SOME CHARACTERIZATIONS OF THE EXPONENTIAL DISTRIBUTION FUNCTION

by
BOLESLAW KOPOCIŃSKI (Wroclaw)

Abstract

Let X be a nonnegative random variable and let $[x]$ denote the integer part of x. The main result of the paper is the following characterization: X is exponentially distributed iff $[\alpha X]$ and $\alpha X-[\alpha X]$ are mutually independent for every $\alpha>0$. Some modifications of this theorem are also considered.

1. Results. Let X be a nonnegative random variable, and let $F(x)$ $=\operatorname{Pr}(X<x)$ be its probability distribution function. Assume that the distribution is not concentrated at one atom. We say that X is exponentially distributed if $F(x)=1-e^{-\lambda x}(x>0)$ for some $\lambda>0$. We say that X is geometrically distributed if $\operatorname{Pr}(X=k)=p q^{k}, k=0,1, \ldots$, for some $0<p<1$, $q=1-p$. Denote by $[x]$ the integer part of x.

The main result of the paper is the following characterization of the exponential probability distribution function:

Theorem 1. X is exponentially distributed iff, for every $\alpha>0,[\alpha X]$ and $\alpha X-[\alpha X]$ are mutually independent.

The random variables $[\alpha X]$ and $\alpha X-[\alpha X]$, separately considered, may be used to the characterization of the exponential probability distribution function.

Theorem 2 (Bosch [1]). X is exponentially distributed iff, for every $\alpha>0$, $[\alpha X]$ is geometrically distributed.

Theorem 3. X is exponentially distributed iff, for every $\alpha>0, \alpha X-[\alpha X]$ has the truncated exponential probability distribution function.

The modified version of Bosch's theorem is given by Riedl [3]. Theorem 1 has its discrete version and its continuous version formulated in terms of the renewal theory.

Theorem 4. Let X be a nonnegative integer-valued random variable. X is
geometrically distributed iff, for every $a=1,2, \ldots,[X / a]$ and $X-a[X / a]$ are mutually independent.

Theorem 5. Let X, Y_{1}, Y_{2}, \ldots be independent nonnegative random variables, let X have an absolutely continuous probability distribution function with bounded and continuous density, and let Y_{1}, Y_{2}, \ldots, have a common probability distribution function with the finite expected value. Let $N(t)=\max \left(n: Y_{1}+\ldots\right.$ $\left.+Y_{n} \leqslant t\right)$ and $R(t)=t-\left(Y_{1}+\ldots+Y_{N(t)}\right), t \geqslant 0$, be the renewal process and the residual life process, respectively. X is exponentially distributed iff, for every $\alpha>0, N(\alpha X)$ and $R(\alpha X)$ are mutually independent.

In the proofs which now follow, we limit our considerations merely to the "only if" part.
2. Proof of Theorem 1. Write $N=[\alpha X]$ and $R=\alpha X-N$. Let \mathscr{B} be the σ - field of Borel sets on [0,1]. Define $\alpha(B+\beta)$ for $\alpha>0,-\infty<\beta<\infty$, in such a manner that $x \in B$ iff $\alpha(x+\beta) \in \alpha(B+\beta)$. We have

$$
\begin{gathered}
\operatorname{Pr}(N=n)=\operatorname{Pr}(n \leqslant \alpha X<n+1)=F\left(\frac{n+1}{\alpha}\right)-F\left(\frac{n}{\alpha}\right), \\
\operatorname{Pr}(R \in B)=\operatorname{Pr}\left(X \in \bigcup_{n=0}^{\infty} \frac{B+n}{\alpha}\right)=\sum_{n=0}^{\infty} \operatorname{Pr}\left(X \in \frac{B+n}{\alpha}\right), \\
\operatorname{Pr}(N=n, R \in B)=\operatorname{Pr}\left(X \in \frac{B+n}{\alpha}\right), \quad n=0,1, \ldots, B \in \mathscr{B}, \alpha>0 .
\end{gathered}
$$

The independence condition for N and R may be written as

$$
\begin{align*}
\operatorname{Pr}\left(X \in \frac{B+n}{\alpha}\right)=\left(F\left(\frac{n+1}{\alpha}\right)-F\left(\frac{n}{\alpha}\right)\right) \sum_{k=0}^{\infty} & \operatorname{Pr}\left(X \in \frac{B+k}{\alpha}\right), \tag{1}\\
& n=0,1, \ldots, B \in \mathscr{B}, \alpha>0 .
\end{align*}
$$

If $B=[0, y), 0 \leqslant y \leqslant 1$, then (1) has the form

$$
\begin{array}{r}
F\left(\frac{n+y}{\alpha}\right)-F\left(\frac{n}{\alpha}\right)=\left(F\left(\frac{n+1}{\alpha}\right)-F\left(\frac{n}{\alpha}\right)\right) \sum_{k=0}^{\infty}\left(F\left(\frac{k+y}{\alpha}\right)-F\left(\frac{k}{\alpha}\right)\right) \tag{2}\\
n=0,1, \ldots, 0 \leqslant y \leqslant 1, \alpha>0
\end{array}
$$

For $n=0$ we have

$$
\begin{equation*}
F\left(\frac{y}{\alpha}\right)=F\left(\frac{1}{\alpha}\right) \sum_{k=0}^{\infty}\left(F\left(\frac{k+y}{\alpha}\right)-F\left(\frac{k}{\alpha}\right)\right), \quad 0 \leqslant y \leqslant 1, \alpha>0 \tag{3}
\end{equation*}
$$

For α such that $F(1 / \alpha)>0$ we have

$$
\begin{align*}
& F\left(\frac{n+y}{\alpha}\right)-F\left(\frac{n}{\alpha}\right)=\left(F\left(\frac{n+1}{\alpha}\right)-F\left(\frac{n}{\alpha}\right)\right) F\left(\frac{y}{\alpha}\right) / F\left(\frac{1}{\alpha}\right) \tag{4}\\
& n=1,2, \ldots, 0 \leqslant y \leqslant 1, \alpha>0 .
\end{align*}
$$

Let $F=p F_{d}+q F_{s}+r F_{a}$, where F_{d}, F_{s} and F_{a} are discrete, singular and absolutely continuous components, $p \geqslant 0, q \geqslant 0$ and $r \geqslant 0, p+q+r=1$, are the weights of one.

Let $B=\left\{x_{i}, i=1,2, \ldots\right\}$ be the support of the discrete component of the distribution function $F, \operatorname{Pr}(X \in B)=p$. Consider $\alpha>0$ such that $0<F(1 / \alpha)<1$. For nondegenerate F the set α which satisfies that condition contains some interval. Define $B_{\alpha}=\left\{\alpha x_{i}-\left[\alpha x_{i}\right], i=1,2, \ldots\right\}$. We have

$$
\begin{aligned}
\operatorname{Pr}\left(X \in \frac{1}{\alpha}\left(B_{\alpha}+n\right)\right)=\operatorname{Pr}\left(X=x_{i}:\right. & \left.\frac{n}{\alpha} \leqslant x_{i}<\frac{n+1}{\alpha}\right) \\
& =p F_{d}\left(\frac{n+1}{\alpha}\right)-p F_{d}\left(\frac{n}{\alpha}\right), \quad n=0,1, \ldots
\end{aligned}
$$

From (1) for $n=0$ and $B=B_{\alpha}$ it follows that

$$
p F_{d}\left(\frac{1}{\alpha}\right)=\left(p F_{d}\left(\frac{1}{\alpha}\right)+q F_{s}\left(\frac{1}{\alpha}\right)+r F_{a}\left(\frac{1}{\alpha}\right)\right) p
$$

which implies $p=0$ or $p=1$.
Let $p=0$ and B be the support of the singular component of the distribution F (e.g. B is a set of the Lebesgue measure zero), $B \subset[0, \infty$), and $\operatorname{Pr}(X \in B)=q$. Let

$$
B_{\alpha}=\bigcup_{k=0}^{\infty} \alpha\left(B \cap\left[\frac{k}{\alpha}, \frac{k+1}{\alpha}\right)-\frac{k}{\alpha}\right) .
$$

We have

$$
\begin{aligned}
\operatorname{Pr}\left(X \in \frac{1}{\alpha}\left(B_{\alpha}+n\right)\right)=\operatorname{Pr}\left(X \in B_{\alpha} \cap\right. & {\left.\left[\frac{n}{\alpha}, \frac{n+1}{\alpha}\right)\right) } \\
& =q F_{s}\left(\frac{n+1}{\alpha}\right)-q F_{s}\left(\frac{n}{\alpha}\right), \quad n=0,1, \ldots
\end{aligned}
$$

From (1) for $n=0$ and $B=B_{\alpha}$ it follows that

$$
q F_{s}\left(\frac{1}{\alpha}\right)=\left(q F_{s}\left(\frac{1}{\alpha}\right)+r F_{a}\left(\frac{1}{\alpha}\right)\right) q,
$$

which implies $q=0$ or $q=1$.
Now we prove that $0<F(x)<1$ for $x>0$. The conditions $F(a)$ $=0, F(a+0)>0$ for some $a>0$ and (4) imply that F is discrete and generated by $\operatorname{Pr}(X=k a)=p_{k} \geqslant 0, k=1,2, \ldots, p_{i}+p_{2}+\ldots=1$. Putting $1 / \alpha>a$ and such that a / α is irrational, from (1) for $n=0$ and $B=\{\alpha a\}$ it
follows that $\operatorname{Pr}(X=k / \alpha+a, k=1,2, \ldots)>0$, which does not hold. The conditions $F(a)<1, F(a+0)=1$ and (3) imply

$$
F\left(\frac{a}{2}-\varepsilon\right)=F\left(\frac{a}{2}+2 \varepsilon\right)\left(F\left(\frac{a}{2}-\varepsilon\right)+1-F\left(\frac{a}{2}+2 \varepsilon\right)\right), \quad \text { where } 0<\varepsilon<\frac{a}{4}
$$

Hence $F\left(\frac{1}{2} a-\varepsilon\right)=1$ or $F(\underset{2}{1} a+2 \varepsilon)=0$, which does not hold.
It is obvious that the derivative of the probability distribution function exists almost surely. From (4) it follows that $f^{+}(0)=\lim _{t \downarrow 0} F(t) / t$ exists.

Now we prove that $f^{+}(0)>0$.
Write $1-F=\bar{F}$. From (3) it follows that

$$
F\left(\frac{y}{\alpha}\right) \geqslant F\left(\frac{1}{\alpha}\right)\left(F\left(\frac{y}{\alpha}\right)+F\left(\frac{1+y}{\alpha}\right)-F\left(\frac{1}{\alpha}\right)\right)
$$

that is

$$
F\left(\frac{y}{\alpha}\right) \geqslant\left(F\left(\frac{1+y}{\alpha}\right)-F\left(\frac{1}{\alpha}\right)\right) F\left(\frac{1}{\alpha}\right) / \bar{F}\left(\frac{1}{\alpha}\right), \quad 0 \leqslant y \leqslant 1, \alpha>0 .
$$

For fixed $x>0$ substitute $y=\alpha x, 1 / \alpha=a$. If $0 \leqslant y \leqslant 1$, then $0 \leqslant x \leqslant 1 / \alpha$, and we have

$$
F(x) \geqslant(F(a+x)-F(a)) F(a) / \bar{F}(a), \quad 0 \leqslant x \leqslant a
$$

which implies

$$
\begin{aligned}
F(x) & \geqslant \sup _{a \geqslant x}(F(a+x)-F(a)) F(a) / \bar{F}(a) \\
& =\sup _{B-x>A \geqslant x A \leqslant a<B-x} \sup (F(a+x)-F(a)) F(a) / \bar{F}(a) \\
& \geqslant \sup _{B-x>A \geqslant x}(F(A) / \bar{F}(A)) \sup _{A \leqslant a<B-x}(F(a+x)-F(a)) \\
& \geqslant \sup _{B-x>A \geqslant x} \frac{F(A)}{\bar{F}(A)} \frac{F(B)-F(A)}{B-A} x,
\end{aligned}
$$

and, finally,

$$
\frac{F(x)}{x} \geqslant \sup _{B-x>A \geqslant x} \frac{F(A)}{\bar{F}(A)} \frac{F(B)-F(A)}{B-A}>0
$$

From (4) it follows that if n / α is the point of existence of the derivative of F, then

$$
f\left(\frac{n}{\alpha}\right)=\left(F\left(\frac{n+1}{\alpha}\right)-F\left(\frac{n}{\alpha}\right)\right) f^{+}(0) / F\left(\frac{1}{\alpha}\right)
$$

Hence the absolute continuous component of F has the positive weight. There remains the case $p=0, q=0, r=1$ (e.g. $F=F_{a}$).

From (4) we get

$$
f\left(\frac{n+y}{\alpha}\right)=\left(F\left(\frac{n+1}{\alpha}\right)-F\left(\frac{n}{\alpha}\right)\right) f\left(\frac{y}{\alpha}\right) / F\left(\frac{1}{\alpha}\right)
$$

which implies

$$
\begin{equation*}
f\left(\frac{n+y}{\alpha}\right) f^{+}(0)=f\left(\frac{n}{\alpha}\right) f\left(\frac{y}{\alpha}\right), \quad n=1,2, \ldots ; 0<y<1, \alpha>0 . \tag{5}
\end{equation*}
$$

It is obvious that the unique solution of equation (5) in the class of integrable functions is $f(x)=\lambda e^{-\lambda x}(x>0)$ for some $\lambda>0$.
3. Proof of Theorem 3. Let X have the probability distribution function F. Then, for $R=\alpha X-[\alpha X]$, we have

$$
H(y)=\operatorname{Pr}(R<y)=\sum_{n=0}^{\infty}\left(F\left(\frac{n+y}{\alpha}\right)-F\left(\frac{n}{\alpha}\right)\right), \quad 0 \leqslant y \leqslant 1, \alpha>0 .
$$

We have assumed that H is a truncated exponential probability distribution function, e.g.

$$
H(y)=\left(1-e^{-\lambda(\alpha) y}\right) /\left(1-e^{-\lambda(\alpha)}\right), \quad 0 \leqslant y \leqslant 1,
$$

where $\lambda(\alpha)$ is a parameter which depends on α only.
Taking the limit $H(y)$ if $\alpha \rightarrow 0$ and $y / \alpha \rightarrow x$, since $F(y / \alpha) \leqslant H(y) \leqslant F(y / \alpha)$ $+1-F(1 / \alpha)$, we get

$$
F(x)=\lim _{\alpha \rightarrow 0} \frac{1-e^{-\lambda(x) \alpha x}}{1-e^{-\lambda(\alpha)}} .
$$

Hence the limits, for $\alpha \rightarrow 0, \lim \lambda(\alpha) \alpha=\lambda$ and $\lim \lambda(\alpha)=\infty$ exist. Finally, we have $F(x)=1-e^{-\lambda x}(x \geqslant 0)$, where $\lambda>0$ for the nondegenerate case.
4. Proof of Theorem 4. Let $\operatorname{Pr}(X=k)=p_{k}, k=0,1, \ldots$ Then, for a $=1,2, \ldots$, we have $\operatorname{Pr}([X / a]=n, X-a[X / a]=i)=\operatorname{Pr}(X=a n+i)=p_{a n+i}$, $n=0,1, \ldots ; i=0,1, \ldots, a-1$. The independence condition for $[X / a]$ and $X-a[X / a]$ is equivalent to
$p_{a n+i}=\left(\sum_{j=0}^{a-1} p_{a n+j}\right)\left(\sum_{k=0}^{\infty} p_{a k+i}\right), \quad n=0,1, \ldots ; i=0,1, \ldots, a-1 ; a=1,2, \ldots$,
whence
(6) $p_{a m+i+1}=p_{a m+i} q_{i}, \quad i=0,1, \ldots, a-2 ; m=0,1, \ldots ; a=1,2, \ldots$,
where q_{i} does not depend on m.

In particular, for $a=2$, we have

$$
\begin{equation*}
p_{2 n+1}=p_{2 n} q, \quad n=0,1, \ldots, \tag{7}
\end{equation*}
$$

where q does not depend on n.
Let $a=4 k+1$. If $n=0,1, \ldots, 2 k-1$ in (7), and $m=0, i=0,2, \ldots, 4 k$ -2 in (6), then $q_{i}=q$ for $i=0,2, \ldots, 4 k-2$. If $n=2 k+1,2 k+2, \ldots, 4 k$ in (7), and $m=1, i=1,3, \ldots, 4 k-1$ in (6), then $q_{i}=q$ for $i=1,3, \ldots, 4 k-1$. We have $p_{i+1}=p_{i} q$ for $i=0,1, \ldots, 4 k-1$. Since k is arbitrary, we have p_{i} $=p q^{i}, i=0,1, \ldots$
5. Proof of Theorem 5. Let $G_{0}(x)=1_{(0, \infty)}(x), G(x)=\operatorname{Pr}\left(Y_{1}<x\right), G_{n}(x)$ $=\operatorname{Pr}\left(Y_{1}+Y_{2}+\ldots+Y_{n}<x\right), x>0, n=1,2, \ldots, \bar{G}=1-G, \quad E Y_{1}=\mu_{1}$. Assuming the existence of the probability density function f, we improve the joint density of $N(\alpha X)$ and $R(\alpha X)$:

$$
\begin{gathered}
\frac{d}{d y} \operatorname{Pr}(N(\alpha X)=n, R(\alpha X)<y)=\int_{0}^{\infty} \frac{1}{\alpha} f\left(\frac{u+y}{\alpha}\right) \bar{G}(y) d G_{n}(u), \\
\begin{aligned}
& \operatorname{Pr}(N(\alpha X)=n)=\int_{0}^{\infty} \int_{0}^{\infty} \frac{1}{\alpha} f\left(\frac{u+y}{\alpha}\right) \bar{G}(y) d y d G_{n}(u) \\
&=\int_{0}^{\infty} \frac{1}{\alpha} f\left(\frac{z}{\alpha}\right)\left(G_{n}(z)-G_{n+1}(z)\right) d z, \\
& \frac{d}{d y} \operatorname{Pr}(R(\alpha X)<y)=\int_{0}^{\infty} \frac{1}{\alpha} f\left(\frac{u+y}{\alpha}\right) \vec{G}(y) \sum_{k=0}^{\infty} d G_{k}(u) \\
&=\int_{0}^{\infty} \frac{1}{\alpha} f\left(\frac{u+y}{\alpha}\right) \bar{G}(y) d H_{G}(u), \quad n=0,1, \ldots, y \geqslant 0, \alpha>0,
\end{aligned}
\end{gathered}
$$

where

$$
H_{G}(u)=\sum_{k=0}^{\infty} G_{k}(u)=\mathrm{E} N(u), \quad u \geqslant 0 .
$$

The independence condition of $N(\alpha X)$ and $R(\alpha X)$ has the form

$$
\begin{array}{r}
\int_{0}^{\infty} f\left(\frac{u+y}{\alpha}\right) \bar{G}(y) d G_{n}(u)=\left(\int_{0}^{\infty} f\left(\frac{y}{\alpha}\right)\left(G_{n}(y)-G_{n+1}(y)\right) d y\right) \int_{0}^{\infty} f\left(\frac{u+y}{\alpha}\right) \bar{G}(y) d H_{G}(u) \\
n=0,1, \ldots, y \geqslant 0, \alpha>0 .
\end{array}
$$

For $n=0$ we have

$$
f\left(\frac{y}{\alpha}\right) \bar{G}(y)=\left(\int_{0}^{\infty} f\left(\frac{y}{\alpha}\right) \bar{G}(y) d y\right)\left(\int_{0}^{\infty} f\left(\frac{u+y}{\alpha}\right) \bar{G}(y) d H_{G}(u)\right) .
$$

Hence, for $\bar{G}(y)>0$,
(8)

$$
\frac{f(y / \alpha)}{\int_{0}^{\infty} f((u+y) / \alpha) d G_{n}(u)}=\frac{\int_{0}^{\infty} f(y / \alpha) \bar{G}(y) d y}{\int_{0}^{\infty} f(y / \alpha)\left(G_{n}(y)-G_{n+1}(y)\right) d y} .
$$

Putting $y=0$ in (8), we get a further simplification:
(9)

$$
\begin{aligned}
& \frac{f(y / \alpha)}{\int_{0}^{\infty} f((u+y) / \alpha) d G_{n}(u)}=\frac{f(0)}{\int_{0}^{\infty} f(u / \alpha) d G_{n}(u)}, \\
& \quad n=1,2, \ldots, y \geqslant 0, \alpha \geqslant 0, \bar{G}(y)>0 .
\end{aligned}
$$

Let $x>0, m=\left[n \mu_{1} / x\right]$. We have

$$
G_{n}(m u)=\operatorname{Pr}\left(Y_{1}+\ldots+Y_{n}<m u\right)=\operatorname{Pr}\left(\frac{1}{n}\left(Y_{1}+\ldots+Y_{n}\right)<\frac{m u}{n}\right)
$$

Since $m / n \rightarrow \mu_{1} / x$, we have $G_{n}(m u) \rightarrow 1_{(x, \infty)}(u)$. For bounded and continuous f (see [2], p. 254) we have

$$
\begin{equation*}
\frac{f(y / \alpha)}{f((y+x) / \alpha)}=\frac{f(0)}{f(x / \alpha)}, \quad y \geqslant 0, x>0, \alpha>0 . \tag{10}
\end{equation*}
$$

Substituting $u:=m u, \alpha:=m \alpha, y:=m y$ in (9) and taking the limit if $n \rightarrow \infty$, we get

$$
\begin{equation*}
\frac{f(y / \alpha)}{f((y+x) / \alpha)}=\frac{f(0)}{f(x / \alpha)}, \quad y \geqslant 0, x>0, \alpha>0 . \tag{10}
\end{equation*}
$$

The unique continuous solution of (10) is $f(x)=\lambda e^{-\lambda x}(x>0)$ for some $\lambda>0$.

REFERENCES

[1] K. Bosch, Eine Characterisierung der Exponentialverteilungen, Z. angew. Math. Mech. 57. 10 (1977), p. 609-610.
[2] Y. S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, New York 1978.
[3] M. Riedl, On Bosch's characterization of the exponential distribution, Z. angew. Math. Mech. 61. 6 (1981), p. 271-273.

University of Wroclaw
Institute of Mathematics
pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland

