0) = 0B, p()).
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Let -
b (o, S, 0) = S5ing e, (), 6).
Theﬁ
| 1 3
(18) Eo[ZS(T)—BPGTI)J — Eop(t)).
Let ¥ (p(ltl), S(z), 6) = S(x). Then
19 - E,S@)| }50-00(0) | = G ESO.

So we have

P -
Jp Bop(eh+ 169 Var, p(|))-

Putting ¥ (p(z]), S(1), 0') = p(IrI); we obtain

(20)  Var,S(1) = 16E,p(jt)+ 320

d
(21) Eap(ltl)[ S(1)- 9p(|fl)} 25 Bep (7))

IV.2. Properties of efﬁéienf sequential plans. By Theorem 3 and formula
(18) we have

22 Var, f (p(7l), S(z)) = [E h(ﬂ):l /Eo p([zl)-

This inequality becomes equality at some ‘,9 if and only if
1
(23) fw= k(G)[Zs(u)—Op(u):l+h(0) m, as.

where k(0) # 0.

THEOREM 4. If a sequential plan ( S, S (T)) te T, is efficient at 0,,
then there exists a constant k, such that

(24 h(0) = k; (0—6,)Egp(It)+h(6y).
Proof. By (23) we have

70 = k) §501-0,0 [ 440 m s

Taking the expected value E, and using (17) we obtain the thesis.
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THeoReM 5. If a sequential plan (z, f(p(zl), S(z)), Te 7, is efficient, then
there are constants a,, a,, and az such that

(25) as+a,pw+a; =0 my as.,

where a?+a? # 0 and a; # 0.

Proof. If a sequential plan (z,f(p(zl), S(r)) is efficient, then it is
efficient at some 6, and #,. By (23) the following equalities hold:

fw= k(01>[§s(u)—el p(u)]+h(01),

fw)=k(6,) [45('1)—02 p(w) [+h(6,),

k(0,) # 0, k(8,) # 0.

Subtracting one equality from the other, we obtain

th(k (0,)—k (02))s(u) +(92 k(6;)—0, k(6'1))p(u) +h(0,)—h(0,) =0,

which gives the thesis.

Let Gg, denote the o-algebra generated by the process
(S(K), PUK.)))os,- Evidently, Gy, = Fy,.

By % we denote the class of Markov stopping sets with respect to the
family of ¢ -algebras fo,},;o- Using the same arguments as in [17] and
[15], we obtain the following

CoroLLARY 1. If a sequential plan (z,f(p(zl), S(v))), te 7, satisfying
regularity conditions (which guarantee the Wald identities), is efficient, then
te % and the measure my is accumulated on the line (25).

Let ,
Fr = lnf ft: p('Ktl) 2 1‘} and (Sra Gn .uﬂ)rZO = (S (Kt,.)s GK,ra .“o)

The process (S,, G,, tg),»o belongs to the exponential class of processes
considered in [15], where a full characterization of efficient sequential plans
for this class of process was given (Theorem 2). Since p(|K|) is a strictly
increasing function of t, we see that the analysis of the efficient sequential
plans (v, f(p(tl), S(r))), e %, is equivalent to the analysis of the efficient
sequential plans for the process (S,, G,, ug). Therefore, we can use the
mentioned result of Stefanov [15].

Definition 7. We say that (z, f(p(]), S(v))) is a simple plan if ©(w)
= K, for almost all weW.
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Definition 8. We say that (zo, f (p(7ol), S»('co))) is an oblique plan if
To(w) = min Ky A S (K,, w) = yp{IK/)+6}.

for almost all we W with respect to . _
Definition 9. We say that (‘txo,f(p(l‘txol), S(‘txo))) is an inverse plan if

Teo (W) = min {K, e #: S(K,, w) = Xo}

for almost all we W. _
Lemma 10. If 0 = 0 and 8y <0, then po(U {w: 1ow) =K,}) =1
l Bej)

Proof. We introduce the Markov stopping time 7, 4:
7y.0(w) =inf {t: S(K,, w) = yp(IK,)+ 8} for almost all we W.
Wf; consider only the case 6 >0 and y < 0 (the second is analogous).
We have '
HU(U fw: 1o(w) = Kr}) = ﬂo(’{WZ T1,0(W) < 00})
#o(U {w: S(Ky, w) > yp(Ki)+8}) > po((w: S(Ky, w) > 3p(IKi])+6))

Slmple but uphill calculations lead to the conclusion that the random
variable S(K,,-) has the mnormal distribution with EOS(K,) =0 and
Var, S (K,) = O(t?). Thus

po(fw: S(K,, w) > yp(IKD+35})
3 ( { S(K., w) y[%(oc+ﬂ)t+%raﬁt2]+6})
~ o J/Var,S(K)) J/Var, S(K)
i@ (? [%(a+B)t+%aBr2]+6)
JO@d ’

13 () 05 7o (0) = K > ol s S(K,, W > yp(K)+5Y)

> lim o ({w: S(K,» w) > pp(K))+8}) =

t—a

which _completes. the proof.
LemMa 11. If @ =0, then uo(U {w: t,,o(w) K})=1

Proof. Let 1, ,,(w) = inf {z: S(K,, w) = Xo} and x, > 0. We choose the
sequence y, N~ 0, as n > o0. By 7}, we denote the Markov stopping time:

10(w) = inf{t: S(K,, w) = —7, p(K,)+Xo}.

We have, for all we W, 17 o(w) < 71" (W) and lim 17 o (W) = 7y 5, (W).

n—aw




s
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By Lemma 10 we have po({w: 7,0(w) < o0}) = 1. Hence
uo(U Wi T (W) = K,}) = po(1w: Ty 4, (W) < 0})
= #o(n {w: ] o(w) <0})= f_f‘;ﬂo({w 1]0(W) <w})=1.

Thus Lemma 11 is proved.

Let 75,0(w) = inf{r: S,(w) = yr+0}, 15,5, (W) =inf{r: §,(w) = x,}.

By previous considerations and the mentioned result of Stefanov [15],
we can formulate the following corollaries.

 CoroLLARY 2. If a sequential plan (1: f(p(sh, S(‘L’))) 1€, is efficient,

then there exist constants a,, a,, by, and b, such that h(6) = (a, 0+a,)/(b, 0
+b,) is efficiently estimable” function for this plan.

COROLLARY 3. If 0 #0 and §(40—7) >0, then Egtol? <o and the
regularity conditions, guaranteeing the Wald identities, hold.

CoROLLARY 4. If 6 # 0 and x,0 > 0, then Eqlt,|* < co and the regularity
conditions, guaranteeing the Wald identities, hold.

COROLLARY 5. A simple plan is efficient.
ndeed, (ple)), S() = aS(K)+b, (@) = 4abp(K)+b, Var, £ (K.,
S(K) = 16a” p(IK,).
~ CoroLrArY 6. An oblique plan is efficient.
. Indeed, f(p(tol), S(to)) = ap(ivol)+b, h(6) =ad/46—7y), Var,f(p(),
S(t0)) = 16a26/(46 —y)>.
' COROLLARY 7. An inverse plan is efficient.
 Tndeed, (plfea), S(rs) = ap(irag)+ by h(®) = axo/a0-+b, Vary /(p(l),
S('cxo)) = a? xo/46°.

IV.3. Sequential plans efficient at a given value 6;. By the previous
theorems, the sequential plan (1:, Sfp(h, S(t)]) is efficient at a given value 6,
if and only if

flpld, S@)) = k(ﬂl)ES(r)—fh p(lfl):l+h(91), e T,

and if the function h(f) is efficiently estlmable at 01, then h(f) =k, (0
-—01)E,,p(|‘c|)+k(91)

Consider the class of all sequential plans, efficient at 8,, for the function
h(G) for which E, p(|t]) is the same. We denote this class by &. So, if the
sequentlal plan (z, f(p(lt)), S(z))) belongs to &, then

i

Varof(p(lfl),s(r))) Vara[k(ﬂl)( S~ 91P(Irl))+h(91):l

1
(k(ﬂl)) [ VaraS(f)+92Varﬂp(lrl)——91 EsP(IT!)S(‘C)+ 6 EaP(lTI)EeS(‘E)]
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By (17)-(19) we have
Var, f (p(t)), $(0))
d
= (k(0y)° [Eo p())+2(0— GI)EEH p(z)+(©—8y)? Varep(lrl)]

= A+ B Var, p(lt)).

For all plans ( f(p(h), S (‘r))) belonging to &,, the constants 4 and B
are the same. So we can say that the smaller at 6 is Varyp(|7]) the better is

-the plan (r, f(ph, S (17))) belonging to &,, because the variance at 6 of the

estimator f(p(jt|), S(r)} is then getting smaller.

V. EFFICIENT SEQUENTIAL PLANS FOR POISSON AND WIENER FIELDS

Definition 10, Let Q” be.a family of bounded Borel subsets of R2.
Assume that the family | N( A), } of random variables has the following
properties: R

1° for an arbitrary set of disjoint bounded Borel subsets A4, 4,, ..., 4,
of R2 the random variables N(A4,), N(4,), ..., N(4,) are independent

P(N(A4) = k) = (A14;])* exp(— iIA,I)/k'
= N(K.) is called the Poisson random field if K, = [0, t,] x [0 t,] for
any = —(’h t1)e R%.

Definition 11. Assume that the collection of random variables

‘W(A) b . has the following properties:

1° for an arbitrary set of disjoint bounded Borel subsets 4, 4,, ..., 4,
of R? the random variables W(A,), W(A,), ..., W(A4,) are independent;

2° the random variable W(4) is normally distributed with EW (4) =
and EW?2(A4) = |A|.

Then W. = W(K.), ze R%, is called the Wiener random field.

Let A be the family of the squares K, = R% with |K,| = v. In this case
N, = N(K,) is the homogeneous Poisson process and W, = W(K,) is the
Wiener process. With the same arguments as previously, the problem of
characterization of efficient sequential plans for the random Poisson field and
the Wiener field can be reduced to the problem of efficient sequential plans

" for the homogeneous Poisson process and the Wiener process.
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