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Abstrrrcr, Consider a random n-vector Y with a mean vector p 
and linite second moments. Unde~  some assumptions on the model 
there is constructed a class d linear estimators as good as a given 
unbiased linear estimator of parametric function C'p. For some 
parametric functions there are identikd those estimators in the 
constructed class which are admissible for C'p. 

1. Introduction and notation. Hodges and Lehmann [2] gave an example 
which illustrates that the best unbiased estimator can be inadmissible. This 
inspired a number of authors to examine when linear unbiased estimators of 
a parametric function are admissible in the class of linear estimators as well 
as to find an admissible linear estimator dominating a given unbiased linear 
estimator in the opposite case. So far an explicite characterization of all 
admissible linear estimators dominating an unbiased linear estimator is given 
only for models with at most two parameters. For more complicated models 
such a characterization is difficult. 

Consider a random vector Y with a mean vector p and finite second 
moments. In this paper we find a class of admissible linear estimators 8ased 
on Y dominating an unbiased linear estimator for some linear functions of p. 

Firstly we describe a class of linear estimators better than Y with respect 
to the mean squared error matrix and use them to construct linear estima- 
tors as good as an unbiased estimator of C'p with respect to the mean 
squared error. Next, using a characterization of admissible linear estimators, 
we indicate those estimators in the resulting class which are admissible 
for C'p. 

In particular, we consider the balanced random multi-way ANOVA 
model and characterize all invariant quadratic estimators that are better than 
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the best invariant unbiased quadratic estimator for the vector of variance 
components with respect to the mean squared error matrix (as it is known, 
an invariant quadratic estimation of variance components can be reduced to 
a linear estimation based on a vector of given quadratic forms). Next we 
establish a class of parametric functions a f  variance components such that 
for every,function in this cla'ss one can construct an admissible estimator that 
dominates its best unbiased estimator. 

Throughout the paper we will use the following notation: 
A,, ., denotes the class of ( n  x m)-matrices (we also write .An instead of 

d" .A. 
.#(A), where A is any matrix in .&in,,, denotes the linear subspace 

generated by columns of A ;  A', A -  and A' denote the transpose, the g- 
inverse and the Moore-Penrose g-inverse of A, respectively. 

tr A stands for the trace of a matrix A in .In. 
I, (or simply I )  denotes the unit matrix. 
A, = diag (a,,, . .., a,,) for any matrix A = (aij) in .dn. 
A < B or A < B (A, 3 E.#,,) denote that B - A is non-negative definite 

(n.n.d.) or positive definite (p.d.), respectively. 
0 = (el, . . . , 8,)' > 0 means that all the coordinates of 8 are positive. 

2. Preliminaries. We recall now some definitions which will be used 
throughout the paper and establish a lemma which extends a result of 
Perlman [8] on improving unbiased estimators by multiplication with an 
appropriate constant. 

We consider a random n-vector Y with expectation p, = EY and 
covariance matrix Vo = cov Y, 8 €69. It is desired to estimate C'p, ,  where 
C E . di,, .,, by estimators of the form L' Y with L in . J9, .,. We use two kinds 
of risks: the mean squared error matrix 

(2.1) M (L' 'Y; C' po) = E (L' Y- C' pa) (L' Y -  C' po)' 

= L'vo L+ (L- C)' p, p;I (L- C) 
and the mean squared error 

An estimator 4' Y is said to be m-as good as L; Y if M (G Y; C' p,) 
- M ( L ;  Y; C'po) is n.n.d. for every 8 EQ, and it is said to be rn-better than 
L; Y if, in addition, M (L; Y; C' p,) - M (L; Y; C' p,) # 0 for at least one 
OEO. 

We say that El Y is as good as E2 Y if R(E2 ZJ; Ctp8)  - R(El Y; C p o )  2 0 
for every 8 ~ 0 ,  and that it dominates L; Y if, in addition, a strict inequality 
holds for at least one 0 €0. An estimator L' Y is admissible for C'p, if there 
is no other linear estimator which is better than L' Y. 
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The method of constructing the estimators that dominate an unbiased 
estimator is based on the following properties of the risk functions (2.1) and 
(2.2). 

If B' Y is m-better than Y for ,Lie, then, for every matrix C E A!', ,,, the 
estimator C'B' Y is as good as the unbiased estimator C' Y for C'p,, and 
there exists a CEAY~,, such that the estimator C'B'Y dominates C'Z 
Moreover, if B' Y is admissible for pB, then C'B' Y is admissible for C'pe .  

LEMMA 2.1. The estimator B' Y is m-better than Y for p8 1% for eumy 
0 €0, 

(i) V,-S1V,3  2 0; 
(ii) ( I - B ) ' ~ E ~ ? ( & - B ' F / ~ B ) ;  

(2.3) (iii) & ( l - B ) ( ~ - B ' V e B ) - ( I - E ) r ~ e < l ;  
(iv) there exists a point Oo GO such that rank (V,, -3' F.',, B) Z1, 

and (iii) holds with the strict inequality when rank (KO - B' T/B, B) 
= 1. 

Proof. By definition, 3' Y is m-as good as Y iff, for all 0 €0, 

I (2.4) ( i - B ) ' p e / i b ( I - B )  < b - B I I / s B ,  
I 
I , and B' Y is rn-better than Y if, in addition, (2.4) holds with the strict 
I 

I inequality for at least one point in O.  
By Theorem 1 due to Stgpniak [93, we infer that (2.4) is equivalent to 

(2.3), (iHiii). Thus there remains to show that if B fulfills (2.4), then (2.3), (iv), 
holds iff there is the strict inequality in (2.4) for a point 8,  E O .  Clearly, we 
have to show this only for the case where rank(V,,-3'VeoB) = 1. From 
(2.4) it then follows that there exists a number c > 1 such that 

~ ( l - B ) ' p , , p ~ , ( I - 3 )  = Voo-B' K 0 B .  
I 

EvidentIy, (2.4) is the strict inequality at 6, iff c > 1 .  Since also c > 1 iff 
(2.3), (iii), is the strict inequality at O,, Lemma 2.1 is established. - 

If B = b l ,  b €9, and & > 0 for all 0 EO, then conditions (2.3), (iHiii), 
reduce to the well-known Perlman's [8] conditions: (i) b E(- 1, 1 )  and (ii) 
p; ,us 6 (1 +b) / ( l  -b)  for all 8 €8. 

3. Characterization of estimators that are m-better than Y under some 
additional assumptions imposed on the model. We assume now that the mean 
vector pe and the covariance matrix Vg have for all 6 ~ 0  the structure 

and that A = diag(a,, . . ., a,J, ai > 0, H = (hij) is a (k x n)-matrix (k < n) 
with nonnegative entries but without zero columns and that O 
= lo: 0 €&, e > O j  . 
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It is well known (see Section 4) that under some assumptions the 
invariant quadratic estimation of variance components in a normal mixed 
linear model leads to a linear estimation within models haviqg structure (3.1). 
Also, if Y is a vector of n independent random variables and if the i-th 
variable (i = 1, . . . , n) has a Gamma distribution r(ai, 1/8,), then (3.1) holds 
with A = diag(a,, . .  ., r,,), H = I and 8 = i0: 8 ER", 0 > O l .  

Now we deduce from Lemma 2.1 the necessary and sufficient conditions 
for an estimator B'Y to be m-better than Y under several assumptions 
imposed on the matrix H .  

First let us show that if B is a diagonal matrix, say B = diag ( b , ,  . . . , b,), 
then the necessary and sufficient conditions resulting from Lemma 2.1 do not 
depend on H. 

THEOREM 3.1. If B = diag (b, , . . . , b,,), then B' Y is m-better than Y iff 

(1 bi = [(ai - l)/(ai + I), 11, i = 1, . , . , n, 

(iii) B # I  and B # Bi =diag 

I Proof .  Since V, is a diagonal matrix for all 8 €8, it is easy to see that 

I - if B is a diagonal matrix, then (2.3), (i) and (ii), are equivalent to 

and (2.3), (iii), is equivalent to (3.2), (ii). Moreover, since the function f (x) 
= a (1 - x)/(l + x), where a > 0, is decreasing, positive on ( - 1, I] and taking 
the value 1 for (a - 1 )/(a -k I), conditions (3.21, (ii), and (3.3) imply (3.2), (i). 

If BY is ~n-better than Z: then B # 1 and B # Bi because in this case 
M(Y;  A H J @ - M ( B Y ;  AH'O) = 0. It remains to show that if two or more 
diagonal elements of a matrix B, satisfying (3.2), (i), are not equal to  1, then 
M (Y; AH'O) - M ( B  Y; AH'O) # 0 for some 0 E O .  This follows from the 
observation that rank (l/,- B V, B) 2 2 for all 8 €0. 

If B = b l ,  b ~ & ,  then BY is m-better than Y iff b ~ [ ( a - l ) / ( a + l ) ,  I) ,  
where a = ai (i = 1 ,  . . ., n). This result was obtained by LaMotte [6] for 
the variance colnponent model. 

To formulate the next theorem we need the following notation. For the 
matrix H appearing in (3.1) define, for i = 1, . . . , k and j = 1, . . . , n: 



Unbiased eetimators 17 

THEOREM 3.2. (i) The class :sf esiimaturs ivhich are ~n-better than Y 
coincides with the class b j  estimators giuen by (3.2) i f f ,  for all 1 < j < n, 

(ii) Ij' W is a diagonal matrix, then condition (3.4) is ,fulfilled. 
LEMMA 3.3. if B' Y is m-better than I: then bij = 0 for i € I S j .  

in addition, b,,,, = 1 ,  where 1 d i, G n,  then b . = bji, = 0 for all 
l0J 

j # i o n  
Indeed, by Theorem 2.3 the diagonal elements of F/, - B' & 3 are non- 

negative for all 0 €0, i.e. 

a - d -  J J  aib:u: 2 0 for B EO, 
i= 1 

where diag ( u t  , . . . , v;)  = (H' 00' H), . Since v j  = hj 0, ( t  = 1, . . . , k)  does 
not depend on 0, for t E?, we have bi, = 0 for i € U S t  (t  €9. If a diagonal 
element of B is equal to 1, say b , ,  = 1, then bj, = 0 for j = 2, . . ., n by (3.5). 

Condition (2. I), (ii), implies now that all elements of v, - 3' I.', B in the 
first row are equal to 0, so that 

n 

a , b , j b , , v ~ = = O  f o r 8 ~ @  and 2 , < j < n .  
A =  1 

Since b,, = 1, we conclude that b1 = O for j = 2, . . . , n, and this 
completes the proof of Lemma 3.3 

Note that, by the definition of the set Sj, i € S j  iff hsj = 0 and hsi # 0, 
where I Q s d n.  T h s  implies that i €Sj iff 

Proof  of Theorem 3.2. If (3.4) holds and if B'Y is m-better than k; 
then, by Lemma 3.3, B is a diagonal matrix. 

If (3.4) does not hold, then for i = 1 and j = 2, say, we have 1 $ S 2 .  
Define B = (bi j )  by 

for i = 1, 2, 

b.. = +'a,) x for i = 1, j = 2, 
v for i = j = 3 ,  ..., n, 

otherwise, 

where pi = a J ( l +  ai) for i = 1, 2, and x = sup {v,/v,: (vl, . . . ?  v,Jf 
= H'8, B E @ )  < oo. A simple algebra shows that, for BE@,  

(H' 0%' H); '" [A4 ( Y: AH' 6) - M (B' Y; AH' 0)]  (H' 86' H); '" = (m,), 

2 - Pams. 9.2. 
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for i = j = l ,  
for i p j =  1, 2, 

[u1/uz x - ( v ~ / D ~  XI') for i = j = 2, 
ot herwive. 

The matrix (mi,) is n.n.d. for all v,/v,  ~ ( 0 ,  x). Thus there exists an 
estimator B' Y with a non-diagonal matrix B dominating Y; This completes 
the proof of part (i). 

If H is a diagonal matrix, then S i = ( i }  and T = ( l ,  . . . , j -  1 , j  
+ 1, .. ., n}, hence Sj = T j ,  which proves part (ii). 

Notice that if a model satisfies condition (3.41, then the corresponding 
matrix H has not to be diagonal. 

4. &lamed radom multi-way ANOVA model. Let 

be a (p = p ,  - . . . .p,J-vector of random variables such that 
r 

b- 1) XS *... 8n = B+a!;'+ ... +a  +esl.,,Sn, sj = 1, ..., pi, j = 1, ..., n, 

where pl, ..., p,-,  2 2 and p, 2 1. Here f i  is an unknown constant, and the 
a's and e's are unobservable random variables with the zero mean. Assume 
also that 

8, for i = j = l ,  ..., n - l , I = s = l ,  ..., pi, 
cov(uf', a!') = 

0 otherwise, 

covte n,ct!))=O for i = l ,  ..., n - l , s j = l ,  ..., p j , j = l  ,..., n 

and 

On for si = li = 1, . . ., pi, i = 1, . .. , n, 
I 

where f3 = (0,, . . . , 0,)' > 0. Then 

n 

EX = 1, and cov X = 8, C;, 
' i = l  

where 
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1, denotes, as usuaIly, the srvector of l's, while J ,  = 1,l:. 
Now define n matrices in An by 

Notice that D l ,  . . . , D, are idernpotent matrices and that they form an 
orthogonal basis for the quadratic subspace spanned by MVl - M ,  . . ., MI.', M, 
where M = I , - P - '  J , .  

Next define a random n-vector by Y = (X' Dl X, . . . , X' D, X)' and note 
that the mean vector and the covariance matrix of Y have the structure 
(3.1) and that A = diag(rl/2, .. ., r,J2), where ri = 2ai = trD1, i = 1,  . . ., n, 
and 

P / P ~  0 . . . 0 
0 P / P ,  0 

- . . . . . . . . . . . . . 
0 0 ... P/P,-1 0 
1 1 ... 1 

while 8 = { O E ~ " :  9 > 0). 
We now establish a theorem which gives the necessary and sufficient 

conditions for a linear estimator based on Y to be m-better than Y for p, 
= EZ: To formulate this theorem we need the following notation. 

Let .B denote the set of matrices fulfilling the necessary conditions for 
B' Y to be rn-better than Y given by Lemma 3.3, i.e. let 

59 = { B  = ( b i j ) € A m :  bij = 0 for i d j )  n 

where D, = (B - 13, (B - 1,): . It is easy to see that i €fj iff hij = 0. 
Let B, = (b:) = Dg B(Dg)', where Dg is a (k xn)-matrix obtained by 

cancelling all the zero rows in DB, while k = tr DB. Finally, define QB = (qij) 

for i # j  = 1, ..., k-1 ,  

for i = j =  1, . . ,? k-1, 
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where wi = ai(l -@)/(I +b:), i = 1 ,  . . ., k .  Define the sum and the product 
over the empty set as 0 and 1, respectively. 

I 

THEOREM 4.1.  An estimator B' Y is m-betrer than Y ifS 
I (i) BE.&; 

(ii) biL€[(ai-l)/(ui+l), 11, i = 1, ..., n;  
( i i i )  4/ = I U  = ( u l ,  . . ., u k  U, = - 1 or U, = u; - 1, 

I 

(4-1) i = 1 ,  ..., k - l j  c ~ Z E . & - ' :  z ' Q z < q o ) ,  where 
~ ~ = b , 0 , / ( 1 - b ~ ) ( l - b ~ ~ ) ,  i = 1 ,  ..., k - 1 ,  

k -  1 k 

I 
Yo = ( 1 - w , ) ( 1 -  C w , ) / H  w,; 

1 = 1  1 = 1  

(iv) 3 # I n ,  B # Bi, i = 1 ,  ..., n. 

P r o o f .  Assume B E , @  and b,, = 1. Then B is a diagonal matrix. Since 
% = { - I , ) ,  condition (4.11, (iii), is equivalent to (3.2), (ii). Theorem 3.1 
implies the validity of our assertion. 

Now assume B E.& and b,, # 1. Multiplying M (Y; p,) - M (B' Y; p,) 

i from the right-hand side and from the left-hand side by D i ( B  

I - I , J + ( H ' O O ' H ) ; 1 1 2  A- '  and by the transposed matrix, respectively, and 
taking into account the identity B(B -l,Jf = D,-(I,-B)' , we infer that 

! B' Y is m-as good as Y iff, for all 8 EO,  

i A (6*) = (6,$ = D i  [ F  (O*) + F' (6") - A- '1 (Di)' - 1, 1; 2 0, I 
! where 

and 

F (O*) = (H' 8 8 ' ~ ) : ' ~  ( I ,  -B)+ (H' 88'H); 'I2 A -  I .  

The equivalence follows from the fact that, for B ~ d ,  

and that rank ( D j )  = rank ( I ,  - B)+ . 
Since ( I ,  - B)' = (Di) ' (I ,  - B,) - ' D i ,  a simple algebra shows ,that 

1 -  1 for i = j = 1, ..., k ,  

6 . .  = $0:-1 for i = k  and j = 1, ..., k - 1  
lI or i = 1 ,  ..., k - 1  and j = k, 

otherwise. 

The i-th diagonal element of A (8") is non-negative iff 1 b: €[(a:  - l)/(aO 
+ I ) ,  1 )  for i = 1, . . . , k ,  where diag (a:, . . . , a:) = D i  A(Dj) ' .  Hence we get 
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(4.11, (ii), by noting that each diagonal element of B which differs from 1 is a 
diagonal element of B, . 

Since the matrix A ,  obtained by cancelling the last row and the last 
column of A(8*), does not depend on 8, we see that A ( B * j S  0 for all 8 GB 
iff 

k -  1 

det(A(O*))= - C q i j ( ~ ~ B i - l ) ( u j O O j - l ) + q , > O  
i , j = l  . 

for all 0 EO and A 2 0. 

By (4.1), (ii), and Theorem 1 due to Stqpniak [9 ] ,  the last inequality 
holds iff 

k- 1 

(4.2) C y ~ l .  
i =  1 

Since the determinant of d(B*) is a polynomial of degree 2 with res- 
pect to u,! 8: - 1 and since the coefficient - q,, of (up BT - 1)' is not positive 
by (4.I), (ii), and (4.21, we infer that det ( A ( @ * ) )  2 0 For every OEO iff 
det(A(O*))>O for B * E ; ( U  ,,..., ~ ~ - ~ , l ) ' : u ~ = O  or 1 , i = l ,  ..., k - 1 )  or, 
equivalently, iff (4.1), (iii), holds. Noting that 

k k 

d ( ( 0 ,  ..., 0, 1)') = (1- C w i ) / n  wi 2 0 
i = l  1 - 1  

implies (4.2) by (4.1), (ii), we see that B' Y is m-as good as Y iff (4.1), (iHiii), 
hold. 

Repeating word by word the arguments used in the proof of Theorem 
3.1, we arrive at condition (4.11, (iv). 

5. Construction of admissible estimators which doraninare unbiased estima- 
tors for some parametric functions. In cases where we can h d  an m-"setter 
estimation than X we can construct (as already indicated in Section 2) for 
any parametric function C'EY an estimator which dominates an unbiased 
estimator L' Y for C'EY. In fact, if B' Y is m-better than Y, then, for any 
parametric function C'EEj the estimator L' B'Y is as good as L' Y: Because it 
is desirable to have admissible estimators dominating unbiased estimators, 
we shall in this section indicare, for some models, parametric functions for 
which the resulting estimator L' B' Y is also admissible. 

To the end of this section we assume that the matrix H appearing in 
(3.1) is of full rank. 

We begin by recalling a result of Klonecki and Zontek [5 ) .  
Let SZ be the convex cone generated by (88': 0 €8) and let be the 

closure of 
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THEOREM 5.1 .  Within model (3.11, if 

(5.2) L E P ~  = 0 [ ( I+GA)-I  GAC: G €61, 

then L' Y is admissible for C'p,.  

Klonecki and Zontek [5 ]  and Zontek [lo] have also shown that, under 
some additional assumptions imposed on the model, the class of estimators 
[L' I.': L E P , - ~  forms the minimal complete class. In particular, this is the case 
f ~ r  the model (3.1) with n < 4, for models with diagonal matrix H and for 
models with H given by (4.1). 

Assume that (L' Y: L E ~ ' ~ )  forms the minimal complete class. Let .02, 
be the set of estimators for C ' h  as good as C'Y generated by estimators 
m-better than I: i.e. let 

dc = {C'B' Y: B' Y is rn-better than Y). 

Note that each estimator in ,dc, admissible for C' p,, dominates C' Z 
LEMMA 5.2. An estimator C'B'Y in .dc is admissible for C 'ps  ig 

there exists a matrix G E @  such that 

Proof.  By Theorem 5.1 the estimator (BC)' Y is admissible for C1pB iff 
there exists a matrix G ~g such that BC = (I+ GA)-I GAC or, equivalently, 
if (5.3) holds. 

COROLLARY 5 .3 .  Assunae that C E An ,, . An estimator bC' Y in .dc is 
admissible for C' ifl 

n 

(i) b ~ [ ( a - l ) / ( a + l ) ,  I), where a = ai; 
i=  1 

(ii) there exists a G E such that C is the eigenvector of G A  with the 
eigenvalue in [(a - 1)/2, + m) . 

Proof.  As noted in Section 3, an estimator b y  is rn-better than Y iff 
condition (i) of Corollary 5.3 holds. An application of Lemma 5.2 gives the 
second condition. 

This result was first obtained by Gnot and Kleffe [I] for the model (3.1) 
with H = ( h j ) ~ M z x ,  such that hll = . . . = h , , = l  and h , 2 > . . . > h , - 1 , z  
> hn2 = 0 .  

Now we present some other examples of functions C p 8  for which we 
can find the admissible estimators dominating C' Z 

(a) Assume that in the model described by (3.1) the matrix 23 is diagonal. 
If 3, is a diagonal matrix, then B,  Y is admissible for iff B1 



Unbiased estimators 23 

= (I + A)-'A. Hence, by Theorem 3.2, there exists an admissible estimator of 
in s f I  iff 

The last condition was obtained by Kleffe [3] under additional assump- 
tion that Y is a vector of independent random variables having the 
(Bi/2q) xiB,  distribution (i = I ,  . . . , n). 

Clearly, condition (5.4) is always satisfied if n = 2. If (5.4) does not hold, 
we can still construct admissible estimators dominating a given unbiased 
estimator for some particular functions. In fact, let N be a subset of 
(1, . . . , a )  such that 

and let D = diag (dl, . . . , d,) be a matrix given by 

1 if  EN, 

0 otherwise. 

Now put B, = D ( J +  A ) I I A + I - D .  Using (5.51, we see that the matrix 
B, fulfills (3.2). Moreover, condition (5.2) is satisfied for G = 1 E$ and C 
= D. This shows that the estimator C'DB, Y is admissible for C'Dpo and 
dominates the unbiased estimator C'DY for any matrix C E .dm ,,. 

Next we find all estimators admissible for a linear combination of 
two parameters, f, 8, + fz 8, say, contained in the class tdcl,, where C12 
= ( f ~ / a i h ~ ~ , f d a z h z z ,  0, ..., 0 ) ' ~ g ~ .  

For the model (3.1) with the diagonal matrix H, if an estimator B' Y is 
rn-better than k; then B is a diagonal matrix. Since the estimator C;, BY 
depends on the two first diagonal elements, we see that 

dCl2 = ( c ; ~ B E  B = diag(bl, b,, 1, ..., 1) and (61, b 2 ) ~ B l z ) ,  

where 

THEOREM 5.4. Assume that (bl , b2) ~ 9 ~ ~ .  An estimator C;, BY is admis- 
sible for C;, pe iff 

(i) b, < a2 bl/((al +az+  1) bl -al) and bi 2 q/(a,+ I), i = 1, 2, when cl cz > 0; 
(ii) b, ,< ai/(q+ I), i = 1, 2, when el cz < 0; 
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(iii) b, = a,/(a, + 1) UP b2 = a,/(a, + I), when cl # 0 and c, = 0 or c, = 0 
and c2 # 0, respectively. 

Proof .  Assume that G = (gij) ~ g .  The matrix G satisfies (5.3) iff 

We define gij = 0, when bj = 1 or cj = 0, i # j = 1, 2. 
The first and ths last inequality in (5.6) are equivalent to conditions (11) 

and (i) of the theorem, respectively. 

1 - the set B12 (BY is m-better than Y). 
2 - C; ,BY is admissible br G 2 p 0  and dominates C;,I; when clc2 > 0. 
3 - C ; ,  BY is admissible for C;, p, and dominates C;,, when c1 c, < 0. 

Similarly we can construct an admissible estimator for linear combina- 
tion of four parameters C i 4 p 0 ,  say, where C14 = (c,, ..., c,, 0, ..., 0)'. We 
assume that there exists a permutation c(,,, . . ., c(,, of c,, . . ., c, such that 
c(,, c(,) > 0 and c(,, c(,, 2 0. This assumption is always satisfied if one of the 
C'S is equal to 0. 
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To simplify notation we assume that c, c2 > 0 and c, c, 3 0. 
THEOREM 5.5. If 

(ii) (1 + b i ) ~ i / ( l  +bi) < 1, 
i =  1 

then the estimator C ; ,  BY is admissible for C;, p, and dominates C;, Y, where 
3 = diag ( b ,  , . . . , b,, 1 ,  . . . , 1). 

Proof .  The matrix 
I 

I 

G = 

belongs to $ iff g12, S z l ,  034, 943 3 0, gi2Sai < 1 and 8 3 4 9 4 3  < 1. 
Now, by similar arguments as in the proof of Theorem 5.4, we obtain 

that the estimator C;, BY is admissible for C;, and dominates Ci4 Y.  

(a1+a2) / (a l+a ,+1)  for i = 1 , 2 ,  
+ a4)/(a3 +a4 + 1 )  for i = 3, 4 and c, c4 > 0, 

raiMai + 1) for c 3 9  = O  and ci + O ,  i = 3 ,  4, 
othermse. 

( B )  The balanced random multi-way ANOVA model. For the balanced 
random one-way ANOVA model (n = 2) LaMotte [7] has characterized the 
class of all admissible estimators for C'p, ,  C E $ ? ~ ,  dominating the unbiased 
estimator C' Y. Klonecki and Zontek (51 have indicated a simple subclass of 
these estimators. They have showed that an admissible estimator L' Y for 
is m-better than Y ifT 

and they have noted that, for every C €d2, the estimator C' L' Y with L E 9 is 
admissible for C f p 0  and dominates C' Y. This result can be easily extended to 
the considered model with n > 2 .  Let Ci,=(e , , e j ,  where ej 
= (0, . . ., 0, 1,  . .., O)', denotes the j-th unit vector in P. 
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where A,, = diag (a,, a,,), i = 1, . . . , n - I ,  then the estimator L'C:, Y is admis- 
sible for Ci, pe and is rn-better , than Cf, I: 

The proof is based on Theorem 4.1 and Lemma 5.2 and is similar to 
that for the case n = 2. 

It is interesting to note that for the balanced random two-way ANOVA 
model (n = 3) there exists an admissible estimator of p, which is rn-better 
than Y for some p, , p, and p, . In fact, by virtue of Theorems 4.1 and 5.1, 
the admissible estimator ( I 3  + AGb)- AGL Y for po, where 

is m-better than Y iff (pr, p2, p3) E [(2, 2, I), (2, 3, I), (3, 2, I), (4, 2, I), 
(254, 11, (2, 2, 211: 

Now we show an analogous resuit to Theorems 5.4 and 5.5 for the 
considered model. 

THEOREM 5.7. ASSUP~L that n > 2 and that ( b l ,  b2)  €alZ. If c1 c2 < 0 and 
if bi < ai/(ai+ I), i = 1, 2 ,  then the estimator Ci2 BY with B 
= (b,, b2, 1, . . . , 1 )  is admissible for C; po a d  dominates C;, I: 

Proof.  First note that the matrix 

1 g,,  0 ... 0 

(5.8) G = 

91 92 . . .  
belongs to iff g 1 2 , g 2 ~  2 0 ,  g I 2 g z 1  < 1 and gl,g2 2 1.  

If the assumptions of the theorem are fullled, then there exists a matrix G - 
in satisfying (5.3) and (5.8) (compare the proof of Theorem 5.4). - 

THEOREM 5.8. Assume that n > 4 and that c, c2 > 0, c, c4 2 0 and cl c3, 
< 0. If b,  , . . . , bq satisfy (5.7), then the estimator C;, BY is admissible for 

C l 4 h  and dominates C; ,  Y. 
We omit the proof. 
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