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Abstract. A supplementary characterization of Banach spaces
in terms of conditions on the tail behavior of Lévy measures is given.
A criterion for attraction to a stable law in the operator setting is
proved as well. In the case of the Banach space C(T) some conse-
quences are derived. ’

1. Introduction. It is well known that every infinitely divisible probability
measure (p.m.) z on a real Banach space B admits (up to translation by point
measures) a unique decomposition into a convolution product u = g * ¢,(F)
of a Gaussian measure ¢ and a generalized Poisson measure e,(F). The last
measure is characterized by its associated Lévy measure (L.m.) F. In the case
of a general Banach space it is known (see [4], [10], [34], [15], [21]) that

‘the integrability condition

(1.1) ' fmin (1, |x||?) F (dx) < o

is sufficient (necessary) for the o - finite Radon measure (R.m.) F on B with
F(!0}) =0 to be an L.m. iff B is of type p, 0 < p < 2 (cotype p, 2 < p < o).

In this note we consider the case where the measure ¥ satisfies a
condition different from (1.1). For example, the relation

0<rs1

(1.2) sup "F({x: ||xl| >t}) <0, 0<p<2,
can hold (note that (1.1} is vequiv_alent to |
jt"" F({x: |Ix|] > t})dt < 0).
0 ,

- It is worth noticing that the L.m. F of a p-stable p.m. satisfies the
condition :

1.3) F({x:|Ix| >t})=¢"? for all t>0.
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. Therefore theorem 2.11 contains the well known result on stable p.m.’s

due to Mouchtari [31] and de Acosta [2]. Namely, for any finite R.m. I" on
the unit sphere of B the o -finite R.m. dF (¢, x) = dt -dI'(x)/t**? is the L.m. of
a p-stable p.m. iff B is of stable type p.

We use an inequality due to Rosinski [36] and the characterization of
Banach spaces of stable type given in [32] in order to describe those Banach
spaces in which condition (1.2) implies that the o - finite R.m. is an L.m. This
allows us to extend Zinn’s [42] operator approach to the central limit
‘theorem (CLT), ie. the domain of normal attraction (DNA) of 2-stable
p.m.’s, to the case of the domain of attraction (DA) of p-stable laws, 1 < p
< 2 (see theorem 4.7). Theorem 4.6 via the notion of prestability seems to be
the correct extension of a well known result on the CLT in Banach spaces
due to Hoffmann -Jérgensen and Pisier [18].

We describe the DA via some type of regular variation of measures,
going back to Meerschaert [30] (see section 3). In theorem 3.2 it is proved
that this regular variation is equivalent to the conditions known till now.
This completes proposition 3.1 in Gine’s paper [12], where a unified account
of the theory of DA’s in Banach spaces is given. It is worth noticing that all
properties of the norming sequence depend on the special structure of the o -
finite measure F defined by condition (1.3). :

As an immediate consequence we get also some recent results on the
almost sure continuity and the DNA of p-stable continuous processes due to
Marcus and. Pisier [27].

Notation. Throughout the paper the following notation will be used.
Let B be the unit ball in the Banach space, % (B) be the family of finite-
dimensional subspaces of the Banach space B and qp(x) be a_seminorm
defined by gr(x) =d(x, F) if Fe Z(B). : _

Given a Borel measure i on B, a real number o and Borel sets 4 and C,
C(p) denotes the class of Borel sets with boundary of u-measure zero,
measures aou and p|, are defined by (xou)(4) = pu(@ ' A4) and ul,(C)
= u(A N C) respectively; |u| = u(B). For a function f on the Banach space B
we write u(f) = [fdu and f(u) = p(f~'(+)). We write g, >pu (1 = p) if
w(f) = u(f), as t >0, for all real continuous and bounded functions
(vanishing on some neighbourhood of the origin in addition).

By a B-random variable X (B-r.v.) we mean a Borel measurable map on
some probability space (2, #, P), provided that #(X) is an Rm. on B. If
X, Xl! . X,, are iid. B-r.V.,s, we write Xﬁ = XI{”X” <8 Xal= XI(”X” >4}
cand.S,(X)=X;+...+X,. I {X,;: 1<i<k,n>1}is a triangular array,
then
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If f and g are functions, then f (t) ~ g(f) and f (1) X g (1), as t = o0, means
that lim f(£)/g(t) = 1 and there exist constants ¢, and ¢, such that

t—oo

f@® im SO
t—-n; g(t) <r—-lgg(t)

Cl = = CZ:

respectively

2. Lévy measures. For any ﬁmte R.m. F on the Banach space B, there
exists a Radon p.m.

e(F) = e Fi(Go+ 3. F*/k).

kz1

We will study the image measure u(F) using operator u with u(F)('O‘)
= F(keru). On the other hand, ¢(G) = e¢(G—G({0}),) for any finite R.m.G.
Hence, for the sake of uniqueness, it is worth to suppose that two measures
F and G are equivalent if F|5,c = G|, c holds. By M(B) we denote the set of
equivalence classes of ¢ - finite R.m.’s on the Banach space B which are finite
outside of any neighbourhood of the origin. Let us now recall the concept of
the exponent of a o -finite measure.

Definition 2.1. Let K (x, x*) = ¢®*” —1—i{x, x*> Iy(x), for x* e B*,
xe€B. A symmetric measure F e M(B) is called an L.m. if the function

x* —>exp {[Re K (x, x*) F (dx)
]

is the characteristic function (ch.f) of a Radon p.m. (which we also denote by
,(F)" (x*) = exp {[K (x, x*) F (dx)}. LW(B) will denote the set of all L.m’s
symmetrized measure is an L.m.. In this case associated p.m. has chf.
e, (F)(x*) = exp {[ K (x, x*) F(dx)}. #T(B) will denote the set of all L.m’s
(of equivalence classes) in 9 (B).

Next we state and prove a supplementary characterization (statement 3,
in the proposition 2.2) of a symmetric L.m. For this we define the class
J (B) of vector Hausdorff topologies 7 on B which are weaker than the
norm topology, and for which exists a countable set I' = (B, 7)* separating
points on B, and the o -algebra of cylinders (B, I') coincides with the Borel
o -algebra on B. An example of such a topology on a separable Banach
space is the weak topology

ProrosiTion 2.2. For a symmetric measure F € W(B) the followmg State-
ments are equivalent:

1. Fe ZIM(B); .

2. for every sequence of finite measures F,1F, the sequence {e (F)}, is

- weakly convergent (to e(F));
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3. there exist a sequence of finite measures F,1F and a 7 -compact set
K for some 7 €7 (B) such that

lim e(F)(K) > 0.

Proof. 1=2. The statement follows according to Ito-Nisio theorem
from the definition of L.m.s.

2 = 3. Obvious. . »

3 =1 Let Gy=F, and G,=F,—F,_; for n>2. Then e(F,)
= e(Gl)*...*e(G,,). By the assumptions and theorem 3.4.2 in [9] (the proof
in our setting is the same), there ex1sts a Radon p.m. v on B such that
e(F ,,)_Ew ‘Furthermore, since F,1F, we get that the chf v(x¥
= exp {{Re K (x, x*) F(dx)} for all x* eB* which 1mphes 1.

In this note we con51der sets of o-finite R.m.s delined as [ollows:

: (‘ [F( ’BL)]"/"CIT")”“ for ¢ < oo,
D 1Fllpg = §
(SUPIPF(IBP))”” for g = =.

We write || X|),, instead of || #(X)|l,, if F = ¢(X). For 0 <p < and
0 g<x put

W, (B) = |F e M(B): |IFll,, < ).

Condition (1.1) means for a ¢-linite R.m. F that Flz e, ,(B).

Now we deline a class of Banach spaces in which the relation
WK, (B) = YM(B) holds (see theorem 21]) We recall the definition of
L()rent_ Marcinkjewicz sequence spaces

p,q(B) = lx = (xi)iEN EBm:”k—”p,q < w}’

where

( Y e (|lx %)) for ¢ < o,
Pizi

supt””ll\ ||* : for g =%
21

and an asterisk denotes a non-increasing rearrangement of the sequence.
Let (r,);>, denote a Rademacher sequence.
Definition 23. Let 0 <p <2, p<g< o, and E, F, B be Banach
spaces. An operator u: E —F is of type (p, g) if there exists a constant ¢ >0
such that the inequality

(2.2) E[[¥rux]| < cllexlpg

holds for any finite collection x;, ..., x, = E. A Banach space B is of type
(p, q) if the identity map on B is of type (p, g)- o

1%l g =
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Remark 24. The notion of type (p, p) coincides with the notion of
Rademacher type p. A Banach space B is of type (p, ) iff B is of stable type
p [32]. It is easy to see that if B is of type (p, q;) and p < g, < q; < %0, then
B is of type (p, g2), but we do not know whether this inclusion is strict
(except the cases g, = co and g, = p). As usual, the notion of cotype (p, q)
can be defined by means of the converse inequality to (2.2) and with 2 < p
<0, 1<g<p. If Bis of type (p, q), then B* is of cotype (¢, ¢q'), where 1/p
+1/p =1 and 1/g+1/q" = 1. The proof of this and some other propertles of
the class of type (p, q) will appear elsewhere.

The following property of the Banach spaces, introduced above, will be
useful for us. For the proof see [33] (or [32] if g = ).

ProposiTion 2.5. Let 1 < p <2, p<yq< % and E, F he Banach spaces.
For an operator u: E = F the following sratemenrs are equivalent:

1. u is of type (p, 9);
2. there exists a constant ¢ > 0 such that the inequality

R uXahe < X NXiIE,

holds for all symmetric independent E-ruv’s X,, ..., X,;
3. there exists a constant ¢ >0 such that the inequality

1S (1 (X)) .g < en'/711 X1 q

holds for all symmetric independent E-ruv’s X, ..., X,;

The following result on integrability with respect to infinitely divisible
p.m.’s on Banach spaces will serve as a tool in the proof of theorem 2.11.
Proposition 2.6 is an extension of some results proved in [3], [20], [21] and
[38] and has a nonvoid intersection with some of them if p = ¢. It is worth
noticing that a more result is known for a class of subexponential p.m.’s (see
" [11]) and a more general result holds for R!-r.v.’s (see [8]).

ProPOSITION 2.6, Let 0 <p < 0, 1<g< o0 and u=0,%p+*e,(F) be an
infinitely divisible p.m. on the Banach space B. Then |lu|l,, <o iff
FleeM, (B). ,

LemMMAa 2.7. Let p, q be as above and F,G,F,, ..., F, be finite Rm’s
on B. Then the inequalities

(2.3) F*(tB)||Gll,,q < [|F * Gl +t [F (tB)[G]'",
' . kK Kk
(24) IFy %...x Fillpg < (X TTIF DY Z IIF:HM
i=1j=1
' . 1#1

“hold for all t >0 and any mteger k=1
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Proof. Let us rewrite (2.1) as

IF| | o

4 [ (s g (F)yds/s)!a  for q < oo,

(2.5) |Fllp =< PO S
v sup s'? g(F) ~  for g =0,

0 <s<|F|
where ¢ (F) =inf {t > 0: F(¢tB°) < s}. From the o -additivity it follows that
F %G (aB°) < 5. By the definition of the convolution and Fubini’s theorem we
have, for all £ > 0,

F+G@BY) = F @G(i(x1, X2): [Ix; +x,]| > a})
= | G (1xy: llxg + Xl > a}) F(dxy)
xg:llxall €t}

2 G((x+1)B)F(tB),
therefore the inequality £ pqp (G) < #;(F*G)+t holds for all s > 0. Hence,
by (2.5), we get (2.3).

Let us now prove (2.4). Suppose that o; = #.(F;),i =1, ..., k. Then, by

o -additivity of measures F;, we get

-
N Fi(4B) <s.
i=1 .
Therefore, from relation
k k k :
A= g, XX > Y} cUBx ... xo; B x ... xB,
1 1 1

it follows the estimate
k

k &k
Fl*...*Fk(Zach)=F1 ®"'®Fk(Ak)<SZ ZIFJI'
1 . i=1

-

[N

Hence by (2.5) we get (24). | ’

Proof of proposition 2.6. By virtue of Fernique’s (p. 258 in [40]),
Yurinskii [41] results and lemma 2.7 it is enough to prove that [le(F|ll,,
<o iff Fl,eM,, (B). The necessity of F |gc €W, 4 (B) follows immediately

~ from the inequality e(F)(A) > e~ FI F(4), which holds for all Borel sets A.
For the sufficiency we use lemma 2.7 (and Minkowski inequality for g < o).
We get

lle (F | ,oil5, < e k; IICF |5 ™I/k! < c(p, F)IF |ellE,

for some constant c¢(p, F) and p*‘ equal to 1 or p according to either p > g or -
p < 4. This proves proposition 2.6.
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If g = o0, from proposition 2.6 it follows

CoroLLARY 2.8 [1]. Let 0 <p <2 and I' be a p-stable pm. on the
Banach space B. Then there exists a constant ¢ > 0 such that u(tB%) < ct™? for
all +>0.. :

The following statement refines a result in [20]:

CoroLLARY 2.9. Let u be an operator stable p.m. on a separable Banach
space B, i.e. a full p.m. for which there exists an operator Q € L(B) with lim t2
t—=0
= 0 such that u* =t%opu * 0y, for all t >0 and some b;eB. Then there exists
" a constant ¢ >0 such that ,u(tB“) <ct™ 127 for all £ > 0.
Proof. Follows from the representation of the L.m. F;, of the operator -
stable p.m. u (see [19]),

- 1
Fo(4) = jjIA(th)t‘zth(dx)
. SQO
for all Borel sets A, where

1
Sg = {xeB: [|lt®x||t~1dt =1}.
0

The next statement concerns the completely self - decomposable p.m.’s,
i.e. the infinitely divisible p.m.’s with associated L.m.’s F of the form

(2.6) F4)=| }D.IA (sx)s~ 2= =1 () ds T'(dx)
BO

for all Borel sets A, some finite measure I" on B vanishing at the origin and a
weight function A such that

IV B () T (dx) < o

(see [39)). 7

CoroLLARY 2.10. Let u be a completely self-decomposable pm. on the
separable Banach space B with associated L. m. F (see (2.6)). If the measure T
is concentrated on the set {x:0 <a < ||x|| <1}, then there exists a constant
¢ >0 such that p(tB) <ct 2 for all t > 0.

Let us state now the main result of this section.
THEOREM 2.11. Let 1 <p <2 and p < . The following are equiva-
lent for the Banach space B:

1. B is of type (p, q);

2. for all FeMM(B) such that ||F|g)l,, <, Fe LIRB);

3. if FeW, (B), then F e #I(B) and |le,(F)||,, < 0;

4. there exists a constant ¢ >0 such that |le(F)l|,, < c||Fll,, for all
.symmetric F e M(B).

9 — Pams. 9.2
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Proof. 1=2. There is no loss of generality if we assume that F € IR(B)
is concentrated on B and symmetric. Let us define symmetric independent B-
r.v’s (X))i», with distributions (X)) =e(F |, 0-1<yxy<i-1) 12 1, and
- finite Rm’s F,,, = Fl{x:m_l <=l €n=1) for m > n > 1. Further, suppose that
q < . Then, by Minkowski’s inequality and proposition 2.5, we get the
estimate

I3 Xl

1F ol . ® F"k cvqp qp/q
El_'F"' . ((‘, (IFm Al ) & )

-|F
<cemrl S IR,

k=1 (k— 1)| ( ‘ (Fm ..(th))‘”P dtﬂ)p/q

1/m
=cm PF(m™ ' B)+c( [ F?(¢B°) dt2)Pl
1/m .
for all m > n > 1 and, therefore, Y X, (i=1,2,..) converges in probability.
In particular,

ey e(Fl, 1,0 > £(X X,).

Thus, by proposition 2.2, if ¢ < co, then F is an L.m.
Assume now that g = co. Then, by proposition 2.5, for Rm’s F,
=F,;,n>1, we have

le(FIE o< e ™ 3 k) IFHE -

kz1

e ¥ k=D ES T IFE o < clIFI o

k21

Thus, partial sums ( Z X)u>1 are stochastxcally bounded and hence (by
i=1

Lévy’s inequality) bounded as. In view of proposition 2.2 in [32] B is of
stable type p. An appeal to results of Maurey and Pisier [29] assures us that
B does not contain c¢,. Another appeal to corollaty 1.7.2 in [17] implies that
Y X;(i=1,2,..) converges as. Hence relation (2.7) holds and F is an L.m.
as well.

2=3. This follows from proposition 2.6.

3 = 4. Suppose that statement 4 is not true. Then, for all neN, there
exists a symmetric L.m. F, such that |le(F)ll,, > n 3||F,l,q for all neN.

Put F L = (n? ||F,,||1,,q)‘1 oF,; then, by (2.5), proposition 6.1.5 in [22] and
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the symmetry of F,, we get that ||F,,||,,,,—n‘2 and |Ie(F,,)|l” n for all
neN. Now we set F = ZF (n=1, 2,..). By a simple argument (Mmkow-
ski’s inequality for g < co) we infer that F e, ,(B). Therefore F is an L.m.
and [le(F)l|,, <co by assumption. Let us define a sequence of symmetric
independent B-r.v.’s (X,),>; with distributions #(X,) = e(F,) for all neN.
Then, by propositions 54.9 and 54.14 in [22], Y X; (i=1,2,..)is a B-r.v..
~ with distribution e(F). An appeal to Lévy’s inequality gives that

suplle (F g < 8lle(F)ll,y < .

But this is a contradiction to l]e(F,,)II,,,,, = n, which implies statement 4.
4=1. Let F be the R.m. defined by

F=3 (0,,+6_,)
k=1

for .some xl,...,x,,CB Then e(F) =2 (&—E0x), k=1,2,.
where & and &, k=1,...,n, are iid. with e(5,) R'-rv’s and ||F||
= 2{l(x)1ll,,q- Hence

”Z (&= &) xk”p ¢ < 2c(l(x) 1l 5.q

by assumption. Accordmg to comparison principle due to Kwapien and
Rychlik (see theorem 5.4.4 in [40]) we see that the inequality

n
“Z Fr xk“p,q < ce ”(xk)'i”p.q
1

follows 1mmediately from estimate P(jry| > 1) < c?P(|&, =& >1) for all
t > 0. This completes the proof of theorem 2.11.

It is easy to see that theorem 2.11 holds also in the operator settmg
excepted the case g = co. For the last case we can prove the followmg

THEOREM 2.12. Let 1 €< p <2 and B, E and F be Banach spaces. If an
operator u€L(E, F) can be factorized through B by means of the type (p, o0)
operator veL(E, B) and the weakly compact operator weL(B, F), and F is
separable, then, for all F e (E) such that ||F|gll,, < o0, u(F)e LIN(F). -

If, in addition, symmetric Rm. F e W, . (E), then “e u(F)”I,,'OO < c|lFll,,
for a constant. ¢ =c(u). : '

- Proof. As in the proof of implication 1=2 in theorem 2.11, we
conclude that the sequence {y v(X)(w)}, i=1,2,...,n, n>1, is bounded
for a.a. w (with the same notation). As the unit ball of F is closed in the weak.
topology, then (according to corollary 5.5 in [16] and the assumption) we get
that ) u(X,), i =1, 2, ..., converges as. Then, by the same arguments as in
preceding theorem, we derive that u(F)e ZI(F) and the reminder of the
- statement, which completes the proof. : :
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Remark 2.13.1. If in the preceding theorem the operator w eL(B, F) is
compact, then the separability of the Banach space F can be removed.

2. It is easy to see that the factorization in theorem 2.12 is superfluous
if we restrict ourselves to the subclass of R.m’s of 9, ,(E) for which
lim¢? F (tB°) as t >0 exists and is finite. In this case, only property of type
(p, ) for the operator ueL(E, F) is needed.

Theorems 2.11 and 2.12 generalize well-known results about spectral
measures of p-stable p.m.’s on Banach spaces, as mentioned in the introduc-
tion. Theorem 2.12 extends also a result on completely self-decomposable
p.m.’s due to Thu [39]. We give it for the Banach space setting for simplicity.

CoRrOLLARY 2.14 [39]. Let 1 < p < 2. Assume that the separable Banach
space B is of type (p, o©). Then, for any finite measure I' concentrated on the
set {x: 0 <||x|| € p/2}, the o - finite measure F defined by (2.6) is an Lm. of a
completely self-decomposable p.m.

3. Regular variation. The classical criterion for domains of attraction in
the real line is as follows: if # is a (p, ¢, ¢,)-stable R!-r.v. with pe(0, 2),
¢y, ¢, =0 and c¢;+c, >0, then the R'-r.v. £eDA(n) iff

P(¢ > x) . P& < —x)
- Cl: —
P(|¢] > x) P(l¢] > x)
as x — o0, and the function R(x) = P(|£|] > x) varies regularly with index —p
(write ReRV(—p) in the sequel), ie. R(x) is measurable on (0, c0) and

lim R(tx)/R() = x~? for all x > 0.

t—oo

2s

The domain of attraction of Gaussian laws is characterized by slow
variation of the truncated second moment. This suggests that a more concise
criterion for attraction to a stable law via some kind of regular variation of
the law #(¢) is possible. Following Meerschaert [30], we provide in this
section the concept of regular variation of measures (see definition 3.1) and
prove that this is equivalent to conditions which characterize the domain of
attraction (see Theorem 3.2).

* We define

I (B) = {FeM(B): t!PoF =tF, ¥Vt >0}, p>0,

the measures y,(df)=t"'"Pdt on R* and Ip(W)=pF(x:|xl>1,
x/||x|| € W) on Borel sets W of the unit sphere S, for any F € 9% (B). Note that
the map i: (¢, x) ~tx is a homeomorphism of R™ xS onto B/{0}. Therefore
any measure FeI¥(B) is a continuous image of the product measure
Yp ® I'p, ie. F =i(y, ® I'r). Conversely, if F =i(y, ® I') for some finite R.m.
.I' on S and peR™, then F c¢9¥(B).
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Let us remark that F, 5 F (see notation in the introduction) iff
sge > F lspe for all 6B eC(F).

Definition 3.1. Let oc_eR1 and B be a Banach space. We say that a
measure G e M(B) varies regularly with index « if there exists a measure
F e (B) with

il

(3.1) , T,(G)()—G(t)/G(tB) HF ast—w.

We denote it by GeRV(B, o, F).
For any Rom. G eYB) put

. {sup{s:tG(sB) = 1} for t > 1/G(B),
Ga )= {1 o for 0<t<1/G(B).

TheoreM 3.2. Let peR™ and B be a Banach space. For an R.m. G € Wi(B)
the following are equivalent:

1. GERV(B, p, F) for F #0;
. 2. the functzon G( B)ERV( p) and (3.1) holds for some Rm. F with
BeC(F);

3. ageRV(1/p) and

- (33) _ nG(aG(nj-) 5F  as n—o

for some Rm. F with BeC (F);
4. there exists an Rm. F e 0¥ (B) such that (3.3) holds;
5. G(-B)eRV(~p) and

G(ix: lIxll > &, x/lxdjeW}) T (W)

G (B TTE FTe

for some Rm. I on § and all WeC(I').

Remark. A characterization of DA’s in Hilbert space via the validity of
(3 1) and G(- BY)eRV(—p) with additional restrictions on the support of the
stable measure was given by Klosowska [23]. Condition 5 appears for the
same purpose also in [23]. Relation (3.3), which presupposes the knowledge
of the norming sequence, is more or less standard. For a somewhat more
complicated, but equivalent conditions see Kuelbs and Mandrekar ([24],
4.2)), Araujo and Gme ([5], 4.10 (i) (a) and (b)), Gine ([12], proposition
3.1.2).

We precede the proof of theorem 3.2 by several lemmas. The proofs of
“them follow along the arguments as in the proof of statement 1.4.5° and
lemma 1.8 in [37].
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LEmMa 3.3. Let peR® and R, eRV(~—p). Then there exists a functlon
R, eRV(1/p) such that

(34) . Ri(Ry(x)) ~x~'  as x = o0,

3.5 o R,(R;(x)) ~x as x—o0. _
Conversely, if any function Ry(:)1 oo satisfies (3.4) instead of R,, then

‘R3(x) ~ Ry(x) as x = oo and, therefore R; satisfies (3.5). If, in addition, R;

varies regularly, then the same conclusion holds if (3.5) is valid for R; instead

of R,.

LemMa 34. Let peR™, and R eRV(—p) be a non-increasing on [A, o),
A>0. Let, for x > R(A),

(X)—sup{y A: xR(y) = 1}.

Then R(R,(x)) ~ x -1 as x = o.

COROLLARY 3.5. Let ¢, peR*, and the functions R, R, be as in lemma 3.4.
Then R(t) ~ ct™? iff R, (t) ~(ct)/* and R(t) 2t 7 iff R, (2) 2t'/* (as t = o).

CoroLLARY 3.6. Let peR* and G(B)eRV{(—p). If there exists a
function b(-)1 o which varies regularly and nG(b(n)B°) ~1 as n o0, then
b(t) ~ag(t) as t =0,

Proof. An appeal to the theorem of uniform convergence of slowly

varying functions (theorem 1.1 in [37]) assures that b(4,n) ~ b(n) as soon as
Ay ~ 1. Therefore, by the assumptions, we get that

lim b(1/G (b (n) B))b(n) =1.

Put
(3.6 n=supi{n=1:b(n) <t} for all t > 0.
Then

b(GT b+ DB) _b(G'¢BY) _b(G (b BY)
bn+1) . t h b(n,)

for all t > 0.

- We get that b(G™!(tB") ~t, as t » oo, by taking limits in the above
inequality. Therefore (3.5) holds, which implies that b(t) ~ a;(t) as t — 0,
whenever G (- B) eRV (—p). _

CoroLrarY 3.7. -Let peR* and GeW(B). If there exists an R.m.
FeW¥(B) such that nG(b,") >F, as n—co , for some sequence b, 1 o0, then
b, FYP(B%) ~ ag(n) as n — .
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Proof. Let us define n, by (3.6); then

n (u+1)G by 1 AB) _ G(BY)
n+l  nGb,B) ~ — G(BY)
< n+1n, G(b,,tle‘)
o, m+1
Taking limits in the previous inequalities and observing that F ¢ 0¥ (B),
we get G(-B)eRV(—p). An appeal to corollary 3.6 completes the proof.
Proof of theorem 3.2. 1=2. We remark that F(B) = 1. Thus, from
definition 3.1, it follows that G (tsB°)/G (tB°) — F(sB) =s™?, as t — 0, for all
s > 0. Therefore 2 holds. '

" 2=3. By the assumptions, lemma 34 and lemma 3.3, the function
ag €ERV(1/p) and nG(ag(n)B) ~ 1 as n —oo. This implies :

nGag(n)) = nG(ag (n) B)[G (ag () )/G{ag(m) B°)] > F

as n — 0. Therefore 3 holds.
3=4. We will prove that F e (B). Fix s >0. Then there exists a
6 €(0, s] such that B°eC(F) and

37 F(sB) = F| . (8B°) = lim nG (ag (n) sB").

n-—o

G(by+1B) for all ¢ >0.

By assumptions, sag(n) ~ ag(ns?) as n —oo. Thus, for any fixed ¢ >0
and all sufficiently large neN, we get
(38)  ([s*nIA[s”n]+ D)([s*n]+ 1) G((1 +&) ag ([s* n]+ 1) B)
< s?nG (ag(n) sB°)
< (([s? n]+ 1)/[s* n]) [s* n] G (1 — &) ag ([s” n]) B").

By virtue of the assumption F(0B) =0 and by (3.7), taking limits as n
—co and ¢ —0 (along (1+¢) BeC(IN) on both sides of (3.8), we have F(sB)
= §~PF(B°) for arbitrary s > 0. Therefore F € 0¥ (B).

4 = 5. According to F € D (B) and (3.3) it follows that G(-B) eRV(—p),
as in corollary 3.7. Now, if n, is the largest n such that a;(n) <t, then

G ({x: Il > ag (n), x/Ixl| eW}) _ F({x: lixll > 1, x/lixl| €W}) _ Te(W)
G(ag (n,+ 1) B) F(BY): I'e(S)

as t —oo. Similar arguments as above assure that 5 holds.
5=1. It is sufficient to show that

(39) (i (F)(4) < lim G (1 (4))/G (tBY)

t—=mw
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for some Fe9¥(B) and all 4 open and bounded away from the origin in
R* xS, because i is a homeomorphism. By the assumptions we have

v, @ T (a, b) x W) _ limi'l(t'1 0G)((a, b) xW)
7, ®@T((1, 0)x8) 1= G(tB9)
~for all 0 <a <b< oo and WeC(I'). By lemma 1.3.2 in [40] there exists a

basis @ of the topology on § which is closed under finite intersections and
with @ = C(I'). Therefore (3.10) holds for finite unions U(a,-, b) xU; with

(3.10)

. i
U, e’ as well. Now, any open set A in R* xS can be represented by (J U,,

where {U,} is an increasing net of open sets and each of them is a finite
union U(a,, b;) x U;. Therefore, by 7-smoothness of y, ® I' and by (3.10) we

infer that (3.9) holds for the measure F = F/F(B), where F = z(yp ® I). This
completes the proof of theorem 3.2.

Remark. It is easy to see that theorem 3.2 (appropriately modificated)
holds also for 7 -smooth measures on completely regular topological spaces.

4. Domains of attraction. Now we will apply the results given in the
previous section to the domain of attraction problem in the operator setting.
The openness of the interval {r > 0: B is of stable type r}, the key property
of the stable type Banach spaces (see [29]), is usually used to get “classical”
conditions. But this property does not longer hold for stable type operators
(in the sense of B. Maurey). We will show that type (p, ) operators are
useful for this purpose. This is an answer to the question posed by Paulaus-
kas and Rackauskas in [35], where they proved, among others, that above-
mentioned classes of operators do not coincide in general.

We have also proposed the notion of prestability in this section (see
definition 4.5). This property plays the same role as the pregaussianness in
Hoffmann-Jérgensen and Pisier theorem [18] (see theorem 4.6). But it is still -
an open question whether this version will be useful in connection with the
stabie cotype spaces.

We will start. with the general case of triangular arrays of B-r.v.s. For
this we put:

h ' {([ Pq/p(qF(:Xm.) > s)dSQ)p/a/rP P(gr (X ) >'t)‘ for ¢ < oo,
= 4]
sups” P(gp(X,:) > s)/t? P(gr(X,5) > 1) for g = 0

s<t
af, = aZ,({X,}) =sup {4Z%(t, F): t > 1, Féf(B), i=1,..., k,n>1};
pa = g ({Xn}) =sup {459, {0D): e 2 1,i=1, .., k,, n21};
AZ(B) = {B-tv’s (Xp)ty: a'p,q(‘X,,,-}-) <ol
S pq(B) = {B-1vs (X, )82 1: apq (X)) < 00).

g,

a
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The following construction will serve as a tool in the proof of the main
results. Suppose that E and F are Banach spaces and M is a closed sub-
space of F; then there exists an operator u eL(E/u' ' (M), F/M) such that the
diagram.

Qu_ 1o ‘QM

’
u

o Efu™! (M) —— — F/M
commutes. We will need the surjectivity property (see [33] for the proof) of
the type (p, o) operator ideal, which means that b, ,(¥) < bpyr',o(u) for all
closed subspaces M, where b, ,(u) is the infimum of real numbers ¢ for which
statement 2 in proposition 2.5 holds.

Proposition 4.1. Let pe[l, 2), q€lp, o], and E and F be Banach
spaces. Assume that the operator ueL(E, F) is of type (p, q). If the trian-
gular array of symmetric E-ru’s le,:‘ 1 €97 (E) and if the sequence
of Rm)s . :

{Z g(Xm')}nZI
1 \

is uniformly tight, then the sequence { £ (u(S,))}n>1 is relatively compact in the
topology of weak convergence of pm’s on F.
Proof. At first we show that the sequence of p.m’s {#(u(S,)}>; is
flatly concentrated. It follows by the assumptions, for fixed ¢ > 0, that there
-exists a subspace F &% (E) such that
ky

sup 'Z L(X,) |Bc(lx gr(0) > 1}) < ef(1+&7%a, b, , ().

) nz1
Let H =u(F)e #(F). Then, by virtue of the relation F éu"(H) and
corollary 2.3 in [33], we get
k, Ky

P(‘Ié(u (Sn)) > 8) < ; P(QF (Xw) > 1)‘*‘5._””‘111(21‘(9(":' I(gp(x,,,-)s 1)))”5,.;
1 .

k'l
SZY(X,ﬁ)ch({x:qF(x)>'1‘)[1+a“’a b I <e.
It is siufficient to show the uniform tightness of the sequence

( (u(S., ))),,,>1 for all y* e F*. For fixed ¢ > O there existsan M > 1 suchthat
ky

SUIIJ): P(IXl > M) < ¢/2.
n=z1 1 .
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Put A = M||y* 0u||~/2a”/(2 p). Then the estimate

P{*, u(S)) > 4} < ZP(IIX..,II > M)+
k’l
+lly* oull A2 Y E [ Xl > T (1 X all < M)
. . 1 . -
Ky _
< ZP(IIX,.,-H > M)[1+2||y* Oullzap.,MzA_z/@—p)] Se

holds for all n > 1, which completes the proof.

Now we prove the existence of p.m. which will be the limit of the
sequence of {#(u(S,)},>1, as will be seen later. '

ProrosiTion 4.2. Let pe[l,2), q€[p, oo],_and E and F be Banach
spaces. Assume that the operator ucL(E, F) is of type (p, q) (u satisfies the
conditions of theorem 2.12 if q = o0). Suppose that the triangular array of E-
ro’s {X,u)1" satisfies the condition

li_ly_Z(.f PUP(1X ll > 1) et < oo
n—-w 1 0
kﬂ

(lim Zsups”P(llell >s) <o for g=a).

n—'uolsl

If there exists an Rm. F e W(E) such that
kll
Y #(Xu) >F as n->oo,
1 .

then u(F)eESDI(F) »
' Proof By the assumptions, if g = 00, we get

. kp
tPF(tB) < 1@2 t?P L(X) (B < hmz sup s? P(IIX,,,II > s)
n 1

n 1 s€1

for all t (0, 1]. Since

1F 8|5, 0 = sup s* F (sB°)— F (B),

it follows, by theorem 2.12, that u(F)e ¥MM(F). For q < oo we get the
desired result by analogous arguments and Fatow’s lemma.

ProrosiTioN 4.3. Let pe[1, 2), ge[p, ], E and F be Banach spaces and
{X,,i}';"e.sxi ».q(E) be an infinitesimal triangular array of E-r.v’s. If there exists
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an R. m. FeﬁR(E) such that u(F)E,?"JR(F) and

ky,

ZE(X,,,) SF asn—o,

then the shift compactness of the sequence {%(u(S,)}n>1 implies
k"
4.1) - Z(u(S)— ZEu(X,,,—)l) e (u(F)) as n—co0.

Proof. By theorem 3.5.6 in [6] and from the shift compactness it
follows that the sequence
k'l

Q(u (S, — E1: u (Xni)l)nv? 1

is relatively compact. We remark that also
kll

4.2) 'Y P(u(X,) Du(F)  as n—oo.
- .

For any d, €(0, 1) we have the decompésitibn
@3)  u(S)—Eu(S)y = [u(S)s,—Enu(S,)5] +[u(S)* —Bu(S,)F1.

An appeal to Khinchine-Le Cams inequality (theorem 3.4.2 in [6]), the
inifinitesimality of the array {X,,,}l , condition u(F)e £IN(F) and relation
4.2) permlt (for details see [6]) to find a subsequence () such that
‘ (u(S,,k) *) S e(u(F)) as k —oo. Also, from (4.2), it follows that.
k'l

Y [xLu(X0)°)dx) - [xu(F) |,z (dx) as n—oo,
1B B

whenever 8B €C(u(F)). Therefore the second term on the right-hand side of
(4.3) weakly converges to e;(u(F)) along the subsequence (n,). Now we will
show that our limit has no non-degenerate Gaussian components. For this
aim we estimate

[Eexp (i (%, 1(Sn)s, —Ett(Sn)a, ) — 1l
< Elexp {i 7%, u(S,)s,— Eu(Sn)s Y} —1 0%, w(Sp)s, —Ett(Sn)s > — 1]

ny
g ZE g%, u(Xni)5k>2
o1 -

2 & _
<355 pap,qll)’*||25§ PY P(I Xl > [lull"*) >0 as k> o0
- . 1 - ‘: .



140 R. Norvaisa

for all y* eF*. Because e,(u(F)) (y*) # O for any y* eF*, the preceding estimate
and corollary 2.2.3 in [22] imply that the left-hand side of (4.3) converges
weakly to e,(u(F)) along the subsequence (n;). By uniqueness of the decom-
~ position of infinitely divisible p.m.’s it follows that (4.1) holds, which comple-
tes the proof.

Now we are ready to prove the general statement.

TueOREM 4.4. Let pe[l, 2), ge[p, ], and E and F be Banach spaces.
Assume that the operator ue L(E, F) is of type (p, q) (u satisfies the conditions
of theorem 2.12 if g = o0). If for the infinitesimal triangular array of E-r.u.s
lX,,,,, 1 €45, (E) there exists an R. m. FEEIR(E) with

k .
Y (X)) >F as n— o,
1

then (4.1) holds.

Proof. Let {X;,} be a triangular array which is an independent copy of
{X,;}. Then, by proposition 4.1, the sequence of p.m.’s { & (u(S,)—u(5,))}.>1
is relatively compact. Therefore the sequence of p.m.’s { £ (u(S,))},s, is shift
relatively compact. By proposition 4.2, u(F)e ZWM(F), So we are in a
position to apply proposition 4.3, which completes the proof.

Let X be a B-rv. and an Rm. Fe9¥(B), pe(0, 2), such that
LX)t )/ L(X)(tB) >F as t - oo (according to definition 3.1 on p. 133,
P (X)eRV(B, p, F)). As in the case of the central limit theorem (see [18]),
there are two main questions in connection with the domain of . attraction
problem. The first one is whether the R.m. F is an L.m. of some p.m. ¢ on B
(if the answer is positive, then ¢ is necessarily p-stable p.m.). :
. Definition 4.5. Let pe(0, 2) and F e (B). We say that the B-r.v. X

is prestable (with Lm. F) if Fe %%(B) and '

X*(L(X)(t) L (X)(@BY) > x*(F), as réoo,

for all x* eB. We denote it by ¥ (X)ePS,(B, F).

Now suppose that X is prestable and ¢ = ¢,(F) is a p-stable p.m. on B.
Put ax(n) = agx (n) (see (3.2)) and

Z,(X) = ag? (n)(Z X;—nEXL( x| <ayem)
1

for iid. B-rv’s X, X, ..., X,. Does then #(Z,(X)) tend weakly to e,(F)?
We say that the B-r.v. X is in the domain attraction of a p-stable r.v.
with Lm. F (write X €DA,(B, F)) if X is prestable with Lm. F and

&(Z,(X)) converges weakly to e,(F). If, for X eDA,(B, F), a,(n) ~ cn'/? as
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n — oo, then we write X eDNA (B, c”? F), because

N ) .
(||xnsn1/p))_’es(0 PF) as n—w.

n~1P(3 X, —nEXI
1

If it is known that for the B-r.v. X there exist an Rm. F ¢ 9% (B2) and a

sequence a, oo such that n#(X/a,) > F as n — oo, then, by corollary 3.7,

ax(n) ~ F'?(B%)a, as n — co. Moreover, it can be proved that statement 5 of

theorem 3.2 holds with I' = I'z as an implication 4 = 5. From the proof of

implication 5= 1 it follows that #(X)eRV (B, p, F/F (B)). This fact can be

proved directly with the help of a generalized uniform convergence theorem

for regular varying measures. The proof of it we do not enclose in this paper.

Now, if X eDA(B, F/F(B), then somé computation with the help of
proposition 6.1.5 in [22] shows that

Fay, [ZX—nEXI(”XH apl]) e (F) as n—oo.

Therefore our version of the definition of domains of attraction is
completely general and, on the other hand, is completely described by
random variables. ,

The following theorem contains results due to Marcus and Woyczynski
[28], Mandrekar and Zinn [25], Araujo and Gine [5], Gine [12]. We note
that the proof of implication 1 =2 in [12] (theorem 3.2) contains some lack,
because slow variation of t"P(qu(X) > 1), for all m>1, demands non-
degeneracy of the L.m. of a p-stable p.m. The proof given below is free from
this. We think that the proof of implication 4 =1 is new and more direct.

Let {#;};>, be a sequence of iid. standard p-stable R!-r.v.’s and

L, o (B) = {Z(X): lim P P(IX]| > 1) = c (0, )},
t—w

THEOREM 4.6.- Let pe(0, 2). For the Banach space B the following are
equivalent:

1. B-is of stable type p, i.e. there exists a constant ¢ < oo such that

(E IIZ 1 %[ < c(z [Ix:1?)V?

for all x,, ..., x, =B and some (all) oce(O r);

2. RV(B p, F) c DA,(B, F);

3. RV(B,p, ) nL; , (B) = DNA, (B, cF);

4. RV(B, p, F)nL,, (B) = PS,(B, F).

Proof. 1= 2. It will be shown that the sequence -{L/’(S,,(X)/ax(n)},,;1 is
shift tight. At this point note that there is no loss of generality in assuming
that X is symmetric. Further, note that by results of Maurey and Pisier [29]
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there exists a p €(p, 2) such that B is of Rademacher type p’. By the
assumptions the relation :
nZ (X/axM)({x: qu(®) > 1}) > Fl ({x: gqu() > 1}) as n >0

holds for any subspace M < B. By the definition of R.m.s we can conclude
that for fixed ¢ > O there exists an M €% (B) such that

@4 suptP(au(X) > ax()) S {1+ 2y (B2 H ('=p) ).
>0 - :
This implies the estimate

45 P(0(S,0) > sax () < nP(as (X) > ax(m) + -
+é 4 bp’,p' (B) naX p_ (n) E Qﬁ; (X) I(qM(X) Say(m)*

By theorem 3.2, ayeRV(1/p). Hence from lemma .18 and statement
14.5° in [37] it follows that the function

4.6) ~ b(t) =inf(s > 0:ax(s) > 1)

belongs to RV (p) and b(ax(f)) ~¢ as t > co. An appeal to theorem 2.1 in
[37] assures us that

4.7 Eqf (X) 1 (ap(X) Sax(m)

ax(n)

< p'supb () P(gr(X) > 1) j s?"1b(s)ds

t>0

o 17(14 —P))SupsP(qF(X) > a(s))ak(n)/n as n—oo.

From (4.4), (4.5) and (4.7) it follows that P(qF S.(X)) > eax (n)) ¢ for all
sufficiently large n > 1. Taking into account the one-dimensional result, we
see that the sequence of p.m’s {Z(S,(X)/ax(n)},>, is shift compact. By
theorem 2.1 in [37] we have {X;}/-; €/, ,(B), therefore, by proposmon 42
and 4.3 (for p=q =7p), XeDA,(B, F).

2=>3. By virtue of corollary 3.5, ay(n) ~ c*?n'’? as n - oo, where

¢ = lim t”P(||X|| > ).
t—>w .

Now, in view of proposition 6.1.5 in [22] and the condition F € 0¥ (B),
2 implies 3 by a straightforward computation.

3 =4. Obvious.

4:1. Let (x,-),->1 CB, Z”xi”p =1 and
1

T =271 Y 1llP (B - sy + Ozl
1
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We define a B-r.v. X and a positive R -r.v. ¢ independent of X with
distributions .#(X) =T and P(¢ >1t) =t~7? for all ¢t > 1, respectively. Then
EX eRV(B, p, i(y, ® )N L}, ,(B). By assumption, there exists a symmetric
pm. e(i(y, ® ) with Fourier transform

e(ir,®1) (x¥) = exp { ﬂ(x"= x)P I(dx)}

=exp {- ZI(x* X MIP} = lim JZ’(Z %) (x*)
n—a
and because of the Ito-Nisio theorem the sum Y #; x; (i =1,2,..) exists ae.
This is true for every choice of (x);»; =B with ) |Ix]P <o (i=1,2,..).
Hence the Banach space B is of stable type p, which completes the proof of -
theorem 4.6.
Now we prove the main statement. Put
LY o(B)={X—B-rv.: limt?P(|X]| >¢) =0 and

t—+a0

" (A)EX = lim [ XIx) <y dP = O};
t—w

WLLN,(B) = {X—B-r.v.: n7'?S§ (X) =0 in probability}.
Tueorem 4.7. Let pe[l, 2), and E and F be Banach spaces. For an
operator ucL(E, F) the following are equivalent:
1. u is of type (p, o©);
2. for any E-rv. X, with

C, =sup[ sup s P(IXI| > /ag(n) P(IXI| > ax(n)] < 0

n=1 s<ay(n

i and £ (X)eRV (B, p, F), the relation £ (u(X))eDA,(F, u(F)/u(F)(B°)) holds;

3. u(RV(E, p, F) n L;, (E)) « DNA,(F, cu(F));
4. u(L2 o (B) c WLLN,(F).
Proof. 1=2. It will be shown that
4.8) | sup[ sup a&(s)s™Y/ag(m)n~] < 0.

nz1l 1<s€n

We define the function b byi formula (4.6), which, by the same reasohs 7
belongs to RV (p) and b(ax(r)) ~t as t = 0. Put R(t) = P(||X|| > t). Then, by
lemma 3.3,

C, =sup[sR(a(s))] ! < 0.
s=1

Therefore we have
sup a%(s)/s < C% sup u?R(u) < C3C,a§(n)R(ax(n)

1<s<n 1<u<ay(n)
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for all n > 1, which implies (4.8). Put

C; =sup t/ax (b(2)).

t>0Q

‘Then, by (4.8) and because b(ax (n)) n for all n> 1 the estimate

4.9) sup PP (qu(X) > 1) < supb(r) P(qp(X) > t) sup t?/b(t )

0<t<ay(n t>0 t<ay(n)
< supb (1) P(gu (X) > 1)C§ sup af(u)/u
t>0 1<usn

holds for all n= 1 and any closed subspace M < E. As in the proof of
theorem 4.6, we conclude that for fixed ¢ >0 there exists an M e % (E)
such that

supb(t)P(qM(X) >1) <27 e b, L (u),

t>0

sup nP(qM (X) > ax(n)) < ¢/2

nzl

4.10) *

for some constant c. Put G = u(M); then, by (4.9), (4.8) and (4.10),

P(qc “(X > Sax(")) nP(QM(X) > ax(n))
+&7Pb, W nax?(n) sup tPP(gu(X)>1)<e

t$ax(n)

for all n> 1 and any symmetric E-r.v. Now we conclude as in theorem 4.6,
that, as n — o0,

% (ax* (m) [Sn (4 (20) = nEw(X) Ijucy sax(n))]) i""s,(u (F)).
It easy to see that n%(u(X)/ax(n) >u(F) as n—oo. Therefore, by

. corollary 3.7, a,x, (n) ~ ax(n) [u(F)(B)]"? as n = co. Now, a straightforward

computation with the help of proposition 6.1.5 in [22] assures us that 2
holds.

2=3. By corollaries 3.5 and 3.7, a,, (n) ~ [ncu(F)(B‘)]”" as n— oo,
where

¢ = lim t? P(|| X|| > ?).
‘ t—>o0

An application of proposition 6.1.5 of [22] shows that 3 holds.

3 =4. Following the proof of the analogous implication in [25] and
[12], we define the E-r.v. Y =rX+#nx, where xeS, ris a Rademacher R'-
r.v., 11 is an R!'-rv. with chf. Ee™ = exp|—c(p)|t|*},

c(p) = [ (cosu—1)y,(du),
[v] .
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the E-rv. X belongs to LJ,(E) and all r.v’s are independent. Let r
=2"Y(,+6_)and F = i(y, ®T). Then in the papers mentioned above it is
proved that YeRV(E, p, pF) and PP(|Y| >t)>FB)=p ! as t > .
Therefore, by the assumptions,

L(n~VrS, (ru(X))+u(x)n) >e(u(F)) as n—co.
Since .. '

e(u(F) (7% = exp | —c(p) | (x), y* )Pt = Eexp i (), y*>l,

we have ru(X)eWLLN,(F), which, by corollary 32 in [33], implies
u(X)eWLLN, (F).

4 = 1. This implication is proved in'[33], which completes the proof of
theorem 4.7. .

5. Applications. We will apply our results in order to get sufficient
conditions for stochastic processes to have a version with continuous sample
paths satisfying some maximal inequality and to characterize domains of
attraction of p-stable processes. For a stable process with index 1 <p <2
sufficient (and necessary, for the strongly stationary case) continuity condi-
tions are due to Marcus and Pisier [26, 27], which extends the Dudley-
Fernique theorem for Gaussian processes, i.e. the case p = 2. The paper [27]
contains among others the correct generalization to domams of normal .
attraction of the C(S) central limit theorem. :

' Supplementary results are given below. Our approach goes back to Zinn
[42] and was applied in this context by Araujo and Marcus [7], Giné and
Marcus [13 14]. The cont1nu1ty COIldlthI‘lS g1ven below can be apphed to

the stable case. The second statement is an extension of the Marcus and
Pisier result in [27], related to the limit theorem for the case of not
necessarlly normal attraction.

Let (T, 7) be a compact metric space and C(T) denote the Banach space -
of continuous functions on T with sup norm. For a t-continuous pseudo-
metric g on T let N(T, g; &) denote the minimal number of g-balls of radius

& > 0 with centers in T which are necessary in order to cover T We define

/q(e) = ‘IOgIIqN(T p;e)de for 2< g <0,

fw(é) = _[loglogN(T, 0: &) de.
0 i ) .

. For fixed to =T put _
-Lip, (T) = {xEC(T) ”x”g [x(t0)|+ suplx(s) x(t)l/g(s f)<00}

StE

10 — Pams. 9.2.
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and S = {xeC(T): ||xll, = 1}. Let m be a finite Borel measure on the unit
sphere U of C(T). Actually in [27] (cf. corollary 3.2in [13]) it is proved that
if #,(0) <o and '

(5.1) jllxll::m(dx) <

for pe[1, 2) and 1/p+1/q = 1, then there exists a p-stable pm on C(T) with
spectral measure m. Put

(-2 : Iw = lf/llyllg Iw(y/llyllg).m(fiY)

‘for‘_all. Borel sets W on S. Then, by (5.1), ,
(5.3) Is)= § Ilyll"m(dY) f lIyll m(dy) < 0.

beUiyllg <)
For the measure I’ we can deﬁne a o -finite measure F = z(yp ®7T) as in
section - 3. Let F denote an image measure of F.under the 1nc1usmn of
Llp‘,(T) in :C(T). By (5.2) we have

Te(4) = pF {(Q, O0)><A} j'llxll"IA(X/IIXII)T (dx) m(A)

for all Borel sets A on U. We conclude that the above contmulty result is
actually a generahzanon of a result due to Mouchtari and de Acosta
mentioned in the intriduction, because the inclusion map of Lip,(T) in C(T),
under the condltlon j,,(g) < o0, is of type (p, o) (see theorem 1.2 in [27)).
By v1rtue of an argument in theorem 2 [42], the next corollary is a simple

, translatlon of theorem 2.12 (see also remark 2.13. 2)) into the language of

stochastlc processes. ‘ . .
COROLLARY 5.1. Wlth the. above notatlons, for a o- ﬁnzte Borel measure F
on Llpa(T) such that C
s_uptPF {x: lxll, > 2} < 0 and lim ¢7 F {x: IIxHQ > t} <o,
: v M=o

the. ﬁnlteness of j,l(g) zmplles that there exlsts a stochastlc process
{X();teT) on a probabzhty space (Q "%, P) with continuous sample paths

and with the Lm. F of the induced p.m. on C(T), satisfying the inequality
sups? P {sup|X (¢)| >s} ¢, sups”F{x ||x||0 > s}
s>0 teT
for some constant c, depending only on p.
The next statement gives conditions for a process to belong to the

domain of attraction of a p-stable process with general norming constants
This is a consequence of theorem 4.7. :
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CoroLLARY 5.2. With the above notations, assume that Falo) < oo and
{X(t);teT} is a sample continuous process on T. If

(i) there exists a Borel o-finite measure F. on Lip,(T) with
Fix:||Ixll, >t} =t ?F {x: |Ix|l, > 1} for all t >0, and

LX) ) LX) x: Ixll, > 1) >F  as t > oo in Lip,(T);
(i) sup stp s?P(||X|l, > s)/ak(n) P(||X]l, > ax(n)) < cc, where

" nzls<ayn
ax(n) = sup {s > 0: nP(||X|l, > 5) > 1},

then there exists a p-stable stochastic process \Y(t);teT} with continuous
sample paths and with the L.m. F of an induced p.m. on C(T) satisfying

L([S2(X) ~nEXLyxy <ayon Y/ (W)™ £L()  as n— o,
in C(T), where dx(n) =sup{s > 0: nP(|X]| >s) > 1}.
Remark 5.3. A complete description of the domain of attraction, i.e.
without condition (ii) in corollary 5.2 but under the more restrictive entropy

condition _¢,(g) < o0, is given in [13]. It is easy to remove condition (ii),
when £, (g) < oo for some 2<q «q.

Remark 5.4 (Added in proof). Results on the DNA in C(S], obtained by
the method of majorizing measures, are presented in recent D. Juknevidiené
paper (Liet. mat. rink., 1987, XXVI, p. 362-373).
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