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ADMISSIBLE TRANSLATES FOR SUBGAUSSIAN MEASURES

BY
TOMASZ ZAK (WROCLAW)

Abstract. Zinn [6] asks whether it is true that every stable
measure with the spectral measure vanishing on finite-dimensional
sets. has no admissible translates. It turns out that the answer is

“no”. Precisely, the author shows that the distribution of X \/9 isa
measure which is stable, has non-trivial admissible translates and its
spectral measure vanishes on finite-dimensional sets (X denotes a
Gaussian vector and 6 is a p-stable random variable conceritrated on
(0. ).

Introduction. We will deal with p-stable measures on a real separable
Banach space E. A symmetric measure p is called p-stable (0 < p < 2) if, for
all independent random vectors X and Y with the distribution x and every a,
B > 0 (af+ P = 1), the random vector aX + fY has the same distribution p.
2-stable measures are Gaussian. In the case of real line some information
about stable measures is contained in [2]. The proof of the following fact
(basic for our considerations) may be found in [2]:

LemmA 1. Let X be a symmetric q-stable random variable and let 6 be a p-
stable random variable, independent of X, with the Laplace transform e **
(s>0, 0<p<1)

Then X604 is a symmetric pq-stable rar'dom variable.

It i is a symmetric p-stable measure (0 < p < 2) on E, then there exists a
finite symmetric Borel measure I' on the unit sphere S; of E such that the
characteristic functional o‘f H has the following form (cf. [5]):

u(x*) = exp(— l [x*(x)|Pdl'(x)) for x*eE*.

I is called the spectral measure of u. To compute I', let Ac #(S,) be
such that I'(?4) = 0 and let X be a random vector with the distribution .
Then (cf. [1] and [5])

(1) ” r(A)=1imptPPlX €A, ||X||>t}

1= X1
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We can always assume that I' = I';+ 1T, where Fj is concentrated on
finite-dimensional sets and I, (F) = O for any finite-dimensional set F. Hence
B= Uy *py (cf. [6]).

We consider a translate of measure: if acE, then p, = p+d,.

A translate acE of a measure u is called admissible if u, is absolutely
continuous with respect to u. The set of all admissible translates of a
measure yu is denoted by A,.

It is easy to show that if u; # 0, then A, is non-trivial. Zinn [6] shows
some-examples of p-stable measures for which 4, = (0) (but in these cases I',

- =0) and asks whether 4,  is always trivial. We show in Theorem 2 that the

answer is ,no”. ~

2. Dichotomy for translates of a class of stable measures. Let X be a
symmetric Gaussian random vector with values in a separable Banach space
E and let 6 be a p-stable random variable, independet of X, with the Laplace
transform ¢’ (s > 0, 0 < p < 1). By Lemma 1 it is easy to see that X /6 is
a symmetric 2p-stable random vector. The law of X \/5 is a particular case
of the so-called “elliptically-contoured distribution” and it is easy to see that,
for such vectors (cf. [3]),

@2 - ‘ ' Ax < Ax j-

Since Ay is always non-trivial for a Gaussian vector X, we conclude that

X V/-(-j has always admissible translates.

Let M, be the intersection of all linear Borel subspaces M < E such that
p(M) =1. If we show that A, = M, for a symmetric p-stable measure p,
then, for every acE, either u, | u or u, ~u (cf. [6], p. 248). For the
Gaussian measure u we have A, = M, and the above-mentioned dichotomy
appears [6].

Sacata [4] has shown the dichotomy theorem for the translates of
elliptically contoured distributions. For the sake of completeness we formula-

_ te and prove this result, but only for p-stable measures of type X ./6; the

proof is the same in the general case(!).
Let S, denote a set of all singular translates of u.

TueoreM 1. Let X be a symmetric Gaussian random vector in E and let 0

be a p-stable random variable with the Laplace transform e (s > 0), where 0

<p<1l
Then

(3) L Ax=Ayxjg and Ay jg=Myj.

Proof. For a Gaussian vector X we have Ay = My (cf. [6] and

() The author is very indebted to Mr. I. Sacala for permitting to include this result.
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references therein). Let M be a Borel linear subspace of E. We have
@) P{X./0c M} =P{XeM)},

hence My 5 = My.

Now we show that 4, = § = M, for every u. We prove only the second
inclusion (the first is tr1V1a1)

If there exists a subspace M such that ,u(M)-»l and x¢ M, then
(M—x)nM =@, hence u(M—x) =0 and x¢S,. Finally,

®) o Axys & Skjg © My = My = Ay.
Combining (2) and (5) We get (3), which completes the proof.

3. Spectral measures of p-stable vectors of the form X604 To answer the
question of Zinn we prove the following

THEOREM 2. Let X be a symmetric Gaussian random vector with values in
(I3, |I*1l2) and with the covariance operator of the diagonal form and with all
non-zero entries on the diagonal, and let 0 be a p-stable, independent of X,
random variable with the Laplace transform e (s > 0), where 0 < p < 1.

Then the spectral measure I' of the distribution of X \/5 vanishes on
finite-dimensional sets. , ,

To prove this we need a lemma and several corollaries which may be
interesting in their own.

LemMA 2. Let X be a symmetric g-stable random vector with values in a
-separable Banach space (E, ||'||) and let 6 be an independent of X p-stable
random variable with the Laplace transform e™*" (s > 0,0 <p <1). Let I' be a
spectral measure of the distribution of X09. Write

c=lim*P{0 >t}
t—=x
and, for A€#(S,), let C(A) = {xeE\{0}: x/||x||eA}.
Then, for every A€ (S,) such that I'(04) =0, we have

©) I'(A4) = cpq E (I (X)11 X]179).

Proof. Let p(y) denote the density of 6. Then (cf. [2]) limtP* ! p(t) = cp
as 1 — 0. Hence, for every & > 0, there exists an M > 0 such that

. cp—¢ cp+e :
(7) t1—+p\ ()\l“l—+p for all t > M.
Let Ae %(S,;) be such that I'(64) = 0. By formula (1) we have

X0l
I'(4) = lim pqt”“P{ e A, ||X01/‘1|l>t}
t oo DCR

.
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X .
= lim pqt™ YP{—“X” €A, |1X]| > ty‘”"}p(y) dy
t—a

X
= lim pgt™ | P{—EA x> ty“"’} (» dy,
_ t—o pl :_,DZ ”X“
t t
where D! = (0, (¢/Int)%) and D? = ((¢/Int)?, o).
We estimate both integrals. Tt is well-known that there exists a constant
K > 0 such that, for t >0, P{||X|| >t} < Kt™9 whence

X
Pq - 1/q
t f {“X” , I1X >ty }p(y)dy

< 7 [ PAIIX]| > ey~ 19} p(y)dy<t"“ (Kyt Kyt ”dy

1 1
Dt Dz

lin# 10 if t — o0,
T l-p

as, by virtue of (7), p(y) < K,y~*~7 for a constant K,. Now, by (7), we get

X
lim sup £7? jp{ ed, [1X]| > IJ’”"}P(J’)dY
t =00 [1X1]
' X cp+e
< limsup t™ P%———eA |1 X]] >ty '”“} dy
msupt™ | Py YT

Int upq—l
= limsup(cp+¢) qt™ fP%—eA X[ > u% du
t-o0 o HIXII th

=(cp+e)q j ur1” {W €A, ||IX|| > u}du

In the same way we show that

X
liminf £ P%”—XﬁeA 1) >ry-”q}p(y)dy
t— oo

2

«© X
> (cp—e)q [urt™ IP{—eA, 1] >u}
: 1T

Finally, in view of the formula E|&* = [at*" 1 P {|¢| > t}de, we gét

|
0
I'(4) = c(pg)* _[ upi~! P{m €4, IIXII > u}du = cpqE (1¢q) (X) (1 X11%9),

which completes the proof.
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We derive several corollaries. By m, we denote the normalized surface
measure on the unit sphere §; in R". Let X and 6 be as in Lemma 2.

CoroLLary 1. If X is not concentrated on one-dimensional subspace, then
I has no atoms.

Proof. Let A, (xq) = {xeS;: |lx—xoll <&} and

Cltsa) = {re: 2ol

We have 1) (xo),IIXH”"'—»O ae. if ¢ — 0, hence, from the Lebesgue
Dominated Convergence Theorem, I'(4,(xo))— 0 if & — . h

In the same way we prove the following corollaries 2 and 3.

CoRroLLARY 2. If E is finite-dimensional (i.e. E = R") and supp X = E, then
I’ is absolutely continuous with respect to m,. :
' CoroLLARY 3. If u is a p-stable measure on R" with the spectral measure
I' which is not absolutely continuous with respect to m,, then p is not the
distribution of any vector of the form X6,

In the case where E = R" and X is a Gaussian vector, we can get an
estimate of the density of I' with respect to m,.

CoroLLARY 4. Let X be a symmetric Gaussian vector in R". The density
h(s) = dI (s)/dm, of the spectral measure of X \/é is continuous (hence boun-
ded). ‘ :
Proof. We may assume that the covariance matrix of X is of the
diagonal form with all non-zero ¢%, ..., 62 on the main diagonal. Then the
density f of the distribution of X can be estimated as follows:

2 2
fxq, o, x) < (2m)~"2 1 exp(_x1+ +x,,)
Gy ...0,

2max o?
In the polar coordinates (r, s), where r = [|x|| and s = x/||x||, we have

2

) f(r,s) < (2n)’”’2—1—cxp(— 2)éalexp(—azrz).
: Gy ...0,

2 max g}
If Ae #(S,), then

r{4) = [h(s)dm (s) = 4cp? juz” 1”7‘" L (r, s)dm,(s)drdu

<4cp® ([ [u®~! [r" ' a, exp(—a,r?)drdu] dm,(s),
4 0 u

9 — Prob. Math. Statist. 9.1
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hence
h(s) = 4cp? ?uz”'l Tr"_ 1f(r, sydrdu
0 u
and
h(s) < 4cp®a, ?uzl’“l Ofr"“ exp(—a,r?)drdu.
: o u

The density h(s) is bounded and continuous on S, because, by virtue of
(8), we can use the Lebesgue Dominated Convergence Theorem.

 Recall that A;(s)= {xeS,: ||x—s|| <&} if se8;:

CoROLLARY 5. Assume that X, 0 and I' are as in Corollary 4. Then there
exists a constant ¢, > 0 such that T (4,(s)) < c,&"~ ! for every seS; and e > 0.

Proof. It is easy to sec that there exists a d,>0 such that
m,(A,(s)) < d,e"" ! for ¢ > 0. Hence Corollary 4 implies the existence of a
constant ¢, > 0 such that I'(4,(s)) < c,e" ' for ¢ > 0.

Now we can prove our Theorem 2.

Proof. Let F be any finite-dimensional Borel set in §;. Assume the F is
contained in an n-dimensional hyperplane. Then F is totally bounded and let
s',...,s™ be an e-net in F. The family (4,(s))¥?is an open (in S,)
cover of F. It is easy to see that card {s!, ..., s"®} = N(g) ~¢™" (because
dim(span F) < n).

We estimate I'(4,(s). I x =(x,, x,, ..) €l,, then, for every meN,

A (s) = {x€e8;: lIx—sfl, <e)l = {xeS;: |x,—si <e for k=1,2,...,m).

Write A7'(s') = |xeS;: |x,—si| <& k=1,...,m}. Then, taking into
account (1), we have

. X. /6 .
I'(A,(s)) < limsup 4cp? tZPP{—JeAE(S')a X \/6ll, > t}

£ 11X /Bl

X./0 .
< ]jmsup4cp2t2pP{"———-\/—;EA:JFZ(S'); X \/E”z > t}
o0 1X /8l

€ ¢p426"tt  (by Corollary 5).

Hence
N .
F(U AE(S'))~C,.+28"+1£_"‘—»O if 6-0,

i=1

which completes the proof of Theorem 2. -




Admissible translates for subgaussian measures 131

REFERENCES

[1] A. Araujo and E. Gine, On tails and domains of attraction of stable measures in Banach
spaces, TAMS 248.1 (1979).

[2] W. Feller, An introduction to probability theory and its applications, vol. 2, 2nd ed., Wiley,
New York 1971.

[31 J. Misiewicz, Some remarks on elliptically contoured measures, Lecture Notes in Math.
1080 (1984).

[4] J. Sacata, Admissible translates of stable measures on Banach spaces (in Polish), M. Sc.
Thesis, Technical University, Wroctaw 1985.

[5] A. Tortrat, Lois e() dans les espaces vectoriels et lois stables, Z. Wahr. verw. Gebiete 37.2
(1976). . =

[6] J. Zinn, Admissible translates-of stable measures, Studia Math. 54. 3 (1976).

Institute of Mathematics
Technical University
Wybrzeze Wyspianskiego 27
50-370 Wroctaw, Poland

Received on 26, 3. 1986







