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SGME CHAPACTERIZAT!kON§ OF 
THE E X m W m A L  DISTRIBUTION FUNCTION 

Abstract. Let X be a nonnegative random variable and let 1x1 
denote the integer part of x. The main result of the paper is the 
following characterization: X is exponentially distributed iff [ax] and 
E X -  [EX] are mutually independent for every a > 0. Some modifica- 
tions of this theorem are also considered. 

I 

I 1. Results. Let X be a nonnegative random variable, and let F { x )  
= Pr(X < x) be its probability distribution function: Assume that the distri- 
bution is not concentrated at one atom. We say that X is exponentially 
distributed if F (x) = 1 - e-" ( x  (x 0) for some L > 0. We say that X is 
geometrically distributed if Pr(X = k) = pgk, k = 0, 1, . . . , for some 0 < p < I ,  
q = 1-p.  Denote by [x] the integer part of x. 

The main result of the paper is the following characterization of the 
exponential probability distribution function: 

THEOREM 1. X is exponentially distributed ifi for every a > 0, [ax] and 
LXX - [ax] are mutually independent. 

The random variables [ax] and*olX- [ax], separately considered, may 
be used to the characterization of the exponential probability distribution 
function. 

THEOREM 2 (Bosch [I]). X is exponentially distributed ifi for euery or > 0, 
[ax] is geometrically distributed. 

THEOREM 3. X is exponentially distributed i& for every a > 0, aX - Cora 
has the truncated exponential probability distribution function. 

The modified version of Bosch's theorem is by Riedl [3]. Theorem 1 
has its discrete - - version and its continuous version formulated in terms of the 
renewal theory. 

THEOREM 4. Let X be a nonnegative integer-valued random variable. X is 



geometricaIly disrributed iff, for evmy a = 1 ,  2, . . . , [ X / a ]  and X - a [X/a]'  
are mutually independent. 

THEOREM 5.  Let X ,  Y,, Y,, . . . be independent nonnegative random uariab- 
les, let X have an absolutely continuous probability distribution function with 
bounded and continuous density, and let Yl, Y2, . . , haue a common probability 
distribution function with the finite expected value. k t  N ( t )  = max(n: Yl + . . . 
+ Y, < t) and R (t)  = t - ( Yl + . . . + YNIN[t)), t 2 0, be the renewal process and the 
residual life process, respectively. X is exponentially distributed iff, for every 
a > 0 ,  N(mX) a d  R(uX) are mutually independent. 

In the proofs which now follow, we limit our considerations merely to 
the "only iP' part. 

2. Roof of Theorem 1. Write N = [ax] and R = a x - N .  Let Af be the 
a-field of Bore1 sets on [O, 11. Define m(B+fl)  for or >0, -co < f l  <a, in 
such a manner that x EB iff m ( X  +S) Em ( B  +p). We have 

The indebendence condition for N and R may be written as 

I f  B = [0,  y),  0 < < 1 ,  then ( 1 )  has the form 

For n = 0 we have. 

For ol such that F ( l / a )  > 0 we have 
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follows that Pr(X = k/ci+a, k = 1, 2, . ..) > 0, which does not hold. The 
conditions F (a)  c 1 ,  F ( a +  0) = 1 and (3) imply 

Hence ~ ( l n - e )  = 1 or ~ ( l o i h )  = 0, which does not hold. 
It is obvious that the derivative of the probability distribution function 

exists almost surely. From (4) it foIIows that f ' (0) = lim F (t)/t exists. 
t Lo 

Now we prove that f + (0) > 0. 
Write 1 - F  = F .  From (3) it follows that 

that is 

For fixed x > 0 substitute y = ax,  l /a  = a. If O < y G 1, then 
0 < x < l / a ,  and we have 

which implies 

F (x) 2 sup (F (a + x )  - F  (a)) F  ( a ) / p  (a) 
a B x  

= sup w p  (F(a  + x) -F(a) )  F(u)/F (a)  ' 

B-x>AdxA<a<B-x 

F(A)  F ( B ) - F ( A )  2 sup -- x, 
B - ~ > A $ ~ F ( A )  B - A  

and, finally, 

F (4 F ( A ) F ( B ) - - F ( A )  > 0 .  2 sup - x B - ~ > A ~ X ~ ( A )  B - A  

From (4) it follows that if n/u is the point of existence of the derivative 
of F? then 
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Hence the absolute continuous component of F has the positive weight. 
There remains the case p = 0, q = 0, r = 1  (e-g. F = Fa). 

From (4) we get 

which implies 

It is obvious that the unique solution of equation (5) in the class of 
integrable functions is f (x) = l e - A x  (x > 0) for some A > 0. 

3. Proof of Theorem 3. Let X have the probability distribution func- 
tion F. Then, for R = orX - [EX], we have 

We have assumed that H is a truncated exponential probability distribu- 
tion function, e.g. 

where A(a) is a parameter which depends on a only. 
Taking the limit H ( y )  if ol + 0 and y/a -+ x, since F (ylol) < H ( y )  < F (y/or) 

+ 1 - F ( l / o l ) ,  we get 

Hence the limits, for a + 0, lim A(a) or = A and lim A(a) = co exist. FinaI- 
ly, we have F ( x )  = 1 -e-"(x 2 0), where 3, > 0 for the nondegenerate case. 

4. Proof of Theorem 4. Let Pr(X = k) = p,, k = 0, 1 ,  . . . Then, for a 
= 1 ,  2,  ..., we have Pr([X/a] = n ,  X-a[X/a ]= i )=Pr (X = a n + i ) = ~ , , + ~ ,  
n = 0 ,  1, ... ; i = 0, 1, . . ., a -  1 .  The independence condition for [ X / a ]  and 
X - a [X /Q]  is equivalent to 

whence 

where qi does not depend on m. 
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In particular, for a = 2, we have 

where q does not depend on n. 
Let a = 4 k + l . I f n = O , l , . . . ,  2k-1 i n ( 7 ) , a n d m = O , i = 0 , 2  ,..., 4k 

-2 in (61, then q, = q for i = 0, 2, ..,, 4k-2. If n = 2 k + l ,  2 k + 2 ,  ..., 4k in 
(71, and m=l, i =  1, 3 ,... , 4 k - 1  in (6), then q i = q  for i = 1 , 3 ,  ..., 4 k - 1 .  
We have p,,, = pi q for i = 0 ,  1 ,  . . . , 4k - 1 .  Since k is arbitrary, we have pi 

i = p q ,  i = 0 ,  1, ... - 

5. hoof of Theorem 5. Let Go (x) = ,, ( x ) ,  G  (x)  = Pr Yl < x), G ,  (x) 
= R ( Y , + Y , + . . . + Y n < x ) , x > 0 , n = l , 2  ,..., E = 1 - G ,  E Y i = p , .  As- 
suming the existence of the probability density function 1; we improve the 

' joint Pensity of N (ax) and R (plX): 

where 
m 

H,(u)=  G , ( u ) = E N ( u ) ,  u 2 0 .  
k =  0 

The independence condition of N ( a X )  and R ( a X )  has the form 

For n = 0  we have 
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Hence, for G ( y )  > 0, 
so 

Putting y = 0 in (81, we get a further simplification: 

19) , f (via) - - 
91 

f (01 
9 

Let x > 0, rn = [ n p I / x ] .  We have 

Since m/n +p,/x, we have G,(mu) - * l ( , , , ( u ) .  For bounded and con- 
tinuous f (see [ 2 ] ,  p. 254) we have 

Substituting u : = mu, a := ma, y := my in (9) and taking the limit if 
n + m, we get 

The unique continuous solution of (10) is f (x )  = Re-" (x > 0) for 
some R > 0. 
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