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Ahxbact. The paper gives a sufkient condition for the limit of 
a sequence of the unique best linear estimators to be admissible. For 
commutative variance components models a complete characteriza- 
tion of hrnits of sequences fulfilling that condition is established. 
There are also presented some conditions imposed on the variance 
components model which guarantee that the described set of limits 
coincides with the minimal complete class. 

I 

, 1. Introduction. The work of LaMotte [63 has provided an algorithm for 
the characterization of admissible linear estimators among the linear estima- 
tors in the general linear model. In LaMotte's paper the general linear model 
is described as a random r-vector Y with mean vector p and variance- 
covariance matrix V, with (p,  I-') contained in an arbitrary subset of the 
Cartesian product of Euclidean r-space H and the set of (n x n)-symmetric 
nonnegative definite matrices. Using that algorithm L a ~ o t i e  characterized 
the class of all linear admissible estimators for any linear comUination of the 
regression parameters for the linear regression model with nonsingular 
variance-covariance matrix of the error terms. Applications of LaMotte's 
method to other models in which there is a relationship between the mean 
vector and the variance-covariance matrix require to consider a number of 
cases too large to handle. Thus Klonecki and Zontek [4] investigated the 
possibility of characterizing the admissible linear estimators through the 
unique Bayes linear estimators and their limits. They defined a class of linear 
models, called regular, for which the class of the unique linear Bayes 
estimators and some of their limits form the minimal complete class. They 
also established a condition whch guarantees that the limit of a sequence of 
unique linear Bayes estimators is admissible. 



In this paper the assumptions of some of the results presented in C4] are 
weakened, so that they can be applied directly to the problem od characteri- 
zation of the admissible invariant quadratic estimators for some mixed linear 
models. In fact, a number of examples of models which are regular for 
invariant quadratic estimation of any linear combination of the variance 
components are given. For those models we establish a complete characteri- 
zation of the admissible invariant quadratic estimators for any linear combi- 
nation of the variance components. 

2. M i m a l  compete dass for regular models. Let Y be a random vector 
- 

as described in the introduction. It is desired to estimate C ' p ,  where C is an 
(r xt)-matrix (r 2 t), while C' stands for the transposed matrix of C. The 
estimators considered are linear estimators L' Y, where L belongs to an affine 
set 2 = L,+L@(NQI). Here Lo stands for any (r xt)-matrix, N for any 
(r x +matrix, I is the t x t identity matrix. As usual for any (r x r)-matrix A 
and any (t xt)-matrix B, the symbol A Q B  denotes the linear operator 
mapping the space A, ., of (r x t)-matrices into itself and is defined for every . 
C in A'r ,, by ( A  @ B) C = ACB', whereas B ( A .  @ B) stands for the range of 
the operator A B. For simplicity we refer to the estimator L' Y of C ' p  in 
terms "estimator L E Y  of C". 

To compare estimators we use the risk function E (L' Y- C p)'(L: Y- C'p) .  
Writing this function as [L, (V+ pp') L] - 2 EL, pp' C] i- [C; pprC] shows that 
it depends on the distribution of Y through V+ppJ and pp'C only. Here 
[A ,  B ]  stands for the trace of the matrix AB'. Taking (V+ppf, pp'C) as the 
parameter, the new parameter space to be denoted by F, becomes a subset 
of the Cartesian product Vr x dr,,, where Vr is the set of all r x r  n.n.d. 
matrices. 

The relations "as good as" and "better than" on F are defined in the 
usual way. Estimator L is said to be admissible for C among 9 if L E Y and if 
there exists no estimator in Y better than L. The term "among 9' will be 
omitted when Y coincides with ArX,. 

Now let z be an a priori distribution on 9 such that E,,up' and E, V 
exist. The relevant Bayes risk becomes then 

. An estimator L in 2 is said to be a linear Bayes estimator among dp if it 
has the smallest Bayes risk among all estimators in 9'. If we extend the risk 
function for each L in 9 from Y to W = s p a n y  for each W =  (W,, W2) E W 
by 

e(w, L) = CL, WI Ll- 2 CL, W2lf LC, W21, 

then every linear Bayes estimator among 9 may be viewed as an estimator 



minimizing the extended risk function at a point in conv .F among 3 and, 
vice versa, every estimator minimizing the extended risk function among 9- 
at a point in convy may be viewed as a linear Bayes estimator among 9 
with respect to some a priori distribution z o n  F. 

Similarly as in [7] and [6] ,  we formulate the results in terms of (locally) 
best estimators instead in terms of linear Bayes estimators. The former 
terminology seems to be more convenient when dealing with linear Bayes 
estimators. 

To begin with, we present the LaMotte theorem in a form most suitable 
for our considerations. 

Since each L in 2 may be written as L= L, + N Z  for some Z in dr .,, 
the risk function may be rewritten as 

e(W,  L) = [ Z ,  T(W)Z1+2CZ, WWll+@(W, Lo), 

where T(W) = N'W, N and U ( W )  = N'W, L,+N1 W,. 
An estimator L in 9 = Lo + W ( N  63 I )  is called best among 3 at a point 

WE W if Q ( W, L) 6 e(W, M) for all M E 9. Let W (W I denote the subset 
of all those estimators in 3 which are best at W among 64 Notice that 
g ( W ]  9) is not empty iff T ( W )  is n.n.d, and &?(U(W)) c 9 ( T ( W ) ) .  I f  
L.EB(W( 8, then L3#(WlLf) = L+(N @ I ) (M(T(W)  @ I ) ) .  The symbol 
M(T(W) €31) denotes the null space of the operator T(W)  @ I .  Clearly, 
a ( W l 9 )  = {L)  iff ( N @ I ) ( . N ( T ( W )  @ I ) )  = { O ) ,  i.e. iff W(N1) = W ( T ( ~ ) .  
In this case we say that L is the unique best estimator (UBE, for short) at W 
among 9. 

To avoid some trivialities we assume throughout the paper that there 
exists a point W = (W,, W,) in W such that W, is a p.d. matrix. 

Following LaMotte [6] ,  W in W is said to be a trivial point for 3 if 
W(W1 2) = 9. The set of trivial points for 2' will be denoted by Y 
= Y(9).  Obviously, Y = t W E W': T ( W )  = 0, U (W) = Oj  . 

Since T ( W )  is n.n.d. for each W in the closed convex cone containing 
F+ 9, to be denoted by [9+ a, it follows that (W I 9 # 0 for W in 
C$+ a\ 9 iff w(u(w)) a(wv).  -. . 

Define 

and notice that [JT \ Y c &(a. 
THEOREM 2.1. If L in 2' is an admissible estimator of C among 9, then 

there exists a point W in d(9)  such that L E ~ ( W I  2') unless 9- c Y .  
This theorem, as indicated by LaMotte [6] ,  gives a step-wise algorithm 

to characterize admissible linear estimators. To formalize this procedure Iet 
us introduce the following notation. 
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For i = 1, . . . , r define the following families of affine sets in .,: 
r 40) - f 

i 6 - , r d r x t l >  

I X f i ) =  [ d ( W l Y ) :  L E ~ L ~ ~ - ~ ) ~  W ~ . d ( a j .  

Notice that if 9= L o + G % ? ( N Q I ) ~ @ ) ,  then rank N G r - i .  
To determine whether a linear estimator is admissible we may use the 

, following corollary to kaMotteYs theorem: 
COROLLARY 2.2. The set 9 dejned by 

3 =  LEA^,,: { L )  E @ ~ )  for some 0 < i < r )  

represents the class of all admissible estimators, i.e. 9 forms the minimal 
complete class. 

We shall now recall the definition of a regular model. 
W is said to be a perfect trivial aoint for the subspace 9 ( N  @ I )  if 

.@(w I L,+ d ( ~  0 1 ) )  = L,+:@(N 01) fot each Lo in .&,,,. The set of all 
perfect trivial points for d ( N  0 1) is given by 

Clearly, W is a perfect trivial point for W I N  @ I )  iff W is a trivial point ' 

in the sense of LaMotte for each affine set Lo+ 9 ( N  Q I )  whatever be Lo in 
. H r x t  

' W in [Y+ Yo] \ 9' is said to be a perfect point for a subspace &(N 6 1) 
if 9(WI L,+W(N @ I ) )  # b) for each Lo in The set of the perfect, 
points for &(N @ I ) ,  which are not trivial, is given by 

.do (.# ( N  Q I ) )  = [ W E [.F + \ 9': d (N' Wl) + d (N'  Wz) C :M (T (  W ) ) ) ,  

Moreover, for i = 1, . . . , r ,  define the following families of a f h e  sets in 
&r x t :  

1 %Lo) = f .$i: x t , 7  

Defin i t ion  2.3. A model is said to be regular for C if 9 = Y o ,  where 

=  LEA?^.,: ( L )  E@:) for some 0 < i $ Y).  

The following result established in [4] gives a sufficient condition for a , 
model to be regular: 

LEMMA 2.4. If . d o ( # ( N  @ I ) ) +  = . d ( a  for every affine set 9 
= Lo + W ( N  Q 1) in U @I, i = 1, 2, . . . , r, then the model is regular. 

As shown in 141, a mixed linear model is regular for the linear 
estimation of regression parameters and, under the additional assumption 
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that the subspace spanned by the variance-covariance matrices is a quadra- 
tic commutative subspace of dimension less than or equal to 4, it is also 
regular for the invariant quadratic estimation of variance components. 

Now we establish a new theorem, giving some conditions improved to 
those given in [4], which guarantee that a sequence of UBE's is convergent 
and that the limit is an admissible estimator. 
' THEOREM 2.5. (i) k t  (L(")] be a. sequence of estimiztors o f C  such that each 

L'") is a UBE at a point Wdn) = (Wdy), Wd?) in [a. 
(ii) Let = (wl ,  F2), i = l r  . . . , S, be points in W and let Mi, i = 1, 

. . . , s, be ( t  x t)-matrices such that N ,  = I ,  B(Ni+ ,) = Ni (&(N; y, Ni)), 
i = 1, ..., s-1, while B(N3 = 3?(N:W,1 N,) # (0). 

If, for i = 1, ..., s, 

where a:") = IIN,l WAY) ~ ~ 1 1 - l ~  then the sequence {L(")) converges and its limit is 
an admissible estimator of C .  

Proof.  First note that, without loss of generality, we may assume that, 
for 1 = 1, 5-1, 

In view of (i) 

and summing over i yields 

In order to show that (L(")) converges we need in view of (2.1) to prove 
that 

S S 

lim C a?' N ,  WJT) = C Mi w1 
n-+mi=l  i =  1 

is invertable. 
Suppose to the contrary that w, Ni x = 0 (i = 1, 2, . . . , s) for some 

non-zero vector x in H. This yields that 

From (2.2) it follows that the second sum must be equal to zero, so that 
Ns W,, N,  x = 0. Since 92(Ns) = @ ( N ,  W,, N,), we conclude that N,  x = 0. 
This and the formula B(Ns-, Ws- ,., N,- = W (Ns- - N& show in an ana- 

3 - Pams. 9 2 
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logous way that N , ,  x = 0. Continuing t h s  procedure we show that N ,  x 
= x = 0. T h s  contradiction proves that {L'"') converges, say, to L. 

In view of (2.1) it follows from (2.3) that Ni K1 L Ni K2 far i 
= 1, ..., s .  Now let 

and let Yoi be the set of perfect tiivial points for W ( N ,  @ I ) .  With this 
notation = &Y(wl Pi) for i = 1 ,  ..., S, and PSt1 = { L ) .  Since ~ E [ F  
f .Yo, for i = 1 ,  .+., s, it follows from Corollary 2.2 that L is an admissible 
estimator for C. In fact, lect hi: %"-, . N r , ,  x .Nr,,  be defined by &(W*) 
= ( N ,  W,*, Ni WF) for every point W* = (WF, WT) in f ' and for i = 1, . .., s. 
Then , Vk(hi )  = .Poi, so that hi ([S+ .Yo,]) = [hi (931 by Theorem 9.1 in [8]. 
Since Ni W €[hi (n], the point must be then in [F+ Yo,] for i = 1, . . . , s, 
as asserted. 

Notice that sequence (aln)j, appearing in the assumption of the theorem, 
may be replaced by any sequence (bin)) of positive numbers, provided 
'b("] Ni WJnl] converges and the limit of [bin) NN,' WJ;) Nil is not equal t o  zero. \ i 

For regular models Klonecki and Zontek [4] described a method of 
constructing for every admissible estimator a sequence of UBE's which 
converges to a given admissible estimator. Now we ;hall show that the 
sequence constructed by this method fulfils the assumptions of Theorem 2.5. 

THEOREM 2.6. if a model is regular for C, then every admissible estima- 
tor of C is the limit of a sequence of estimators fulfilIing the conditions of 7heo- 
rem 2.5. 

Proof .  Let L be an admissible estimator of C. If the model is regular, 
then there exists a sequence of affine sets Lf1 = &Ir X f ,  P 2 ,  . . . , 3',+ such 
that dPi+ = B ( K  I dPi) E $2) for i = 1, . . . , S ,  and Ys+ = ( L ) .  Without loss 
of generality we may assume that each 2, admits the representation gi = L 
+ .J?(Ni @ I), where Ni is idempcitent and symmetric. Notice that N ,  , . . . , N ,  
fulfil condition (ii) of Theorem 2.5. 

The construction of a sequence of UBE's converging to a given admis- 
sible estimator, described in [4], is as follows. 

Let Yoi denote the set of perfect trivial points for W (N,  @ 1). For each 
i = 1, . . . , s there exist a sequence (K(") j c [a, [Sjn)) c 9"oi and a sequence 
(a{")) of positive numbers such that 

and 
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as n a. Since N j  S'") = 0 for n = 1, 2, . . . , it follows from (2.4) that 

Letting, for n = 1, 2, , . . , 

notice that (Wg)) r= [a. Finally, let {I,(*)") be a sequence of estimators of C 
defined by W&) Lt*' = Wd;). 

To see that {L'"') satisfies condition (i) of Theorem 2.5, it is sufficient to 
establish that WJT) are invertible for sufficiently large n. 

Suppose to the contrary that there exists a sequence (x(")} c B' such 
that x'") +x # 0 and W(DF xx' = 0 for all n > no, say. From (2.5) and (2.6) we 
conclude that, as la + co , 

Hence 

lim o c y j ~ ~  W$)x = N1 W,, x = 0, 
n+m 

so that ( N 1  - N,) x = 0. Likewise, we may prove that (N i  - N i +  = 0 for i 
= 2, . . . , s- 1 and that Nsx = 0. This contradicts the assumption that N ,  x 
= x # 0 and proves that Ltn) is a UBE for sufficiently large n. 

Condition (2.1) follows from (2.7). 
Since, as we have just shown, every sequence of estimators fulfilling the 

conditions of Theorem 2.5 converges to an admissible estimator and since for 
regular models every admissible estimator is the limit of a sequence of 
estimators also fulfilling the conditions of Theorem 1.5, the following result 
can be stated: 

COROLLARY 2.7. If a model is regular for C ,  then the limits of sequences 
fulfilling the conditions af Theorem 2.5. form the minimal complete class. 

Using the above results we may establish conditions under which limits 
of UBE's at points in [Tj form the minimal complete class. The condition 
appearing in Theorem 2.8 implies that for every convergent sequence of 
UBE's at points in [a there exists a subsequence to which fieorern 2.5 
applies. 

THEOREM 2.8. If for every afjne set 9' in (J i = I, . . ., r ,  the set of 
trivial points and the set of perfect trivial points coincide, then limits of U B E s  
at points i n  [~9 form the minimal complete class. 

Proof.  In view of Corollary 2.7 it is sufficient to show that (4 the 
model is regular, and (8)  each limit of UBEYs is admissible. 
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(a) Let 9 = L L , + 9 ( N  I) be as stated in the theorem and take any 
point W = (W,, W,) in d ( q .  Since under the assumption of the theorem W 
is also a perfect trivial point for 

T 

,+Y(WI 9) € l,J %ti', 
i =  1 

it follows that .4?(N1 W 1 ) + g ( N r  W2) c ,%(N1 W, N). Now this in turn implies 
that .d(P) c d , ( . g ( N  @ I ) ) ,  which shows that the model is regular. 

(p) For every n = 1 , 2 ,  . . . let ~ ( ~ 1  be a UBE of C at a point we1 
= (N:;', W&') in [s], i.e. let 

(2.8) wJll' L'"' = w,;), 
where Wd") E [YF, while W$i) is non-singular. Assume that the sequence [I,'"') 
is convergent. 

To show that there is a subsequence of f WP'I for which condition (2.1) is 
fulfilled, assume, to the contrary, that for some N = N j ,  where 1 < j G s, 
each subsequence of (ay )  N' Wp)] is not convergent. Without loss of generali- 
ty we may assume that IJN' W$) NII = 1 .  In this case there exists a subsequen- 
ce in, 1 of natural numbers and a se uence ~r" " '~  of non-negative numbers ' - r N P  W* z 0 as n ,  +a;, where W* such that G C ' " ~ '  -r co and a'"" N' w:"' 
= (W:, W:) E [.F+ Because N' W1* L = N' W: by (2.8) and because 
N'W: N = 0, it follows that W* is a trivial point for L + d ( N  @ I ) .  But 
N' W* # 0 implies that W* is not a perfect trivial point for ?$(A' @ I ) ,  which 
contradicts the assumption of the theorem. Thus the proof of the theorem is 
completed. 

R e m a r k .  Stepniak El01 established that UBE's and their limits form a 
complete class. Using Stqpniak's theorem it would be sufficient to prove part 
(or), only. In  part (P) we have proved that the model is regular, which, as we 
have already shown, allows to  construct a sequence of UBE's converging 
to an arbitrary admissible estimator. 

3. Invariant estimation of variance components. Let X be a random 
m-vector with mean vector p = A/3 and variancecovariance matrix 

where A is a known (m x p)-matrix, 6 ,  . . . , are known (m x m)-matrices, 
while fi E.@~ and a = (o l ,  . . ., a,)' 2 0 are the unknown parameters. Here a 2 0 
means that the coordinates of a, called variance components, are all non- 
negative. To avoid some trivialities we assume that 
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We are interested in estimation of C' a ,  C being any fixed k x t matrix, by 
estimators of the form (X' L, X, . . . , X' L, X)', where 4,  i = 1 ,  . . . , t ,  may be 
any m x m symmetric matrix satisfying the condition Li = ML, M, where M 
= I - AA +. These estimators, which are translation invariant X 4 X + AD, 
are called invariant quadratic estimators (IQE for short). Notice that EMX 
= 0 and that cov MX = ui M &  M ji = 1, . . . , k). We assume throughout 
the paper that Mt/, M ,  . . . , M Vk M are non-zero commuting n.n.d. matrices 
and that the covariance operator of MXX' M is given by 

The function C'a is said to be invariantly estimable if there exists an 
unbiased IQE of C' a.  

If a quadratic loss function is assumed, then the invariant quadratic 
estimation reduces to a linear estimation within a general linear model. 

In fact, let Y = (X' D l  X, . . ., X ' D , X ) ' ,  where {Dl, . . ., D,] is a basis of 
the quadratic subspace spanned by lMVl M ,  . . . , MV, M ]  consisting of m x m 
idempotent symmetric matrices such that Di Dj = 0 for all i # j (see [9]). In 
terms of this new basis the covariance operator of MX becomes 

r 

cov MX = Bi Di, where fl = (O,, . . ., 0,)' = H'o, 
i =  1 

while H is a (k xr)-matrix. The i-th row of the matrix H consists of 
coordinates of M &  M in the basis ',Dl, . . ., D,;. 

Letting R = diag (rank D l ,  . . . , rank D,) and introducing for every (r x r)- 
matrix A = (aij)  the notation Ad = diag (a,, , . . . , a,,), we easily find that 

(3-1) E Y  = ROY cov Y =  2R(O01),, 
where O ranges over the set fH'o: u >  01. 

This model is a particular case of the general linear model as defined by 
LaMotte [6]. If a function C'a is invariantly estimable in the original model, 
then there exists a matrix F such that C'a = F'8. Moreover, for every IQE 
of C' o there exists a linear estimator based on Y which is as good (see 121 or 
[4]). Consequently, the problem of invariant quadratic estimation of C'o in 
then there exlsts a matrix F such that C' a = F' 8. Moreover, for every IQE 
corresponding function F'B in the model defined by (3.1). 

Now we find implicitly the class of admissible linear estimators of F'O 
in the model (3.1), which can be presented as limits of the sequences of 
estimators fulfilling the conditions of Theorem 2.5. 

Let B = {H' aa' H: rr 2 0)- and let be the closure of 
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THEOREM 3.1. The limits of all sequences satisfying the assumptions of 
Theorem 2.5 form the set 

Proof.  For the model (3.1) the reIevant 9 becomes 

For any F x r  symmetric matrix A define W ( A )  in .W = span 5 by 

W ( A )  = (W1 (A), W2(A)) = (2RAd+ RAR, RAF): 

In the sequel we use the fact that 9(Wl (A)) = 9((w1 (A)),,) if A 2 0. 
For n = 1, 2, . . . let L(") be UBE at point W ( o ( " ) )  in [a, i.e. let o(" be 

a point in [Q] such that oy) is p.d. and let W, (a(") L'") = W2(w(n)). 
Letting G(" = (my))- l a'"), we obtain L'") = (2I+ G'" R)- G'") F or 

L'" = ( 1 - 2 ( 2 1 + ~ ~ " )  R)-')R-' F .  
If lim G(n) = G ,  then lim L("' = (I - 2(21+ GR)-  l )  R-I F since the 

n-w n + m  
sequence of the determinants {12l+G("RI1 is bounded from below by 2'. 

Now we show that if { ~ ( ' j )  converg&, then there exists a subsequence 
of !,L(")) to which Theorem 2.5 is applicable. 

Let a(;) = (1 Wl (w(")](l- l . Since 

a(;) W(m(")) = a ~ a ~ ) R ( 2 1 + G ' " ) R ,  G(")F), 

and since entries of a';)mp) are in the closed interval [0, 11, it follows that 
there exists a sequence of natural numbers {n,} such that {a:""~(m'"")}  
converges to, say, W, = (W,, , W,,) in $if with W,, # 0. If W,, is p.d., then 

fulfils the assumptions of Theorem 2.5 with s = 1. 
Otherwise, define N ,  = I - (W, ,)+ WI1 = I - (W,,): (Wl ,), and kt. a',"l 

= /IN2 Wl (o'"') ~ ~ 1 f - l .  As above, since all entries of aTN,w);) are in the 
closed interval [0, 11, it follows that there exists a subsequence {n , )  of i n , )  
such that { a ' , " ~ l N ~  ~ ( o ( " ~ ) ) j  converges to, say, N2 W2 = N,(W,,, W,,) with 
N 2  WZ1 NZ # 0. If 9 ( N 2 )  = B (N2 WZ1 N2) ,  then {L'"") fulfils the assump- 
tions of Theorem 2.5 with s = 2. Otherwise the above argumentation is 
continued. 

To end the proof we need yet to show that the assumptions of Theorem 
2.5 imply the convergence of {G")). 

Thus suppose that 

Wl = ( Wl , , Wl ,) = lim a? W ( U ( ~ ) ) ,  where a?) = 1 1  Wl (w("))l( - l . 
n -*a 
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Since {a?] up)} converges to o, # 0, say, and since W(w,) = W (Wl 
= 9( (WIl jd ) ,  we may conclude that the limit 

(3.3) lim (I - N,)  G("' 
n+m 

ixists, where N 2  = I -(Wl 1),+ (Wl j,, . 
If s = 1, then N,  = 0 and, consequently, {Gtn'] is a convergent sequence. 

In the converse case, suppose that 

W2 = (W2i,, W2,> = lim a:"' N 2  W (w'")), 
n-rm 

where a',"'= llNz W ( W I " ) ) N ~ ~ ~ - ~  for n = 1, 2, ... 
Since (a:"' N2 cop)) converges, say, to m,, # 0, W(w,,)  = 9 ( N ,  Wzl N,) 

= ~ ( I v ,  (W,,),) implies that the limit 

lim ( N 2  - N 3 )  G(") 
nim 

exists, where N 3  = N ,  ( I  -(W,,): (W,,),). 
If s = 2, i.e. if N ,  = 0, then {G'")] is a convergent sequence by (3.3) and 

(3.4). If s # 2, then the above argumentation may be continued. 
Clearly, if the model is regular, then the set 9*, defined by (3.2), 

coincides with the class of all admissible estimators of F. 
Klonecki and Zontek [4] showed that the variance component model 

with k < 4 is regular (under assumption that the covariance matrices commu- 
te). The theorem below gives a sufficient condition for the model (3.1) to be 
regular. For completeness we also present a proof of regularity of (3.1) for 
k < 4. In Section 4 there are given some examples of regular variance 
components models with k greater than 4. 

k 

THEOREM 3.2. If (i) fop every 9 = Lo + 9 ( N  @ 1) E IJ @ I ,  all non-zero 
i =  1 

columns of N'H'  are linearly independent or i f  (ii) k  < 4,  then model (3.1) is 
regular for F .  

Proof.  In view of Lemma 2.4 it is sufficient to show that 

for each affine set 9 in U #'I ( i  = 1, . . ., k) .  
First we show that (3.5) holds for all dP in %"). If Y E @'I, then there 

exists a point W ( o )  in [a\ (0) such that Y = Lo+ S ( N ,  @ I ) ,  where Lo 
= (w, (o))' W,(w). Since 9 ( W ,  (wj) c W(o,) ,  we may assume that N1 = I 

-+ -od cod. 
Now we find the closure of F+ .Yo and F+ Y,  where Yo and Y are 

the set of trivial and the set of perfect trivial points for 9, respectively. 



40 S. Zontek 

Let { W (HI a, a: H + S'"))} be a convergent sequence with limit W (w,), 
say, where (H'G, aAH) c S Z ,  while W(S("')} c Yo. 

Define 9, as the set of numbers of these columns of Nl H' which are 
equal to the zero vector and let Pi denote the diagonal matrix in Ak ., with 
the i-th diagonal element equal to 0 or 1 if i ES, or i ~ { l ,  . . . , k) \.Y,, 
respectively. 
' 

Because the i-th column of Nl H' has non-negative elements and is non- 
zero for i E 31, we conclude that, as n + a, 

say, and that there exists a convergent subsequence of {P, cr,). To avoid 
double indexed sequences assume that {PI r im) is convergent. Thus, as n + co, 

.(3.7) W (Hf PI an c$, P1 H) + W (H' a, &H) E 9, where a, = lim PI u ~ .  
n + m  

Likewise, we may infer from (3.6) and (3.7) that 

say, where . &' = ( ~ ( ~ ' ( a b ' + b a ' )  H):  a €&(Pi), b  E, 4'(P,)]. Thus W ( o l )  €9 
+ A+ 9 b -  From this it follows that the closure of F+ 9, is contained in 
the cone [JY+[A+ Yo. Hence [Y-k Yo] [ F ] + [ A +  Yo. But . 
A [F+Y0],  SO 

Similarly, we can show that 

Now let W (w,) = W  (H' A ,  H) E d ($a). In view of (2.9) we may assume 
without loss of generality that W(w,) E [JY + [ 4. 

To show that W(w,)  ~.4~(9)+ 51, we need the following notation. 
Let N, = N 1  (I,-(a,): (w,),) and let P, denote the diagonal matrix in 

Ak ., with the i-th diagonal element equal to 0 or 1 when the i-th column of 
N, H' is zero or a non-zero vector, respectively. 

The defined matrices P I  and P, have the property 

where A = Hf A H .  Moreover, since PI A Y 1  is n.n.d. by the assumption that 
W (a,) E [ ~ 9  + L 4 and since P,  A ,  P ,  = 0, we get 

(3.11) P1 A ,  PZ = 0. 

Put w,, = H1(P, A ,  s A ,  P,) H and decompose W(w,) as W (a,) 
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= W(o, -w,,)+ W(w,,). Now we show that W(a, -o,,) €d0(2') and 
that W { ~ , , ) E Y .  

To prove the former inclusion first note that the entries of the matrix A, 
I -P2 A, -A, P,  are non-negative. Hence W(w,  -a,,) E [,]TJ f [d c [F 

+ Yo]. From this and from the evident equality N ,  W ( w ,  - w,,) = (N, 
-N2) W(w,-w, , )  it is clear that the desired inclusion holds. 

I To show that W(w,,) E Y assume first that a model satisfies condition 
- &  (a) of the theorem. 

Because N ,  H' has exactly rank(N, 1-17 non-zero columns, therefore P2 
= ( N ,  H')' N ,  H'. This, (3.10) and (3.11) imply that 

and that N,.W, {w,,) N ,  = 0, which proves that W(o , , )  €9. Now assume 
that k < 4. If rank (I - P,) > 1, then rank P, < 1. Hence N ,  H' has exactly 
rank P, non-zero columns. Thus we can conclude as above that 
W(a**)  E 9 0 .  

It remains to verify the case where rank(l-P,) = 1 .  Using (3.10) and 
(3.11) simple algebra shows that 

N2 RH'P, A ,  ( I -  PI) H(RLo-F) = N2 Wl (w,,) Lo-N2 W2 (a,,) = 0. 

Because (I - PI) A, P2 HRN, is non-zero when (I - Pi) A, P2 # 0, there- 
fore #(I- PI) c . l- '@Lo-F)'H') by the assumption that rank (I- Pi) = 1. 
This implies that 

N1 W, (a,,) Lo -'N1 W2 (u,,) = N1 RH' P2 A ,  (I - P I )  H(RLo- F )  = 0. 

Since N1 Wl (a,,) N, = 0, we obtain that W(o,,) E 9. 
The proof of (3.5) for 9 E@), where i = 2, . . ., k, is similar as for i = 1, 

and is, therefore, omitted. 
Remark. From the proof of the theorem it is clear that the matrix N, 

appearing in condition (i), may be assumed to be idempotent and diagonal. 
If a model does not fulfil assumptions (i) and (ii) of Theorem 3.2, then 

this does not imply yet that the model is not regular for F. For instance, as it 
was shown by Klonecki and Zontek [ 5 ] ,  each model defined by (3.1) is 
regular for F = I. In the case where the assumptions of this theorem are not 
satisfied, condition (3.5) may not hold for some F. But this condition does 
not characterize regularity of a model. 

COROLLARY 3.3. If the model (3.1) is regular for F, then the set 9' 
coincides with the minimal complete class. 
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For the two variance components model Gnot and Kleffe [I] showed 
that UBE's and some of their limits form the minimal complete class. The 
sequences of UBE's, considered by them, fulfil the assumptions of Theo- 
rem 2.5. 

It is an open problem whether 9* forms the minimal complete class in 
the general case. 

4. Examples of regdar variance components mdele. In view of Theorem 
3.2 each model with k < 4 variance components is regular for any htimable 
function C'D under the assumptions specified at the beginning of Section 3. 

Now we give examples of models which fulfil assumption (i) of Theo- 
rem 3.2. 

E x a m p l e  4.1. Assume that 

Letting H = {hj), we notice that in this case there exist natural numbers 
< n l  < n z  <... < l a k  = r  such that, for i =  1, ..., k, 

. . .  . 

hij # 0 for j = 1, ..., 3, 

h , . = O  J for j = q + l ,  ..., r .  

Let N be a non-zero idempotent diagonal matrix in Mr,, .-  If 

then there exists a u, 1  < u < k, such that 

N=diQg(O ,..., O , l ,  ..., 1) 
(nu) 

by (4.1). It is clear now that each of the nu first columns of NH' is the zero- 
vector and that the remaining columns are linearly independent. This shows 
that a model satisfying (4.2) is regular for each F E Mp .,. 

For instance, condition (4.1) is fulfilled by the random balanced nested 
classihation model given by {see [3]) 

x = I,, 0 .  .. 0 I,, 

= I , ,  @... @ I p i  @J,i+l @... OJ,,, i = 1, ..., k - 1 ,  

& = I p l @ . . . Q ~ p k ,  

where 1, is the p-vector of one's, while J ,  = 1, I$. 
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Ex a m p le 4.2. Assume that H is (r x r)-matrix of the form 

where hli 2 0 and 4, > 0 for i = 1, ..., r .  
It is easy to see that condition (a) of Theorem 3.2 is fulfilied for each 

diagonal idempotent matrix N such that the frst diagonal element of N is 
equal to 1. 

Now assume that the first diagonal element of N is equal to 0. Then 
k 

L o + W ( N  8 1 ) ~  (J @'' 
i =  1 

for an Lo E ArX, iff N = N o  N ,  where No 1s the diagonal matrix with the i-th 
diagonal element equal to 0 or 1 depending on whether hIi  > 0 or hI i  = 0, 
respectively, for i = 1, . . . , r .  For such N the matrix NH' is diagonal. This 
shows that N satisfies assumption (i)'of Theorem 3.2 and proves that the 
model is regular. 

The matrix H has structure (4.3) for the random balanced multi-way 
ANOVA model given by 

Another example of a model for which H has structure (4.3) is a model 
fulfilling the following assumption: 

W ( M 6 M )  nB!(My M )  = (0) for i # j = 1, ..., k .  

For this model the matrix H is diagonal. 
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