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Abstract. Suppose that {pH) is a sequenoe of random probabili- 
ty measures on a real and separable Hilbert space such that, for each 
n e N ,  is a pointwisely convergent convolution of some sequence 
iP,,,Jke N) of random measures. The sequence {A)  is said to be sh$- 
tight if one can find random vectors { ~ , l  such that the "centered" 
sequence ( , ~ , * 6 - , ~ ~ )  is tight. 

It is proved that for a shift-tight sequence {p,) there exists a . 

"progressively measurable" centering which changes {p,) into a tight 
sequence. 

As an application, Principle of Conditioning and Martingale 
Central Limit Theorem in a Hilbert space are proved. 

1. INTRODUCTION 

Principle of Conditioning, proved in [9], gives a method of derivation of 
a certain type of limit theorems for sums of dependent random vaiiables. The 
main idea in the proof of the Principle of Conditioning is to find, for every 
sum of random variables, a random probability measure in such a way that 
convergence in probability of those random measures gives an information 
about the asymptotic behaviour of laws of respective sums (details are given 
in Section 4). 

In fact this method is deeper: it is proved in [8] that tightness of the 
accompanying random measures implies tightness of sums of Hilbert space 
valued random vectors. This observation is developed in Section 4, and the 
considerations are based on some tightness criteria for random measures 
proved in Sections 2 and 3. 

In Section 2 a general Theorem 2.1 on tightness of random finite 
measures defined on the Polish space is given. It is proved that a family of 
random measures !Mi; is tight iff it is possible to approximate :Mi ;  with an 
arbitrary exactness by a family 1 Mil of random measures with finite expecta- 
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tions and such that the respective family (EM:} of expectations is relatively 
compact. 

Kallenberg [lo] gives some methods of identification of weak limit for a 
sequence of random measures on a Iocally compact space, and his methods 
can be easily adapted to the Polish spaces. Hence Theorem 2.1 can be 
treated as a convenient complementary tool for Kallenberg's theory on the 
Polish spaces. 

Section 3 is devoted to the shift-tightness of random measures on a 
Hilbert space. A sequence (p,] of random measures is said to be shift-tight if 

1 there exist random vectors A, such that the "centered" sequence (p, *dmA,{  
is tight. The main result of this section, Theorem 3.1, deals with the 
aquences of the special form: for each n, p, = fl p, (k = 1 ,  2, . . .), where the 
sequence (p,: k E N )  of random measures is such that the infinite convolu- 
tion n p & ( o ) ,  k = 1 ,  2, , . . , converges pointwisely. Theorem 3.1 asserts that 
.IpI1] is shift-tight iff there exists a progressively measurable centering, i.e. one 
can find an array (Ad: k EN, n ~ N j  of random vectors such that, for each n 
and k, Ank is C T ( ~ , ~ ,  pna, . . . , pnk)-measurable and the centered sequence 
pn * 6- A,k is tight. F 

The results of Sections 2 and 3 lead to a new tightness criterion for 
sums of random elements in a Hilbert space (Theorem 4.1) and allow us to 
extend the Principle of Conditioning to the infinite-dimensional case (Theo- 
rem 4.2). 

In Section 5, Martingale Central Limit Theorem in a Hilbert space 
(Theorem 5.1) is obtained as a corollary from the Principle of Conditioning. 

In the sequel H will denote a real and separable Hilbert space with the 
inner product (., - ) and the a -algebra of Borel subsets 9,. 

2. GENERAL CFUTERION 

Let S be a complete separable metric space. Denote the set of finite 
Borel measures on B, by A!(.#'). Weak convergence in .1(m can be 
rnetrised (e.g. by Prokhorov metric), so we will treat A(&') as a complete 
separable metric space. 

We say that a measurable mapping M: (Q, 9, P) + d(Xj (i.e. a 
random finite measure M )  is integrable iff E(M(X))  < +a. In such a 
case an element EM of A!(#) is defined by (EM) (A) = E(M(A) ) .  

A family { M i :  ( S Z ,  9, P) -+ d(X): ~ E I )  of random measures is tight iff 
for each 6 > 0 one can find measurable subsets (Ai,&: i E I )  such that 

(2.2) the set U (Mi(-, a): w €Ai,*) c A ( X )  is relatively compact in 
id 
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By Prokhorov theorem, condition (2.2) is equivalent to the following 
conditions: 
(2.3) there exists a constant y > 0 such that 

SUP SUP Mi (2, m) 6 y ;  
id m u l i , ~  

(2.4) there exists an increasing sequence [KrrbJ : n E N )  of compact subsets of 
X such that, for each nE N, 

I sup sup Mj(Kkt6,  w )  d n- I .  
id wfAi ,a  

By means of Prokhorov theorem we will prove another, more useful 
criterion for tightness of random measures. 

2.1. THEOREM. Let (Mi: i G I }  be a family of random measures on X. Then 
{Mi: i E I }  is tight ifJ' for each 6 > 0 there exists a family {Mi": i E I) of 
integrable random measures such thar 

a (2.5) sup P(M! # M,) < 6, 
id 

2.6) the set { E M ! )  c A(2) is relatively compact. 
In particular, if the family ( M i :  ~ E I )  is tight and the random variabks 

{Mi (X ,  -): i f  l )  are uniformly integrable, then {EMi:  i E I )  c A(&!) is reluti- 
vety compact. 

P r o  of. If { M i :  i E I )  is tight and the sets {A,,,: if I) are taken from (2.1) 
and (2.2), then defining 

we get the desired family. 
Conversely, suppose that the family {M!: ~ E I )  has properties (2.5) and 

(2.6). Let y = 6 - I  supEMf(ria). Choose an increasing family of compacts K, 
id 

such that 

and define 
m 

- Ai,3, = {M:= M i ) n { M f ( m <  y ) n  n { M f ( K 3 <  n - I ) .  
n= 1 

Thus, P(Af,, ,)  < 36 and for (A,,,,) conditions (2.3) and (2.4) are satisfied. 
Suppose that (Mi: ~ E I )  is tight and { M , ( X ) :  i ~ i )  is uniformly inte- 

grable. Let E > 0. Choose 6 > 0 in such a way that P(A) < 6 implies 
SUP EMi (m I ,  < &/2. 
id 

For (Mi: i~ I) take measures I M:: i~ 1: satisfying (2.5) and (2.6). Let a 

7 - Prob. Math Statist 9.1 
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compact K be such that sup E M ~ ~ K ' )  ) 42. Then 
id 

Since also supEMi(lsEP) < + m, the relative compactness of . (EMi: i ~ i ]  
id 

is proved. 
In the sequel 9(m c A(&?) will denote the space of probability 

measures on 8. 
2.2. COROLLARY-A family [ p i :  i~ I :  qf random probabilitv measures on .# 

is tight if { E p j :  i €1) c P(@ is reiatively compact. 
Recall that ( H ,  C ., )) denotes the Hilbert space. 
If p ( . ,  .): 3, xi2  -. [O, 11 is a random probability measure, then 

is its characteristic function. Applying Corollary 2.2, we shall describe the 
convergence in probability of random probability measures on finite-dimen- 
sional Hilbert space in terms of the convergence of their characteristic 
functions. 

2.3. PROPOSITION. Suppose that dim H < + co . Then a sequence {P,} of 
random probability measures on H convergss to some random probability 
measure ,u( - , w): pn 7 p i f  

where H' c H is a dense subset such that ( x :  jlxll < r }  c H' for some E > 0. 
2.4. LEMMA. Let (2, Q )  and (%', Q') be complete separable metric spaces 

and k t  [A: Z -. H, i ~ l )  be a countable family of continuous mappings which 
separates the points of #. Let {X,: (IR, -9, P) -t ( Z ,  g,): n E N ]  be a 
sequence of measurable mappings such that 

(a) [ X , :   EN] is tight, 
(b) for each i E I  there exists a measurable mapping x: (52, 9, P) 

+(H, Bp,) such that J ( X n )  2 I.;-. 
Then there exists X :  (a, 9, P) +(X ,  9,) such that X, 2 X  and, in 

particular, = ( X )  a.s. 
Proof.  It suffices to prove that X, is a fundamental in probability 

sequence. Suppose the contrary case. Thus one can find an E > 0 and a 
subsequence Ink; c N such that, for each k~ N, 

By passing to a further subsequence, we may assume that J ( X , , , ( o ) )  
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- y(w)  for each i~ I and each w from some subset O1 tz F, P(OI)  = 1, while 
(2.8) is still valid. Since {X,) is tight, there exists a compact subset K c X 
such that 

inf P(X, EK) , 1 - ~ / 3 .  
n 

Let A, = Q l n  IX  ,,,,-, E K ~  n IX,,,EK~ ~ : Q ( X , , ~ - , ,  X , , , ) > E ! .  Then 
P(A,) > &/3 and, in particular, 

P(Lirn sup A,) = P(A,  i.0.) 2 e / 3 .  
- - k - -. 

Hence Lim sup A, # 0; If o ~ L i m  sup A,, then w E Ak, for some increasing 
- k k 

sequence [klj.'= (k'(w)j. But K is compact, hence for ik") c ik'j we have 

By the continuity of J;, A (x) = J (y) = XCw) for all i €1. Hence x = y 
and (X n,,.,-l (u), X ,,2k,, (01) + 0. This leads to a contradiction since w E Ak.. . 

P r o o f  o f  P ropos i t i on  2.3. Clearly, p,(-, u ) - p ( - ,  W) implies (2.7) for 
each ~ E H .  Conversely, let (2.7) be satisfied. Then, for y from some neigh- 
bourhood of zero, 

I But (2.9) implies relative compactness of {Ep, :   EN) c 9 ( H )  and, by 
Corollary 2.5 also tightness of (p , ] .  Now it is sufficient to apply Lemma 2.4 
with the countable family of separating continuous functions of the form 
P(H) 3 p wffy (p) = j (y)  )E C, where y varies over some countable dense subset * c H'. 

25. Re mark. A linear operator S :  H + H is called S-operator (SE -9) iff 
S is nonnegative, hermitian and with finite trace, 

m 

t rS  = (Sej, e j )  c +a, 
j=  1 

where { e j )  is an orthonormal basis for H .  By the mapping Ill2: Y - Y1/2, 
Ilt2(S) = S1I2, we may embed Y into the space of Hilbert-Schmidt operators 
on H. With induced metric, Y becomes a complete and separable metric 
space and, for a sequence IS,) c .Y, S ,  - S in Y iff 

(2.10) t rS,+trS and (S,y,y)+(Sy,y), ~ E H .  

Moreover, a subset (S,: i € 1 )  c 9' is relatively compact iff 
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- - 
lim sup <Si e,, ek) = 0. 
N-rm i d k = ~  

Define the mapping 9'3s C M ~ E  A(N) by the formula M S ( { k j )  
= (Sek,  ek ). It is clear that {S , :  i E I )  c ,Y is relatively compact iff {Ad ' : 
if I) c &(N)  is relatively compact. So to examine the tightness of r a n d o m  
S-operators one can use Theorem 2.1. 

3. SHIFT-TIGHTNESS OF CONVOLUTIONS OF RANDOM MEASURES 

The shift-tightness of random probability measures is the problem we 
will consider next: We shall outline it briefly. 

A sequence {p,: n~ N )  c L P ( ~  is sh@ compact iff there exists a 
centering sequence {x,: n E N }  c H such that {pn s S - ,,,: n E  N )  is relatively 
compact. It is well-known (see e.g. [12]) that the shift-compactness of the 
sequence p, is equivalent to the relative compactness of the sequence of 
symmetrisations fJp,J2: n E  N j .  

In the particular case H = R1, Doob ([5j, p. 408 -409) gave the explicite 
formula for the centering constants as numbers x, satisfying the equation 

It follows that in the one-dimensional case, if the centering exists, then it 
can be obtained in the form x, = f (p3, where .f: P ( R 1 )  - R1 is a measurab- 
le function. 

If the sequence {,unL,j is formed by convolutions in the rows of a certain 
array {pAk} of measures, p, = pnl * ,unZ * . . . * pnk,, and if, for example, the 
array Ip, j is uniformly infinitesimal, 

then the shift compactness of {p,) implies the existence of centering constants 
in the particular form 

where x, = f (p,) and f is a measurable function on 9 ( H ) .  
The author does not know whether in the case of infinite-dimensional H 

there exists a universal function f such that, for any  array {p,,) with the 
shift compact convolutions in rows, the centering constants may be chosen in 
the form (3.2). Hence, to handle the respective problem for arrays of random 
measures, the technic of measurable sections seems to be adequate. 

Recall that the sequence {p,} of random probability measures on H is 
shift-tight if one can find the random vectors A, such that the centered 
sequence {F, * 6 -,,I is tight. 

In the sequel the notation of [I] is used. 
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3.1. THEOREM. Let (pA ( -, w):  k E N, n~ N }  be a double array of random 
probability measures on H .  For N E  N define 

The following statements are equivalent: 
( i )  The set of symmetrisations (Ipn(N)IZ: N E  N, n G N )  is a tight family of 

random measures in P(H). 
(ii) There exist a (pnl, . . . , pnk) - memurable H-valued random variables B,, 

JUL lr ~ I I C J I  1111~ ru~r~iom S-operators (Tn:  n~ N ] ,  defined by the quadratic fnrms 

are fight in .Y, and the random finite measures [M": n E  N\ such that 
- - -  

a3 

are tight in &(H) .  
(iii) There are 0 (pn,  , . . . , pd-measurable random variables Cnk such 1 hut 

the set of random probability measures 

is tight in P(H). 
Moreover, if B, are taken from (ii), then the centering random variables 

C& can be defined by 

(3.3) Cnk  = Bnk (01 + 1 [ ~ n k  ( ., W )  * Bnk(co) l  (dx). 
Ilxll S 1 

The function h: H -+ H appearing in (ii) is any (but $xed for ever) bounded 
continuous function such that 

t I  

, I P r o  of. ~m~lications (ii) +. (iii) * (i) follow from the respective properties 
of convolution of non-random measures. Indeed, (iii) +(i) stems from the 
continuity of the operation p ~1p1'. NOW, suppose that (ii) holds. By (2.1) 
and (2.2) we may choose subsets A , ,  such that P(A, , )  > 1-6, nEN, and the 
sets 

u ( T n ( w ) :  W E A ~ , ~ ) C Y ,  u J M n ( u ) :  w ~ A , , ) c A ( w  
nEN ' ndY 

are relatively compact. By Theorem 6.1, Chapter VI, [12], the set of 
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probability measures 

is relatively shft compact. Hence, by Theorem 4.8, Chapter 3, [I], the set 

is relatively compact, where Cnk are given by (3.3). 
' In a similar way, condition (i) implies that the sequence {(T'Jn) of 

random S-operators, given by the quadratic forms 

is tight, and the sequence {(M')") of finite random measures on H, 
0 0 '  

is also tight. 
Fix an orthogonal basis {a,) in H and, for p~ P(EI), define the finite 

measure fi (p) on 2' = { 11 x N v {2 ]  x H by the formula 

(3.4) 
m p ) ( ( l )  x A, u (2) ~'4,) = C j <e,, ~ ( x ) ) ~ P ( ~ ~ ) + c L ( A ~  n Illxll > I)), 

i ~ A 1  

where A ,  c N and A 2 ~ A H .  
Observe that, for every A" ~g*, 

Due to Remark 2.5 it is clear that the tightness of {(T')") and ((M')"), i.e. 
condition (i), is equivalent to the tightness of random measures 

and that for (ii) to hold we have to guarantee the existence of random 
variables B,,, a (3,) c a(pn,, . . . , p,) such that the random measures 

are tight. 
m 

3.2. LEMMA. Let b > 0, 0 < c < 2 - ' ( x  rF2)-' and let (K , :  r g N ]  be an 
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incretrsing sequence of compact subsets of .X. There exists a Borel-measurable 
mapping B: .X + H  such that Graph B = [(p, Bp):  EX) c XH and B(6& 
= X, where 

m ~ * 6 - ~ ) ( ~ 3  < (r2/dfi(lPl21w;L 2 11. 
P r o  of. Clearly, X and XH are Bore1 substs of P ( H )  and B(H) x H,  

respectively. Suppose we .know that for each p~ X the seciibn (XH)p 
= [x E H-: (p, x) E -TH) H is non-empty and compact. Then, applying Theo- 
rem 21b, Chap. 111, 141, we can find a Bore1 subset U c XH such that the 
projection nam of 9 ( H )  x H onto 9 ( H )  is one-to-one when restricted to U and 
K N H )  U = X. By the Kuratowski theorem, (xflH,l,)- ' : X' 4 U c XEI is 
measurable, hence B = z, o(~,,],)-~: X 4 W has the property GraphB = U. 

To see that the section (XH) ,  is non-empty for p~ X,  suppose that, for 
some r 2 1, M(1pI2)(K:) > 0. Then, by (3.3,  

p (b: m p  * b-x) (~f )  > (r2/c) G(iP12) ( ~ 9 ) )  c / p 2  * 

If 0 = &((Id2) (K3 = [n? (p * a_.) (Kf) p(dx), the integral being taken over 
the set (x: A?(p t 6 (K:) > O ) ,  then also 

( b :  m ~ * d - x ) ( K 3  > ( r2 /c )ml~12)(~ ; ) l )  

= p({x: A%(~*G-J (KE)  > 0,') = 0 < c/r2 
Similarly, we prove that 

p {x: a ( p * 6 - x ) ( $ )  > 2a(lp12)(2)] < 1/2. 

So 
1 " c  

,u((.XH&)<-+ C - < 1  and ( X H ) p # O .  
2 

Now suppose that p~ X, (p, x,) E XH for n E N and xn + x. Then 
p*6-x,+p*S-, and, for each r 2 1, 

and 

Hence X E ( X ~ ) ~ ,  i.e. (.KH), is closed. It is also relatively compact. 
Indeed, it suffices to prove that * 6 -  3: x E (A?,) p] c &(X') is relative- 
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ly compact. If the supremum below i s  taken over X E ( X ~ ) , ,  then 

3.3 LEMMA. Let (pl ( -, w), pZ ( #, a), . . . ) be a sequence of random proba- 
bility measures on H ,  defined on (a, 9, P). Let A, c A2 c . . . be an increa- 
sing sequence of elements of 9. Suppose that for each q g N  there are given a 
number b, > 0 and a sequence (K4,': T E N )  of mmpact subsets of # = {I] 

I x N u  [2j x H such that 
. . 

C3,9 + 3 b 4  q € N ,  

(3.71 Kq,r [= Kq,r+ I Kr+ l,r (*I 
and, ,for iach o E Aqr the inequalities 

m 

hold, where fi is dejifined by (3.4). 
Then there exist random variables Bk such that 

(3.10) ~ ( ~ k )  c c ( ~ l i  P25 . - - ,  ~ k ) ,  k E N ,  

and, for w E A*, random measures {pk ( ., o) * 8-Bk(o)) satiSfy the conditions 

m 

(3.12) ( ~ k  ( ' 2  o) * a- ~ ~ 4 )  IK;,) d q/c' 
k =  l 

. . 

Proof. Set A,,, = Q), k~ N, and, for  EN, 

Then, b y  (3.6) and (3.7), A,,,, 3 A,,, 2 Ak + ,,, and, b y  (3.8) and (3.9), 
m 

A, c n 
k =  l 

Consider the random measures 

(*) Hence, for q 2 P, K,,,+,-, c K ,,,. 



ITigktness criteria for random measures 105 

{pkPq ( a ,  a): k E N }  take values in the set X ( ( K q , , :  P E  N}, b,) defined in 
Lemma 3.2. Hence there exists a measurable mapping Bq: X +  H such that 
Graph B4 c XH({Kq,,'), bq) (recall that Bq (6,) = O), i.e. random measures 

satisfy the conditions 

r2 
C3'14) - ( ~ k , q  ( ' >  m)) (Kzrr) < - fi ( ] ~ k , ~  ( '3 ~ ) l ~ ) ( K i , ~ ) ,  T 2 1. ' 

-. - 
C 

Let . 
m 

e. 

'k = p'l C B p ( ~ ( ' 9  ~ ) ) l [ d k , p - d r , r - ~ ) ( ~ ) ~  

Observe that a (Bk) c a (pj:- 1 6 j d k) since A k , p ~  0 ( p j :  1 < j < k) for 
p~ No.  Measures -Ipk ( 4 ,  w) * 6-,,(,)j satisfy conditions (3.1 1) and (3.12). In- 
deed, 

(since A, c A,,, - , for P > q) 

(by the definition of A,,J. 
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Similarly, 

I*, a ( P k  (4 * 8 -,,,I (K:Z 
k =  1 

(by the definition of Ak,J 

< IAq q/rc. 

Now the proof of Theorem 3.1 can be easily completed. By the 
tightness of 

for each q > 0 we can find sets A," such that A: c A:+ ,, P(Al)  > 1 -q - '  and 

is relatively compact. Then for each dlq we can find b, > 0 and a sequence 
of compact sets I K , , :  r EN) satisfying (3.6) and (3.7) and such that, for 
each n, (3.8) and (3.9) are fulfilled on A:. Finally, we can apply Lemma 3.3 
to each sequence {p,: k EN: separately. 

3.4. COROLLARY. If we consider the arrays {,u,) of non-random probability 
measures, then it followsfP.om Lemma 3.2 that for every array [p,,,: 1 < k ,< k,, 
TIE N l .  ,for which r.onvolutions in rows are relative!l, sh$ compact, there exists 
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u measurable centering function B, defined on some closed subset X,  c ,P(H), 
X, I illnR], such that the set of all partial convolutions 

II;Ipnj * 6-Bcre,: 1 < k < k,, n E  N j  

is relatively compact. The set -6 may be chosen to be closed with respect to 
the shifts. 

4. PRINCIPLE OF CBNQlllOMNG IN A MZLBERT SPACE 

Consider an array X = (X,:  EN, n f  N) of random variables defined 
on a probability space (a, 9, P) with values in H7 and an array F = {Pnk: 
k E No = N v [ ~ j ,  n E N )  of-u-subalgebras of 9 such that each row of F, i.e. 
{F,~: k € - N o ] ,  f0rms.a filtration (,Fn,,-, c Fn,,: k~ N). Say that X is adapted 
to F (and denote this by Ad(X, 67)) i f  

For each n, k choose and fix a version p, ( . ,  a ) :  .gH x Q  + [ O ,  11 of the 
regular conditionaI distribution (r.c.d.) of Xk given ,Fn,k-l: 

Then the kernel 8 3 ~ + + p , , ~ ( . ,  L O ) X ~ , , ~ ( - ,  W ) X  ... =jin(. ,  m ) e P ( H r n )  
I a defines a probability measure 0 on (B x H m ,  PQ9JH,) by the formula 

&,(A x B )  = J'L(B, wIP(d4.  
A 

Note that every random variable on (SZ,  9, P)  can be redefined on this 
new probability space without changng its law. 

It is easy to see that the coordinate projections X2: fi x H" -. H,  
X$ (w, (x, , x,, . . . )) = xk have the following properties: 

(4.2) for each n EN,  {x$: k E N )  are Q", -conditionally independent over 
@ = 90(8, H " ] ;  

(4.3) r.c.d. of X$ given and r.c.d. of X, given 9 coincide: 
P,;(B~&(OJ) = Pxnk(BI J ; , k -  1) (o), B E B ~ ,  o E P .  

Now, for each nEN, let on: (52, 9, P) + No be a stopping time with 
respect to I .Fnk : k E N o ] .  Define 

, By the definition of X*, r.c.d. of SX (o,), given #, satisfies 
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Theorems 4.1, 4.2 and 4.3 establish several connections between the laws 
of random measures (p,(a,): nE N} and the laws of sums [S,(cr,): n E N). 
Theorem 4.2 has grown from the observation made by the author in his 
paper [7]. By the reasons detaily described in [9], Theorem 4.2 may be 
considered as a formal counterpart of the Principle of Conditioning for sums 
of depedent random vectors with values in a real and separable filbert 
space. 

4.1. THEOREM. (i) Suppose that there exist 9'-measurable random variables 
{A,: n~ N )  such that the sequence {S: (a,,) - A,: n~ N )  is tight. 

Then there exist random variables C, such that - 
(a) for every n, k~ N, C, is FnVkul -measurable, i.e. 

is a predictable sequence with respect to (F&: k € N o ) ;  
I 

(b) the sequence (S:  (a,)- C,(a,): n~ N )  is t ight;  
(c) the sequence (S,(a,) - C,(a,J: n E  N) is tight. 
(ii) In particular, 5f the sequence {S:(u,): S EN] is tight, then [S,(a,): 

  EN) is tight. 
P r  o of. Suppose that there are measurable random variables (A,: nE N) 

such that the sequence {St (a3 - A,: n E Nj is tight. Since 

by Corollary 2.2 the sequence of random measures under expectation is tight. 
Hence 

is tight. Define the array {pk ( ., w): k E N,  n E N )  of random measures by 
stopping the array { p ,  ( -, o) = P,,, ( a  I F n , k -  (w) )  : 

Since 

for the array (pk,} ,  condition (i) of Theorem 3.1 is satisfied. Hence, by 
Theorem 3.1 (ii), one can find the random variables B,, a(Bnk) c a(/Q, ,  
A2, . . ., pik) c a(p, , ,  p,,, . .., pnk, Q, A k -  1 )  c F,,k-l, such that the se- 
quences of random S-operators {Tn(a,): n EN)  and random finite measures 
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{M"(D,): nfN) are tight, where 

then, by Theorem 3.1 (iii), the sequence (P, (rr,) ( . , 0) * 6 - ,,} is tight 
1 ls.Fcm 

and, by Corollary 2.2, (S,*(cr,)- 1 Cnk] is tight. Note that 
l<k<un 

I 

C,(a,) = C C ,  = C ~ n k  +En,,- 1 ((X, -BnAJ(IIX,-BnkII 6 1) ) -  
l < k d o n  1 Sk4f1, 

Now consider the random variables 

Clearly, 

(4.7) S, (a,) - C ,  (a3 = Y* + Y$ = Sk (ad + S i  (a,). 
1$kdu, ldk$o,, 

Hence, in order to check the tightness of { S ,  (0,) - C, (on)),  it suffices to 
check the tightness of (Sb (a,)) and { S i  (a,,)) separately. 

- 

Consider an array {6,;(.)) of random measures. The random finite 
measures 

N ,  (a,) (A)  = x d,, (0) ( A  \ (01) 
' l<k<an nk 

are tight. Indeed, let 
k 

7: = cr, A sup {k Paj-l(IIX&-Bnkll > 1) C ) -  
j= 1 
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By the tightness of {Mfl(n,)) we always can find such a C > 0 that 
sup P(T: c G ~ )  is arbitrarily small. Then the measures Mn(z:) (< Mn(a,,)) are 

tight and Mn(r3(H) < C, so, by Theorem 2.1, [ E M  ( r t ) :  nc N :  is relatively 
compact. But T: is a stopping time with respect to {Snk: k f N o ) ,  hence 
EM"(T;) = EN,(T:). Thus we may approximate the measures N,(o,) uniform- 
ly in probability by tight random measures, hence {N , (a , ) )  is tight. Since 
N ,  ((r3 (11x11 < 1) = 0, it foilows from Theorem 3.l(iii) that 

is a tight sequence- of random measures and, by Corollary 2.2, the sequence 
E5,J,,l = Y (Sk (G,)) is relatively compact. 

Now consider the sequence { ~ ( c T , ) ) .  For each  EN the sequence 
k 

{ Y,;:  EN) is a martingale. Let again 
j =  1 

k 

zj;' = c, A sup {k: En,J- (IJh(X, - B,)I12) < C}. 
j =  1 

By the arguments similar to those used for N,(z:), the sequence of 
covariance operators 

( u n  Y ,  Y )  = E (y, s Y C ~ : ~ ) ~  = E C ( I l r  y2)' 
C I < k $ r , ,  

1 En,k- 1 b, h(X&-Bnk))2 
C 1 CkSs, 

is relatively compact. Hence {s~(T:)) is tight. And so {Si(a,J) is also tight. 
4.2. THEOREM. Suppose that 

where p~ B(H) is non-random. Then: 
(i) The sequence {S,(a,): n~ N )  is tight. 

(ii) I f  v is a limit for some subsequence of (Y(S,(G,)):  EN), then v 
satisfies the equation 

(iii) If equation (4.9) has the unique solution v = p, then I 

(4.10) snf4 
P r o  of. Assume (4.8). Clearly, (Y (Sn(o,J) = EPszIad ( - I f i :  n EN) is rela- 

tively compact, so it follows from Theorem 4.1 that { 9 ( S n ( o , J )  = 

EPs,(,d ( - I gnno): n EN) is relatively compact and (PS,(,,, ( Pno): n E N )  is 
a tight sequence of random probability measures. 
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Following the proof of Theorem 1.1, [9] (with application of Lemma 3.2 
instead of Lemma 1.2), we get the convergence En, exp i 0, S,(a,)) 7 f i ( y )  
provided &(y) # 0. In particular, for each y EH, 

and (4.9) follows. 
Suppose that v = p is the unique solution of (4.9). We shall prove a little 

bit more than (4.10), namely that 

(4.111 . P.s,,(~,J I 9n0) P -  
- - -  

Observe that we --have the tightness of random measures 
( Y *  Ps,(on)(*l Fno)(w):   EN) and the convergence in probability of their 
characteristic functions on H, and so on some countable dense subset of H. 
By Lemma 2.4 -> 

Now the convergence PSn(ad(.] flno)(w) = p  follows by passing to a.s. 
convergent subsequences. 

Say that Ad(X, 0 is obtained by scaling a single sequence if X,, 
= B, (X, - Ad, Fnk = Fk, where (X,: k E N )  is adapted to (pk: k  EN^}, {B , :  
H -* H: n E  Nj is a sequence of bounded linear operators on H,  strongly 
converging to 0 (i.e. B, (x) + 0 for each x E 2T), and {A, :  ncz N} is a sequence 
of vectors such that B,(A,J + 0. 

4.3. THEOREM. Suppose that Ad(X, F )  is obtained b y  scaling a single 
sequence and that 

where p ( - ,  O) is a random measure with the property 

(4.1 3) P($(y;)=O)=O, ~ E H ' ,  

for some dense subset H' of H. 
Then there exists a non-decreasing sequence [k,,: c N, k ,  -. co, such that 

Proof. For each k~ N, B,(X,-AJ -+ 0 as. and it is easy to see that 
pnk ( -, W )  = PBdXLpA,) (.I 9,- - 80 as. Hence it is possible to find a non- 
decreasing sequence k ,  + CYJ such that ,un (kJ - So a.s. Just the same way as 
in Theorem 3.1, 191, we obtain, for each y € H "  c H, 

E k , e x ~ i  ( ~ 3  S n ( a 3 >  7 &(Y, w),  

where H" is a countable dense subset of H'. 
The application of Lemma 2.4 completes the proof of (4.14). 
Note that at the present moment we make use of Lemma 2.4 in non- 
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trivial way, (since p ( . ,  o) is not constant), while in the proof of Theorem 4.2 
the convergence (4.11) may be immediately obtained from the fact that the 
qonvergence in distribution to a constant random element is equivalent to the 
convergence in probability. 

5. MARTINGALE CENTRAL LJMIT THEOREM IN HILBERT SPACE 

The Central Limit Theorem for martingale difference arrays is the most 
important application of the Principle of Conditioning. 
. Usually, CLT for martingales involves the convergence of conditional 
variances (Brown's- Theorem - see [3] and [9]) or the convergence of 
quadratic variation (McLeish [Ill). While in the first case there are many 
results for the Hilbert space-valued martingales ([23, 171, [13]), it seems that 
there is no infinitedimensional generalization of the latter approach. 

We shall apply Theorem 4.2 in the proof of the Hilbert space version of 
CLT due to Ganssler and Hausler [6]  (which is an improved McLeish CLT). 

Martingale dijference array (MDA) is a system Ad(X, F) satisfying 
E JIXAI~ < f m, E,,- 1 (x,) = 0, n, k E N .  

As in Section 4, let for each FIE iV, 0,: (62, 9, P) -+ N o  be a stopping 
time with respect to {Sd: k~ N o ) .  

5.1. THEOREM. Let Ad(X, F) be an MDA and let {q: i f N )  be an 
orthonormal basis in H .  

Suppose the following conditions to hold: 

m 

where r i  ( x )  = 1 (x, e i )2 .  
i = N  

Then there exists a Gaussian symmetric distribution G(0 ,  S )  with the 
covariance operator S such that (Sq, e j )  = lClij, i, j EN, and 9 (S, (a,)) 
=. G ( 0 ,  S). 

Proof.  Let Y be the metric space of S-operators (see Section 2). Define 
the random S-operators U ,  by the following formula: 

Then, by (5.2) and (5.3), the sequence { U , )  is tight in Y. By (5.2) and 
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Lemma 2.4 there exists an SE 9' such that {Se,, e,) = $i j  and U, 7 S. In 
particular, 

(5.4) trU, =CllX,1121trS. 
k 

Define Y, = X, I(llXnk.l < 1). 
Following exactly the lines of the proof of Theorem 5.2, [9], one can 

show that (5.1H5.4) imply the following conditions: 

P,,- (HXnk.I z E) 7 0 for every E > 0, 
k 

Applying CLT for independent random vectors in the way discribed in 
[7], p. 185, or in 191, p. 805, we get the convergence pa(an)3  G(0, S). By our 
Theorem 4.2 we get 9 ( S n  (v,,)) 3 G(0, S). 
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