EXTREME VALUE THEORY FOR ASYMPTOTIC STATIONARY SEQUENCES

BY
WLADYSLAW SZCZOTKA (Wroclaw)

Abstract. The problem of behaviour of $a_{n}\left(\max X_{k}-b_{n}\right)$ is considered when $a_{n}>0,\left|b_{n}\right|<\infty$ and the sequence $X=\left\{X_{k}, k \geqslant 1\right\}$ is asymptotically stationary in variation.
X is said to be asymptotically stationary in variation if $\| \mathscr{L}\left(X_{n}\right)$ $-\mathscr{L}\left(X^{0}\right) \| \rightarrow 0$, where $X_{n}=\left\{X_{n+k}, k \geqslant 1\right\}$, while $\mathscr{L}\left(X_{n}\right)$ and $\mathscr{L}\left(X^{0}\right)$ denote the distributions of the sequences X_{n} and $X^{0}=\left\{X_{k}^{0}, k \geqslant 1\right\}$, respectively. The sequence X^{0} of random variables X_{k}^{0} is stationary and it is said to be a stationary representation of X.

The main result states: under $\left\|\mathscr{L}\left(X_{n}\right)-\mathscr{L}\left(X^{0}\right)\right\| \rightarrow 0$ and some natural conditions concerned X and \boldsymbol{X}^{0}, the sequence of distributions $\mathscr{L}\left(a_{n}\left(\max _{1 \leqslant k \leqslant n} X_{k}-b_{n}\right)\right)$ weakly converges provided the sequence of $\mathscr{L}\left(a_{n}\left(\max _{1 \leqslant k \leqslant n} \bar{X}_{k}^{0}-b_{n}\right)\right)$ weakly converges and the limits are the same. An analogous result is also formulated for the processes of exceedances.

1. INTRODUCTION

Let $Y=\left\{Y_{k}, k \geqslant 1\right\}$ be an S-valued discrete-time process and Y_{n} $=\left\{Y_{n, k} \stackrel{\text { df }}{=} Y_{n+k}, k \geqslant 1\right\}, n \geqslant 1 . S$ is assumed to be a Polish metric space. For the Borel σ-field of subsets of a space we write \mathscr{B} before the symbol denoting the space, for the distribution of a random element (r.e.) we put \mathscr{L} before the symbol denoting the r.e., for the total variation of the subtraction of probability measures μ and v on a measurable space (Ω, \mathscr{F}) we write $\|\mu-\nu\|$, i.e.

$$
\|\mu-v\|=2 \sup _{B \in \mathcal{F}}|\mu(B)-v(B)|
$$

and for the weak convergence of probability measures or distribution functions (d.f's) we write \Rightarrow. Further \boldsymbol{Y} is said to be asymptotically stationary in variation if there exists an S-valued discrete-time process $\mathbb{Y}^{0}=\left\{\boldsymbol{Y}_{k}^{0}, k \geqslant 1\right\}$ such
that $\left\|\mathscr{L}\left(Y_{n}\right)-\mathscr{L}\left(Y^{0}\right)\right\| \rightarrow 0$. The process Y^{0} is stationary and it is called a stationary representation in variation of \mathbf{Y}.

Let $X=\left\{X_{k}, k \geqslant 1\right\}$ be a real-valued discrete-time process, $X^{0}=\left\{X_{k}^{0}, k\right.$ $\geqslant 1\}$ its stationary representation in variation, $M_{n}=\max X_{k}$ and M_{n}^{0} $=\max X_{k}^{0}(1 \leqslant k \leqslant n)$. The main purpose of this paper is:
(1) to give conditions under which $\left\{\mathscr{L}\left(a_{n}\left(M_{n}-b_{n}\right)\right)\right\}$ weakly converges provided $\left\{\mathscr{L}\left(a_{n}\left(M_{n}^{0}-n_{n}\right)\right)\right\}$ weakly converges for some constants $a_{n}>0$ and b_{n};
(2) to give sufficient conditions under which the behaviour of exceedances processes defined for \boldsymbol{X} and \boldsymbol{X}^{0} is similar.

The main results, solving the stated problems, are given in Theorems 1 4. A simplified version of the answer to problem (1) states:

If $\left\|\mathscr{L}\left(X_{n}\right)-\mathscr{L}\left(X^{0}\right)\right\| \rightarrow 0$ and there exist constants $a_{n}>0$ and $b_{n} \in R$ such that $\mathscr{L}\left(a_{n}\left(M_{n}^{0}-b_{n}\right)\right) \Rightarrow v$, where v is max-stable and, further, there exists a nondecreasing sequence of positive integers k_{n} such that $k_{n} \rightarrow \infty, k_{n} / n \rightarrow 0$ and $\mathbf{P}\left\{a_{n}\left(M_{k_{n}}-b_{n}\right)>x\right\} \rightarrow 0$ for $x>\inf \{y: v(-\infty, y]>0\}$, then $\mathscr{L}\left(a_{n}\left(M_{n}\right.\right.$ $\left.-b_{n}\right) \Rightarrow v$.

In the Extreme Value Theory sufficient conditions for the weak convergence of $\mathscr{L}\left(a_{n}\left(M_{n}-b_{n}\right)\right)$ are known also in the case where X is not necessary stationary ([2], [8], [6], [1]). In papers [1], [6], and [8] this problem was considered in the situation when X is a homogeneous Markov chain or it is chain dependent. But then, under some additional natural conditions, \boldsymbol{X} is asymptotically stationary in variation (see Section 4). Thus $\left\{\mathscr{L}\left(a_{n}\left(M_{n}-b_{n}\right)\right)\right\}$ weakly converges provided $\left\{\mathscr{L}\left(a_{n}\left(M_{n}^{0}-b_{n}\right)\right)\right\}$ does (see Example 6).

The similar fact, i.e. the asymptotic stationarity in variation, is true for the following processes:
(a) a regenerative process with the aperiodic distribution of the regenerative period and with the finite expectation of this period;
(b) the waiting time process if the generic sequence is asymptotically stationary in variation [10];
(c) $X=\left\{f\left(Y_{k}\right), k \geqslant 1\right\}$, where Y is asymptotically stationary in variation and f is a measurable mapping of S^{∞} into R.

The main results (Theorems 1-4) are proved by the method based on the following

Proposition 1. Let μ and $\mu_{n}(n \geqslant 1)$ be probability measures on ($S, \mathscr{B}(S)), h_{n}(n \geqslant 1)$ measurable mappings of S into a Polish metric space S^{\prime}, and v a probability measure on $\left(S^{\prime}, \mathscr{B}\left(S^{\prime}\right)\right.$). Then the following implications hold:
(i) If $\left\|\mu_{n}-\mu\right\| \rightarrow 0$, then $\left\|\mu_{n} h_{n}^{-1}-\mu h_{n}^{-1}\right\| \rightarrow 0$.
(ii) If $\left\|\mu_{n}-\mu\right\| \rightarrow 0,\left\|\mu h_{n}^{-1}-v\right\| \rightarrow 0$ (or $\mu h_{n}^{-1} \Rightarrow v$), then $\left\|\mu_{n} h_{n}^{-1}-v\right\| \rightarrow 0$ (or $\mu_{n} h_{n}^{-1} \Rightarrow v$).

Implication (i) follows from the inequality $\left\|\mu_{n} h_{n}^{-1}-\mu h_{n}^{-1}\right\| \leqslant\left\|\mu_{n}-\mu\right\|$, and (ii) is implied by the relations $\left|\mu_{n} h_{n}^{-1}(B)-v(B)\right| \leqslant\left|\mu_{n} h_{n}^{-1}(B)-\mu h_{n}^{-1}(B)\right|$ $+\left|\mu h_{n}^{-1}(B)-v(B)\right| \leqslant\left\|\mu_{n}-\mu\right\|+\left|\mu h_{n}^{-1}(B)-v(B)\right|$.

It may be worth noticing here that Proposition 1 has also other consequences. The following one concerns a continuity problem in the Extreme Value Theory:

Proposition 2. If, for each $n \geqslant 1, X(n)=\left\{X_{n, k}, k \geqslant 1\right\}$ is an r.e. of R^{∞} such that $\|\mathscr{L}(X(n))-\mathscr{L}(X)\| \rightarrow 0$ and $\mathscr{L}\left(a_{n}\left(M_{n}-b_{n}\right)\right) \Rightarrow v$, then

$$
\mathscr{L}\left(a_{n}\left(\max _{1 \leqslant k \leqslant n} X_{n, k}-b_{n}\right)\right) \Rightarrow v .
$$

Notice that if $\|\mathscr{L}(X(n))-\mathscr{L}(X)\| \rightarrow 0$, then Proposition 2 may be also viewed as an other approach to the investigation of $\max X_{n, k}(1 \leqslant k \leqslant n)$. Similarly, Proposition 1 and the convergence $\|\mathscr{L}(X(n))-\mathscr{L}(X)\| \rightarrow 0$ allow us to find convergences of other than $\max X_{n, k}(1 \leqslant k \leqslant n)$ functions of $X(n)$. E.g., in view of Serfozo [9], we may formulate an analogue of Proposition 2 for the extremal process or the process of exceedances.

2. MAIN RESULTS

To complete the set of notations from the previous section, let us introduce the following ones. Let $\left\{k_{n}\right\}$ denote a nondecreasing sequence of integers tending to infinity in such a way that $k_{n} / n \rightarrow 0$ as $n \rightarrow \infty, F_{k}$ the d.f. of $X_{k}(k \geqslant 1), F$ the d.f. of $X_{1}^{0}, x(v)=\inf \{x \in R: v(-\infty, x]>0\}$, where v is a probability measure on $(R, \mathscr{B}(R)), I_{A}$ the indicator of a set A and x $=\left\{x_{k}, k \geqslant 1\right\}$ a point of R^{∞}, where $x_{k} \in R$. Further, for a sequence $\left\{u_{n}\right\}$ of real numbers let N_{n} and $N_{n}^{0}(n \geqslant 1)$ be point processes defined by

$$
N_{n}(B)=\sum_{\substack{1 \leqslant k \leqslant n \\ k / n \in B}} I_{B_{n, k}}(X), \quad N_{n}^{0}(B)=\sum_{\substack{1 \leqslant k \leqslant n \\ k / n \in B}} I_{B_{n, k}}\left(X^{0}\right)
$$

where B belongs to $\mathscr{B}((0,1])$ and $B_{n, k}=\left\{x \in R^{\infty}: x_{k}>u_{n}\right\}$. Obviously, N_{n} and N_{n}^{0} are processes of exceedances of the level u_{n} by the processes X and \boldsymbol{X}^{0}, respectively. Let, finally, \mathcal{N} denote the space of all measures on $(0,1]$ with values in the set of nonnegative integers. This space is considered with the vague topology (see e.g. [3], p. 11).

Now let us formulate the following conditions:
$\mathrm{A}_{1} .\left\|\mathscr{L}\left(X_{n}\right)-\mathscr{L}\left(X^{0}\right)\right\| \rightarrow 0$.
\mathbf{A}_{2}. There exist sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\} \quad\left(a_{n}>0, b_{n} \in R\right)$ such that $\mathscr{L}\left(a_{n}\left(M_{n}^{0}-b_{n}\right)\right) \Rightarrow v$.
$\overline{\mathbf{A}}_{3}$. There exist $\left\{k_{n}\right\}$ for which $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ from A_{2} satisfy $a_{n} / a_{n-k_{n}} \rightarrow 1$ and $a_{n-k_{n}}\left(b_{n}-b_{n-k_{n}}\right) \rightarrow 0$.
A_{4}. There exists a $\left\{k_{n}\right\}$ such that, for each $x>x(v), \mathrm{P}\left\{a_{n}\left(M_{k_{n}}-b_{n}\right)>x\right\}$ $\rightarrow 0$, where $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and v satisfy A_{2}.
\mathbf{A}_{5}. There exists $\cdot \mathfrak{a}\left\{k_{n}\right\}$ such that, for each $x>x(v), \mathrm{P}\left\{a_{n}\left(M_{k_{n}}^{0}-b_{n}\right)>x\right\}$ $\rightarrow 0$, where $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and v satisfy "A A_{2}.

Behaviour of $\left\{M_{n}\right\}$. For a real-valued process $\boldsymbol{Z}=\left\{\bar{Z}_{k}, k \geqslant 1\right\}$ we have (1) $\mathbf{P}\left\{\max _{1 \leqslant k \leqslant n} Z_{k} \leqslant x\right\}$

$$
=\mathrm{P}\left\{\max _{i<k \leqslant n} Z_{k} \leqslant x\right\}-\mathrm{P}\left\{\max _{1 \leqslant k \leqslant i} Z_{k}>x, \max _{i<k \leqslant n} Z_{k} \leqslant x\right\},
$$

where $1 \leqslant i<n, n \geqslant 1, x \in R$.
Theorem 1. Let A_{1} be satisfied and let $\left\{k_{n}\right\}$ and $\left\{u_{n}\right\}$ be such that

$$
\begin{equation*}
\mathrm{P}\left\{M_{k_{n}}^{0}>u_{n}\right\} \rightarrow 0 \quad \text { and } \quad \mathrm{P}\left\{M_{k_{n}}>u_{n}\right\} \rightarrow 0 \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mathrm{P}\left\{M_{n}^{0}>u_{n}\right\}-\mathrm{P}\left\{M_{n}>u_{n}\right\} \rightarrow 0 \tag{3}
\end{equation*}
$$

Proof. Define mappings $h_{n}: R^{\infty} \rightarrow R(n \geqslant 1)$ by

$$
h_{n}(x)=\max _{1 \leqslant k \leqslant n-k_{n}} x_{k}-u_{n}
$$

These mappings are measurable.
Rewriting relation (1) for X and X^{0}, we obtain

$$
\mathbf{P}\left\{M_{n} \leqslant u_{n}\right\}=\mathbf{P}\left\{h_{n}\left(X_{k_{n}}\right) \leqslant 0\right\}-\mathbf{P}\left\{M_{k_{n}}>u_{n}, h_{n}\left(X_{k_{n}}\right) \leqslant 0\right\}
$$

and

$$
\mathrm{P}\left\{M_{n}^{0} \leqslant u_{n}\right\}=\mathrm{P}\left\{h_{n}\left(\boldsymbol{X}^{0}\right) \leqslant 0\right\}-\mathrm{P}\left\{M_{k_{n}}^{0}>u_{n}, h_{n}\left(\boldsymbol{X}_{k_{n}}^{0}\right) \leqslant 0\right\} .
$$

But in view of the first implication of Proposition 1, we have

$$
\mathrm{P}\left\{h_{n}\left(X_{k_{n}}\right) \leqslant 0\right\}-\mathrm{P}\left\{h_{n}\left(X^{0}\right) \leqslant 0\right\} \rightarrow 0,
$$

which together with (2) gives (3).
In the case of linear normalization of M_{n} and M_{n}^{0} we obtain the following analogue of Theorem 1:

Theorem 2. Let conditions $\mathrm{A}_{1}-\mathrm{A}_{4}$ be satisfied, where A_{3} and A_{4} hold with the same $\left\{k_{n}\right\}$. Then

$$
\begin{equation*}
\mathscr{L}\left(a_{n}\left(M_{n}-b_{n}\right)\right) \Rightarrow v . \tag{4}
\end{equation*}
$$

Proof. Define mappings $\dot{h}_{n}: R^{\infty} \rightarrow R(n \geqslant 1)$ by

$$
\dot{h}_{n}(x)=a_{n}\left(\max _{1 \leqslant k \leqslant n} x_{k}-b_{n}\right) .
$$

These mappings are measurable.

Rewriting relation (1) for X we obtain

$$
\begin{aligned}
& \mathrm{P}\left\{a_{n}\left(M_{n}-b_{n}\right) \leqslant x\right\} \\
& =\mathrm{P}\left\{a_{n} / a_{n-k_{n}}\left(h_{n-k_{n}}\left(X_{k_{n}}\right)-a_{n-k_{n}}\left(b_{n}-b_{n-k_{n}}\right)\right) \leqslant x\right\}- \\
& \quad-\mathrm{P}\left\{a_{n}\left(M_{k_{n}}-b_{n}\right)>x, a_{n}\left(\max _{1 \leqslant k \leqslant n-k_{n}} X_{k_{n}+k}-b_{n}\right) \leqslant x\right\} .
\end{aligned}
$$

Now, by conditions $\mathrm{A}_{1}-\mathrm{A}_{4}$ and the second implication in Proposition 1, we find

$$
\mathrm{P}\left\{a_{n}\left(M_{n}-b_{n}\right) \leqslant x\right\} \rightarrow v(-\infty, x]
$$

if $x>x(v)$ and x is a continuity point of v. Otherwise, i.e. if $x<x(v)$, it is obvious that $\mathrm{P}\left\{a_{n}\left(M_{n}-b_{n}\right) \leqslant x\right\} \rightarrow 0$. Thus the proof is complete.

In view of this proof we can state something about the necessarity of $\mathbf{A}_{\mathbf{3}}$ and A_{4} in Theorem 2.

Remark 2.1. (i) Condition A_{3} holds provided A_{1}, A_{2}, A_{4} and (4) hold, where $\left\{k_{n}\right\}$ in A_{3} is the same as in A_{4}.
(ii) If X_{1}, X_{2}, \ldots are mutually independent, then condition A_{4} holds, provided $\mathrm{A}_{1}-\mathrm{A}_{3}$ and (4) hold, where $\left\{k_{n}\right\}$ in A_{4} is the same as in A_{3}.

Notice that condition A_{3} ought to depend only on \boldsymbol{X}^{0}. In the following it is proved that A_{2} and A_{5} are sufficient for A_{3}.

Lemma 2.1. Let $\mathbf{A}_{\mathbf{2}}$ and A_{5} be satisfied. Then $\mathrm{A}_{\mathbf{3}}$ holds with the same $\left\{k_{n}\right\}$ as in A_{5}.

Proof. Rewriting relation (1) for \boldsymbol{X}^{0} we obtain

$$
\begin{align*}
& \mathbf{P}\left\{a_{n}\left(M_{n}^{0}-b_{n}\right) \leqslant x\right\} \tag{5}\\
& \begin{aligned}
= & \mathbf{P}\left\{a_{n} / a_{n-k_{n}}\left(a_{n-k_{n}}\left(M_{n-k_{n}}^{0}-b_{n-k_{n}}\right)-a_{n-k_{n}}\left(b_{n}-b_{n-k_{n}}\right)\right) \leqslant x\right\}- \\
& \quad-\mathbf{P}\left\{a_{n}\left(M_{k_{n}}^{0}-b_{n}\right)>x, a_{n}\left(\max _{1 \leqslant k \leqslant n-k_{n}} X_{k_{n}+k}^{0}-b_{n}\right) \leqslant x\right\} .
\end{aligned}
\end{align*}
$$

In view of A_{2} the left-hand side of (5) converges to $v(-\infty, x]$ if $v\left\{x_{\}}=0\right.$, while $\mathscr{L}\left(a_{n-k_{n}}\left(M_{n-k_{n}}^{0}-b_{n-k_{n}}\right)\right) \Rightarrow v$. Hence and from A_{5} we have $a_{n} / a_{n-k_{n}} \rightarrow 1$ and $a_{n-k_{n}}\left(b_{n}-b_{n-k_{n}}\right) \rightarrow 0$, which completes the proof.

As an immediate consequence of Theorem 2 and Lemma 2.1 we obtain
Theorem 3. Let conditions A_{1} and A_{2} be satisfied. Furthermore, let A_{4} and A_{5} hold with the same sequence $\left\{k_{n}\right\}$. Then (4) holds.

Behaviour of $\left\{N_{n}\right\}$. We now prove
Theorem 4. Let A_{1} hold and $\mathscr{L}\left(N_{n}^{0}\right) \Rightarrow \mathscr{L}(N)$, where N is a point process on $(0,1]$. Furthermore, let a $\left\{k_{n}\right\}$ exist such that

$$
\begin{equation*}
\mathrm{P}\left\{M_{k_{n}}>u_{n}\right\} \rightarrow 0 \quad \text { and } \quad \mathrm{P}\left\{M_{k_{n}}^{0}>u_{n}\right\} \rightarrow 0 \tag{6}
\end{equation*}
$$

where u_{n} is the same as in the definitions of N_{n} and N_{n}^{0}. Then $\mathscr{L}\left(N_{n}\right) \Rightarrow \mathscr{L}(N)$.

Proof. Let us define mappings $g_{n}: R^{\infty} \rightarrow R^{\infty}, h_{n}: R^{\infty} \rightarrow \mathcal{N}$ and H_{n} : $\mathscr{N} \rightarrow \mathscr{N}(n \geqslant 1)$ as

$$
\begin{gathered}
g_{n}(\boldsymbol{x})=\left(u_{n-k_{n}} / u_{n}\right) \boldsymbol{x}, \quad h_{n}(\boldsymbol{x})(B)=\sum_{\substack{1 \leqslant k \leqslant n \\
k / n \in B}} I_{B_{n, k}}(\boldsymbol{x}), \\
\left(H_{n} \gamma\right)(B)=\gamma\left(n /\left(n-k_{n}\right) B-k_{n} /\left(n-k_{n}\right)\right),
\end{gathered}
$$

where $a x=\left\{a x_{k}, k \geqslant 1\right\}$ for $a \in R, \gamma \in \dot{N}$, and $a B-b=\{\min (a x-b, 1) ; x \in B\}$ for $B \in \mathscr{B}(0,1]$ and $a, b>0$.

Notice that g_{n}, h_{n} and H_{n} are measurable and

$$
H_{n} \circ h_{n-k_{n}} \circ g_{n}\left(x_{k_{n}}\right)(B)=\sum_{\substack{k_{n} \leqslant k \leqslant n \\ k=n \in B}} I_{B_{n, k}}(x)
$$

for any $B \in \mathscr{B}((0,1])$ and $\boldsymbol{x} \in R^{\infty}$, where $\boldsymbol{x}_{k_{n}}=\left\{x_{k_{n}+k}, k \geqslant 1\right\}$. Hence

$$
\sum_{\substack{k_{n}<k \leqslant n \\ k / n \in B}} I_{B_{n, k}}\left(X^{0}\right)=H_{n} \circ h_{n-k_{n}} \circ g_{n}\left(X_{k_{n}}^{0}\right)(B)
$$

which, in view of the stationarity of \boldsymbol{X}^{0}, gives

$$
\mathscr{L}\left(H_{n} \circ h_{n-k_{n}} \circ g_{n}\left(X_{k_{n}}^{0}\right)\right)=\mathscr{L}\left(H_{n} \circ h_{n-k_{n}} \circ g_{n}\left(X^{0}\right)\right)
$$

Now define point processes \tilde{N}_{n} and $\tilde{N}_{n}^{0}(n \leqslant 1)$ as

$$
\tilde{N}_{n}(B)=\sum_{\substack{1 \leqslant k \leqslant k_{n} \\ k / n \in B}} I_{B_{n, k}}(X)
$$

and

$$
\tilde{N}_{n}^{0}(B)=\sum_{\substack{1 \leqslant k \leqslant k_{n} \\ k / n \in B_{n}}} I_{B_{n, k}}\left(X^{0}\right)
$$

In view of (6) the distributions $\mathscr{L}\left(\tilde{N}_{n}\right)$ and $\mathscr{L}\left(\tilde{N}_{n}^{0}\right)$ weakly converge to the distribution concentrated on the measure from \mathscr{N} which is zero for each Borel subset of $(0,1]$. But $N_{n}^{0}=\tilde{N}_{n}^{0}+H_{n} \circ h_{n-k_{n}} \circ g_{n}\left(X_{k_{n}}^{0}\right)$. Hence and since $\mathscr{L}\left(N_{n}^{0}\right) \Rightarrow \mathscr{L}(N)$, we have

$$
\mathscr{L}\left(H_{n} \circ h_{n-k_{n}} \circ g_{n}\left(X^{0}\right)\right) \Rightarrow \mathscr{L}(N)
$$

which by A_{1} and Proposition 1 gives

$$
\mathscr{L}\left(H_{n} \circ h_{n-k_{n}} \circ g_{n}\left(X_{k_{n}}\right)\right) \Rightarrow \mathscr{L}(N)
$$

Hence, in view of the relation $N_{n}=\tilde{N}_{n}+H_{n} \circ h_{n-k_{n}} \circ g_{n}\left(X_{k_{n}}\right)$ we find the assertion.

Theorem 4 allows us to formulate analogues of Theorems 5.3.1 and 5.3.4 of [3] or a behaviour of $M_{n}^{(k)}$ as $n \rightarrow \infty$, where $M_{n}^{(k)}$ is the k-th largest of $X_{1}, X_{2}, \ldots, X_{n}$.

3. EXAMINATION OF \mathbf{A}_{4} AND \mathbf{A}_{5}

The following obvious fact is basic for the examination of A_{4} and A_{5} :
Remark 3.1. Let $\left\{c_{n, k}, k, n \geqslant 1\right\}$ be an array of real numbers such that, for each $k \geqslant 1, c_{n, k} \rightarrow c_{k}$ as' $n \rightarrow \infty$ and $c_{k} \rightarrow 1$ as $k \rightarrow \infty$. Then there exists a $\left\{k_{n}\right\}$ such that $c_{n, k_{n}} \rightarrow 1$ as $n \rightarrow \infty$. Moreover, if $k_{n}^{\prime} \leqslant k_{n}$, then $c_{n, k_{n}^{\prime}} \rightarrow 1$.

Lemma 3.1. Let X be such that X_{1}, X_{2}, \ldots are mutually independent and such that for some constant x_{0} and for each k and each $x, x>x_{0}$, we have

$$
\begin{equation*}
F_{k}\left(x / a_{n}+b_{n}\right) \rightarrow 1 \quad \text { as } \quad n \rightarrow \infty . \tag{1}
\end{equation*}
$$

Then there exists $a\left\{k_{n}\right\}$ such that $\mathrm{P}\left\{a_{n}\left(M_{k_{n}}-b_{n}\right)>x\right\} \rightarrow 0$ for each $x>x_{0}$.

Proof. Let $\left\{x_{k}\right\}$ be any decreasing sequence tending to x_{0}. For each $n, k \geqslant 1$ and $x \in R$ define

$$
A_{n, k}(x)=\prod_{i=1}^{k} F_{i}\left(x / a_{n}+b_{n}\right) \quad \text { and } \quad A_{n, k}=A_{n, k}\left(x_{k}\right)
$$

Then, by (1), $A_{n, k} \rightarrow 1$ as $n \rightarrow \infty$ for all k. By Remark 3.1, $A_{n, k_{n}} \rightarrow 1$ as n $\rightarrow \infty$ for some $\left\{k_{n}\right\}$. But, for any x such that $x>x_{0}$, there exists an n_{0} such that $x>x_{k_{n}}$ for $n \geqslant n_{0}$. Hence, for $x>x_{0}$, we have $A_{n, k_{n}}=A_{n, k_{n}}\left(x_{k_{n}}\right)$ $\leqslant A_{n, k_{n}}(x) \leqslant 1$. This and the convergence $A_{n, k_{n}} \rightarrow 1$ yield $A_{n, k_{n}}(x) \rightarrow 1$ for each $x>x_{0}$, which completes the proof.

Lemma 3.2. Let A_{2} be satisfied and the dff. G, corresponding to v, be maxstable. Then \mathbf{A}_{5} is satisfied. Moreover, if the convergence in A_{5} holds with $\left\{k_{n}\right\}$, then it holds with any $\left\{k_{n}^{\prime}\right\}$ such that $k_{n}^{\prime} \leqslant k_{n}, n \geqslant 1$.

Proof. Let $\left\{x_{k}\right\}$ be any decreasing sequence of real numbers tending to $x(v)$ and such that $G^{1 / k}\left(x_{k}\right) \rightarrow 1$ as $k \rightarrow \infty$. Write

$$
A_{n, k}(x)=\mathrm{P}\left\{M_{[n / k]}^{0} \leqslant x / a_{n}+b_{n}\right\} \quad \text { and } \quad A_{n, k}=A_{n, k}\left(x_{k}\right) .
$$

Since G is max-stable, $A_{n, k} \rightarrow G^{1 / k}\left(x_{k}\right)$ for each k. Hence and by Remark 3.1, there exists a $\left\{k_{n}\right\}$ such that $A_{n, k_{n}} \rightarrow 1$. Now, for any $x>x(v)$, there exists an' n_{0} such that $x>x_{k_{n}}$ for $n>n_{0}$. Hence, for any $x, x>x(v), A_{n, k_{n}}(x)$ $\geqslant A_{n, k_{n}}\left(x_{k_{n}}\right)$ which, in turn, for $x>x(v)$, yields $A_{n, k_{n}}(x) \rightarrow 1$ as $n \rightarrow \infty$. This completes the proof.

The following lemma admits more sequences $\left\{k_{n}\right\}$ in A_{5} :
Lemma 3.3. Let X^{0} be such that $X_{1}^{0}, X_{2}^{0}, \ldots$ are mutually independent and let A_{2} be satisfied. Then A_{5} holds with each $\left\{k_{n}\right\}$.

Proof. Notice that $\mathrm{P}\left\{a_{n}\left(M_{k_{n}}^{0}-b_{n}\right)>x\right\}=1-\left(F\left(x / a_{n}+b_{n}\right)\right)^{k_{n}}$. But the limit of $n\left(1-F\left(x / a_{n}+b_{n}\right)\right.$, as $n \rightarrow \infty$, is finite for each $x>x(v)$. Hence $k_{n}\left(1-F\left(x / a_{n}+b_{n}\right)\right) \rightarrow 0$, which completes the proof.

It follows from Loynes work [4] that the assumption of Lemma 3.2 holds if \boldsymbol{X}^{0} is unformly strongly mixing (see also [3], p. 55). The following lemma states that \boldsymbol{X}^{0} inherits this property from \boldsymbol{X}.

Lemma 3.4. Let A_{1} be satisfied. Then the property of the uniform strong mixing of \boldsymbol{X} implies the same for \boldsymbol{X}^{0}.

Proof. Denote the vectors $\left(X_{k}, X_{k+1}, \ldots, X_{m}\right)$ and $\left(X_{k}^{0}, X_{k+1}^{0}, \ldots, X_{m}^{0}\right)$ by $X_{k, m}$ and $\bar{X}_{k, m}^{0}$, respectively. The fact that X is uniformly strongly mixing means that

$$
\left.\begin{aligned}
\alpha(m) \stackrel{\text { df }}{=} \sup \mid \mathbf{P}\left\{\bar{X}_{1, k} \in A, X_{k+m} \in B\right\}-\mathbf{P}\left\{\bar{X}_{1, k} \in A\right\} \mathbf{P}\left\{X_{k+m} \in B\right.
\end{aligned} \right\rvert\, \rightarrow 0, ~ \begin{aligned}
& \text { as } m \rightarrow \infty,
\end{aligned}
$$

where the supremum is taken over all k, all $A \in \mathscr{B}\left(R^{k}\right)$ and all $B \in \mathscr{B}\left(R^{\infty}\right)$.
But by A_{1} we have

$$
\mathrm{P}\left\{\bar{X}_{1, k} \in \mathrm{~A}, X_{m}^{0} \in B\right\}=\lim _{n} \mathrm{P}\left\{\bar{X}_{k_{n}+1, k_{n}+k} \in A, X_{k_{n}+m} \in B\right\}
$$

for all k and $m, A \in \mathscr{B}\left(R^{k}\right)$ and all $B \in \mathscr{B}\left(R^{\infty}\right)$. Hence

$$
\begin{aligned}
& \sup \left|\mathrm{P}\left\{\bar{X}_{1, k}^{0} \in A, \boldsymbol{X}_{k+m}^{0} \in B\right\}-\mathrm{P}\left\{\bar{X}_{1, k}^{0} \in A\right\} \mathrm{P}\left\{X_{k+m}^{0} \in B\right\}\right| \\
& \leqslant \overline{\lim _{n} \sup \mid \mathrm{P}\left\{\bar{X}_{k_{n}+1, k_{n}+k} \in A, X_{k_{n}+k+m} \in B\right\}-} \\
& \quad-\mathrm{P}\left\{\bar{X}_{k_{n}+1, k_{n}+k} \in A\right\} \mathbf{P}\left\{X_{k_{n}+k+m} \in B\right\}=\alpha(m),
\end{aligned}
$$

where the supremum is taken over all k, all $A \in \mathscr{B}\left(R^{k}\right)$ and all $B \in \mathscr{B}\left(R^{\infty}\right)$. Thus the proof is completed.

Now we show that if X is a Markov chain or X is chain dependent, then, under some natural additional conditions, A_{5} implies A_{4}.
\boldsymbol{X} is said to be chain dependent with respect to a homogeneous Markov chain $J=\left\{J_{k}, k \geqslant 1\right\}$ with a state space I being a Polish metric space if $X_{1}=a \in R$ and

$$
\mathrm{P}\left\{J_{n+1} \in A, X_{n+1} \in B \mid J_{1}, X_{1}, \ldots, J_{n}, X_{n}\right\}=\mathrm{P}\left\{J_{n+1} \in A, X_{n+1} \in B \mid J_{n}\right\} \text { a.e. }
$$

for $A \in \mathscr{B}(I), B \in \mathscr{B}(R), n \geqslant 1$.
Obviously, (J, X) is a Markov chain.
Lemma 3.5. Let A_{1} and A_{5} be satisfied if \boldsymbol{X} is either (i) a homogeneous Markov chain such that $\left\|\mathscr{L}\left(X_{n}\right)-\pi^{0}\right\| \rightarrow 0$ or (ii) chain dependent with respect to a homogeneous Markov chain J such that $\left\|\mathscr{L}\left(J_{n}\right)-\pi^{0}\right\| \rightarrow 0$, where π^{0} is a probability measure on $(R, \mathscr{B}(R))$ in case (i), and on $(I, \mathscr{B}(I))$ in case (ii). Then A_{4} is satisfied with the same $\left\{k_{n}\right\}$ as in A_{5}.

Proof. The proof is carried out parallelly in both cases.

Write, in case (i),

$$
g_{k}(x, y)=\mathrm{P}\left\{\max _{1<j<k+1} X_{j}>x \mid X_{1}=y\right\}
$$

and, in case (ii),

$$
g_{k}^{\prime}(x, y)=\mathrm{P}\left\{\max _{1<j \leqslant k+1} X_{j}>x \mid J_{1}=y_{\}}\right.
$$

Then, in (i),

$$
\mathrm{P}\left\{\max _{1<j \leqslant k+1} X_{j}^{0}>x \mid X_{1}^{0}=y_{i}\right\}=g_{k}(x, y) \text { a.e. }
$$

and, in (ii),

$$
\mathbf{P}\left\{\max _{1<j \leqslant k+1} X_{j}^{0}>x \mid J_{1}^{0}=y_{j}=g_{k}^{\prime}(x, y)\right. \text { a.e. }
$$

Now, rewriting relation (2.1) for X, we obtain

$$
\begin{equation*}
\mathrm{P}\left\{M_{k}>x\right\}=\mathrm{P} \max _{i<j \leqslant k} X_{j}>x_{i}-\mathrm{P}\left\{M_{i}>x, \max _{i<j \leqslant k} X_{j} \leqslant x\right\} . \tag{7}
\end{equation*}
$$

Moreover, in (i),

$$
\begin{aligned}
& \mathrm{P}\left\{\max _{i<j \leqslant k} X_{j}>x\right\}=\int_{R} \mathrm{P}\left\{\max _{i<j \leqslant k} X_{j}>x \mid X_{i}=y_{\}} \mathrm{P}\left\{X_{i} \in d y\right\}\right. \\
& \left.=\int_{R} \mathrm{P} \max _{1<j \leqslant k-i+1} X_{j}>x \mid X_{1}=y\right\} \mathrm{P}\left\{X_{i} \in d y\right\}=\int_{R} g_{k-i}(x, y) \mathrm{P}\left\{X_{i} \in d y\right\}
\end{aligned}
$$

and, in (ii),

$$
\begin{aligned}
\mathrm{P}\left\{\max _{i<i \leqslant k} X_{j}>x\right\}=\int_{I} \mathrm{P}\left\{\max _{i<j \leqslant k} X_{j}>x \mid J_{i}=y\right\} & \mathrm{P}\left\{J_{i} \in d y\right\} \\
& =\int_{i} g_{k-i}^{\prime}(x, y) \mathrm{P}\left\{J_{i} \in d y\right\}
\end{aligned}
$$

In a similar way we find, in (i),

$$
\begin{gather*}
\mathrm{P}\left\{M_{k}^{0}>x\right\}=\mathrm{P}\left\{\max _{i<j \leqslant k} X_{j}^{0}>x\right\}+\mathrm{P}\left\{M_{i}^{0}>x, \max _{i<j \leqslant k} X_{j}^{0} \leqslant x\right\}, \tag{8}\\
\mathrm{P}\left\{\max _{i<j \leqslant k} X_{j}^{0}>x\right\}=\int_{\mathbf{R}} g_{k-i}(x, y) P\left\{X_{i}^{0} \in d y\right\}
\end{gather*}
$$

and, in (ii),

$$
\mathrm{P}\left\{\max _{i<j \leqslant k} X_{j}^{0}>x\right\}=\int_{I} g_{k-i}^{\prime}(x, y) \mathrm{P}\left\{J_{1}^{0} \in d y\right\} .
$$

Define a measure μ as $\frac{1}{2} \mathscr{L}\left(X_{1}^{0}\right)+\frac{1}{2} \sum_{i=1}^{\infty} 2^{-i} \mathscr{L}\left(X_{i}\right)$ in case (i) and as $\frac{1}{2} \mathscr{L}\left(J_{1}^{0}\right)+\frac{1}{2} \sum_{i=1}^{\infty} 2^{-i} \mathscr{L}\left(J_{i}\right)$ in case (ii).

Obviously, the measures $\mathscr{L}\left(X_{i}^{0}\right), \mathscr{L}\left(X_{i}\right)$ and $\mathscr{L}\left(J_{i}^{0}\right), \mathscr{L}\left(J_{i}\right)$ are absolutely continuous with respect to μ in both cases.

Let p^{0} and p_{i} denote the probability density functions (p.d.f.) of $\mathscr{L}\left(X_{1}^{0}\right)$ and $\mathscr{L}\left(X_{i}\right)$ with respect to μ defined in case (i), while q^{0} and q_{i} denote the p.d.f.'s of $\mathscr{L}\left(J_{1}^{0}\right)$ and $\mathscr{L}\left(J_{i}\right)$ with respect to μ defined in case (ii). Then, in (i),

$$
\begin{aligned}
\mid \mathrm{P}\left\{\max _{i<j \leqslant k} X_{j}^{0}>x\right\}-\mathrm{P}\left\{\max _{i<j \leqslant k} X_{j}>x_{j}\right\} & \leqslant \int_{R}\left|p^{0}(y)-p_{i}(y)\right| \mu(d y) \\
& =\left\|\mathscr{P}\left(X_{1}^{0}\right)-\mathscr{L}\left(X_{i}\right)\right\|
\end{aligned}
$$

and, in (ii),

$$
\begin{aligned}
\mid \mathrm{P}\left\{\max _{i<j \leqslant k} X_{j}^{0}>x_{j}\right\}-\mathrm{P}\left\{\max _{i<j \leqslant k} X_{j}>x_{j} \mid\right. & \leqslant \int_{R}\left|q^{0}(y)-q_{i}(y)\right| \mu(d y) \\
& =\left\|\mathscr{L}\left(J_{1}^{0}\right)-\mathscr{L}\left(J_{i}\right)\right\| .
\end{aligned}
$$

The latter, next the convergences $\left\|\mathscr{L}\left(X_{i}\right)-\mathscr{L}\left(X_{1}^{0}\right)\right\| \rightarrow 0$ in (i) and $\| \mathscr{L}\left(J_{i}\right)$ $-\mathscr{L}\left(J_{1}^{0}\right) \| \rightarrow 0$ in (ii), as $i \rightarrow \infty$, and finally (1), (2) and A_{5} imply A_{4} with the same $\left\{k_{n}\right\}$ as in A_{5}. This completes the proof.

4. ASYMPTOTIC STATIONARITY IN VARIATION

Conditions under which X is asymptotically stationary in variation are here investigated in three cases:
(a) X is a nonhomogeneous Markov chain,
(b) X is a function of a homogeneous Markov chain,
(c) X is disturbed by fading process.
4.1. Case (a). Let X be a nonhomogeneous Markov chain and $P_{n, n+1}(x, A)=\mathrm{P}\left\{X_{n+1} \in A \mid X_{n}=x\right\}$ for $x \in R, A \in \mathscr{B}(R), n \geqslant 1$. Further, let $\tilde{\mu}$ be a convex combination of the Lebesgue measure on R and a discrete measure on R. By $\tilde{\mu}^{k}$ the k-multiple product of the measure $\tilde{\mu}$ is denoted.

Let us introduce the following conditions:
(i) For each $n \geqslant 1, \mathscr{L}\left(X_{n}\right)$ has the p.d.f. f_{n} with respect to the measure $\tilde{\mu}$.
(ii) For $\tilde{\mu}$-almost all x and $n \geqslant 1, P_{n, n+1}(x, \cdot)$ has the p.d.f. $f_{n, n+1}(x, \cdot)$ with respect to the measure $\tilde{\mu}$ and $f_{n, n+1}(x, y)$ as a function of (x, y) is jointly measurable.
(iii) $f_{n} \rightarrow f^{0} \tilde{\mu}$-a.e., where f^{0} is a p.d.f. with respect to $\tilde{\mu}$.
(iv) $f_{n, n+1} \rightarrow f \tilde{\mu}^{2}$-a.e., where, for $\tilde{\mu}$-almost all $x, f(x, y)$ as a function of y is a p.d.f. with respect to $\tilde{\mu}$.

Set

$$
f_{1, k}^{0}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=f^{0}\left(x_{1}\right) \prod_{i=2}^{k} f\left(x_{i-1}, x_{i}\right)
$$

and

$$
Z_{n, k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)=f_{n+1}\left(x_{1}\right) \prod_{i=2}^{k} f_{n-1+i, n+i}\left(x_{i-1}, x_{i}\right) / f_{1, k}^{0}\left(x_{1}, x_{2}, \ldots, x_{k}\right)
$$

if $f_{1, k}^{0}>0$, and zero otherwise.
Lemma 4.1. Let conditions (i)-(iv) be satisfied and

$$
\begin{equation*}
\sup _{1 \leqslant k<\infty} \int_{R^{k}}\left|1-Z_{n, k}\right| f_{1, k}^{0} d \tilde{\mu}^{k} \rightarrow 0 \tag{1}
\end{equation*}
$$

Then $\left\|\mathscr{L}\left(X_{n}\right)-\mathscr{L}\left(X^{0}\right)\right\| \rightarrow 0$, where X^{0} is a stationary homogeneous Markov chain with the transition p.d.f. $f(x, y), x, y \in R$, such that

$$
f^{0}(y)=\int_{\boldsymbol{R}} f^{0}(x) f(x, y) \tilde{\mu}(d x) \quad \tilde{\mu}-a . e .
$$

Proof. The proof follows by part (a) of Theorem 1 from Vostrikova [11]. Indeed, for each $n \geqslant 1$ define a measurable space ($\Omega^{n}, \mathscr{F}^{n}$), a filter F^{n} as well as probability measures P^{n} and \widetilde{P}^{n} on the measurable space ($\Omega^{n}, \mathscr{F}^{n}$). Thus let $\Omega^{n}=R^{\infty}, \mathscr{F}^{n}=\mathscr{B}\left(R^{\infty}\right)$ and $F^{n}=\left\{\mathscr{F}_{k}^{n}, k \geqslant 0\right\}$, where $\mathscr{F}_{0}^{n}=\left\{\emptyset, \Omega^{n}\right\}$, while $\mathscr{F}_{k}^{n}=\mathscr{B}\left(R^{k}\right), n, k \geqslant 1$. Furthermore, let $P^{n}=P=\mathscr{L}\left(X^{0}\right)$ and \tilde{P}^{n} $=\mathscr{L}\left(X_{n}\right), \quad n \geqslant 1$.

In these notations, Z_{k}^{n} occurring in [11] is equal to $Z_{n, k}$ and $\left\{Z_{k}^{n}\right\}$ satisfies the conditions from part (a) of Theorem 1 from [11]. Thus we find that $\left\|\tilde{P}^{n}-P\right\| \rightarrow 0$, which completes the proof.

Now let us consider the case of X where X_{1}, X_{2}, \ldots are mutually independent. Then, by Lemma 4.1, we have

Corollary 4.1. Let X be such that X_{1}, X_{2}, \ldots are mutually independent with p.d.f's f_{1}, f_{2}, \ldots with respect to $\tilde{\mu}$. Furthermore, let $f_{n} \rightarrow f^{0} \tilde{\mu}$-a.e. and f^{0} be a p.d.f. with respect to $\tilde{\mu}$ such that

$$
\begin{equation*}
\sup _{1 \leqslant k<\infty} \int_{R^{k}}\left|1-\prod_{i=1}^{k} f_{n+i}\left(x_{i}\right) / f^{0}\left(x_{i}\right)\right| \prod_{i=1}^{k} f^{0}\left(x_{i}\right) \tilde{\mu}^{k}\left(d x_{1}, d x_{2}, \ldots, d x_{k}\right) \rightarrow 0 \tag{2}
\end{equation*}
$$

Then $\left\|\mathscr{L}\left(X_{n}\right)-\mathscr{L}\left(X^{0}\right)\right\| \rightarrow 0$, where X^{0} is such that $X_{1}^{0}, X_{2}^{0}, \ldots$ are i.i.d. r.v.'s with p.d.f. f^{0} with respect to $\tilde{\mu}$.

It is easy to note the following
Remark 4.1. If $\sum_{k=1}^{\infty} \int_{R}\left|1-f_{k}(x) / f^{0}(x)\right| f^{0}(x) \tilde{\mu}(d x)<\infty$, then (2) holds.
4.2. Case (b). Now we prove the following

Lemma 4.2. Let X be chain dependent with respect to a homogeneous Markov chain J which has values in a Polish metric space I. Furthermore, let $\left\|\mathscr{L}\left(J_{n}\right)-\pi^{0}\right\| \rightarrow 0$, where π^{0} is a probability measure on $(I, \mathscr{B}(I))$. Then $\left\|\mathscr{L}\left(J_{n}, X_{n}\right)-\mathscr{L}\left(J^{0}, X^{0}\right)\right\| \rightarrow 0$, where $\left(J^{0}, X^{0}\right)$ is a stationary homogeneous Markov chain with the same transition probabilities as (\mathbf{J}, \mathbf{X}).

Proof. Let $\left(J^{0}, X^{0}\right)$ be a homogeneous Markov chain with the same transition probabilities as $(\boldsymbol{J}, \boldsymbol{X})$ and such that $\mathscr{L}\left(\boldsymbol{J}_{1}^{0}\right)=\pi^{0}$. Then $\left(\boldsymbol{J}^{0}, X^{0}\right)$ is a stationary homogeneous Markov chain. Write $g(B, x)=\mathrm{P}\left\{\left(J_{1}, X_{1}\right) \in B \mid J_{1}\right.$ $=x$, for B belonging to the product σ-field in $(I \times R)^{\infty}$ and $x \in I$. Then

$$
\mathrm{P}\left\{\left(J_{n}, \boldsymbol{X}_{n}\right) \in B \mid J_{n}=x\right\}=\mathrm{P}\left\{\left(J_{n}^{0}, \boldsymbol{X}_{n}^{0}\right) \in B \mid J_{n}^{0}=x\right\}=g(B, x) \text { a.e. }
$$

Hence

$$
\begin{gathered}
\mathrm{P}\left\{\left(J_{n}, X_{n}\right) \in B\right\}=\int_{I} g(B, x) \mathrm{P}\left\{J_{n} \in d x\right\}, \\
\mathrm{P}\left\{\left(J_{n}^{0}, X_{n}^{0}\right) \in B\right\}=\int_{I} g(B, x) \pi^{0}(d x) .
\end{gathered}
$$

Set

$$
\mu=\frac{1}{2} \pi^{0}+\frac{1}{2} \sum_{k=1}^{\infty} 2^{-k} \mathscr{L}\left(J_{k}\right) .
$$

Hence μ is a finite measure on $(I, \mathscr{B}(I))$. Moreover, π^{0} and $\mathscr{L}\left(J_{n}\right), n$ $\geqslant 1$, are absolutely continuous with respect to μ. Thus, denoting by f^{0} and f_{n} the p.d.f.'s of π^{0} and $\mathscr{L}\left(J_{n}\right)$, respectively, with respect to μ, we find

$$
\begin{aligned}
\left\|\mathscr{L}\left(J_{n}, X_{n}\right)-\mathscr{L}\left(J^{0}, X^{0}\right)\right\|= & 2 \sup _{B}\left|\int_{I} g(B, x)\left(f_{n}(x)-f^{0}(x)\right) \mu(d x)\right| \\
& \leqslant 2 \int_{I}\left|f_{n}(x)-f^{0}(x)\right| \cdot \mu(d x)=2\left\|\mathscr{L}\left(J_{n}\right)-\pi^{0}\right\|
\end{aligned}
$$

where sup is taken over all B from the product σ-field in $(I \times R)^{\infty}$. This completes the proof.

Corollary 4.2. Under assumptions of Lemma 4.2, $\left\|\mathscr{L}\left(\boldsymbol{X}_{n}\right)-\mathscr{L}\left(\boldsymbol{X}^{0}\right)\right\| \rightarrow 0$, where X^{0} is the second component in the Markov chain $\left(\boldsymbol{J}^{0}, \mathbf{X}^{0}\right)$ defined in Lemma 4.2.

Corollary 4.3. Let X be a homogeneous Markov chain such that $\left\|\mathscr{L}\left(X_{n}\right)-\pi^{0}\right\| \rightarrow 0$, where π^{0} is a probability measure on $(R, \mathscr{B}(R))$. Then $\left\|\mathscr{L}\left(\boldsymbol{X}_{n}\right)-\mathscr{L}\left(\boldsymbol{X}^{0}\right)\right\| \rightarrow 0$, where \boldsymbol{X}^{0} is a stationary homogeneous Markov chain with the same transition probabilities as \boldsymbol{X}.

Sufficient conditions for the convergence in variation of $\left\{\mathscr{L}\left(J_{n}\right)\right\}$ with J being any homogeneous Markov chain gives Theorem 7.1 from Orey [7].
4.3. Case (c). Let μ and $\mu_{n}, n \geqslant 1$, be probability measures on ($S, \mathscr{B}(S)$) while v and $v_{n}, n \geqslant 1$, probability measures on ($S^{\prime}, \mathscr{B}\left(S^{\prime}\right)$). Further let $\mu \times v$ denote the product measure of μ and ν.

Lemma 4.3. If $\left\|\mu_{n}-\mu\right\| \rightarrow 0$ and $\left\|v_{n}-v\right\| \rightarrow 0$, then $\left\|\mu_{n} \times v_{n}-\mu \times v\right\| \rightarrow 0$.

Proof. For $A \in: \mathcal{B}\left(S \times S^{\prime}\right)$ let $A_{x}=\left\{y \in S^{\prime}:(x, y) \in A\right\}$ and $A^{y}=\{x \in S:$ $(x, y) \in A$; , where $x \in S, y \in S^{\prime}$. Note that

$$
\begin{aligned}
& \left|\mu_{n} \times v_{n}(A)-\mu \times v(A)\right| \leqslant\left|\mu_{n} \times v_{n}(A)-\mu \times v_{n}(A)\right|+\left|\mu \times v_{n}(A)-\mu \times v(A)\right| \\
& \leqslant \int_{\mathcal{S}^{\prime}}\left|\mu_{n}\left(A^{y}\right)-\mu\left(A^{y}\right)\right| v_{n}(d y)+\int_{S}\left|v_{n}\left(A_{x}\right)-v\left(A_{x}\right)\right| \mu(d x) \leqslant\left\|\mu_{n}-\mu\right\|+\left\|v_{n}-v\right\|,
\end{aligned}
$$

which completes the proof.
As an immediate consequence of Lemma 4.3 and Proposition 1 we have
Corollary 4.4. Let X and Y be independent sequences of r.v.'s such that $\left\|\mathscr{L}\left(\boldsymbol{X}_{n}\right)-\mathscr{L}\left(\boldsymbol{X}^{0}\right)\right\| \rightarrow 0$ and $\left\|\mathscr{L}\left(\mathbf{Y}_{n}\right)-\mathscr{L}\left(\boldsymbol{Y}^{0}\right)\right\| \rightarrow 0$, where \boldsymbol{X}^{0} and \mathbf{Y}^{0} are mutually independent.

Then $\left\|\mathscr{\mathscr { P }}\left(X_{n}, Y_{n}\right)-\mathscr{L}\left(\boldsymbol{X}^{0}, Y^{0}\right)\right\| \rightarrow 0$ and $\left\|\mathscr{L}\left(X_{n}+Y_{n}\right)-\mathscr{L}^{(}\left(\boldsymbol{X}^{0}+Y^{0}\right)\right\| \rightarrow 0$.
To see the usefulness of Corollary 4.4 let us consider the following model of disturbance described by \boldsymbol{Y}. Let $\left\{v_{n}\right\}$ be any sequence of probability measures on $(R, \mathscr{B}(R))$ which are absolutely continuous with respect to the Lebesgue measure l, and δ_{0} the probability measure concentrated at zero. Denote by $g_{k}, k \geqslant 1$, the p.d.f. of v_{k} with respect to l. Further, let Y be a sequence of independent r.v.'s Y_{1}, Y_{2}, \ldots such that Y_{k} has the distribution $p_{k} \delta_{0}+\left(1-p_{k}\right) v_{k}, k \geqslant 1$, where $0 \leqslant p_{k} \leqslant 1$.

Lemma 4.4. If $\sum_{k=1}^{\infty}\left(1-p_{k}\right)$ is finite, then $\left\|\mathscr{L}\left(\mathbf{Y}_{n}\right)-\mathscr{L}\left(Y^{0}\right)\right\| \rightarrow 0$, where $Y^{0}=(0,0, \ldots)$.

Proof. Writing $\tilde{\mu}=\frac{1}{2} \delta_{0}+\frac{1}{2} l$, we see that δ_{0} and v_{k} are absolutely continuous with respect to $\tilde{\mu}$. Moreover, their p.d.f.'s with respect to $\tilde{\mu}$ are equal to $2 \chi_{0}$ and $2\left(1-\chi_{0}\right) g_{k}$, respectively, where $\chi_{0}(x)=1$ if $x=0$, and zero otherwise. Hence the p.d.f.'s of $\mathscr{L}\left(Y_{k}\right)$ and $\mathscr{L}\left(Y_{1}^{0}\right)$ with respect to $\tilde{\mu}$ are equal to $f_{k}=2 p_{k} \chi_{0}+2\left(1-p_{k}\right)\left(1-\chi_{0}\right) g_{k}$ and $f^{0}=2 \chi_{0}$, respectively. Therefore $\int_{\boldsymbol{R}}\left|1-f_{k} / f^{0}\right| f^{0} d \tilde{\mu}=1-p_{k}$.

Hence and in view of Remark 4.1 and the assumed condition we obtain the assertion.

5. EXAMPLES OF X FOR WHICH THEOREMS 1-4 HOLD

5.1. Dependence case. Let us present some examples.

Example 1. Let $Y=\left\{Y_{k}, k \geqslant 1\right\}$ be an asymptotic stationary in variation sequence of r.v.'s (it is not assumed the mutual independence of $\left.Y_{1}, Y_{2}, \ldots\right)$ such that $Y_{1}+Y_{2}+\ldots+Y_{k} \rightarrow-\infty$ in probability. Furthermore, let its stationary representation Y^{0} be such that $Y_{-1}^{*}+Y_{-2}^{*}+\ldots+Y_{-k}^{*} \rightarrow-\infty$ a.s., where $\left\{Y_{k}^{*},-\infty<k<\infty\right\}$ is a stationary sequence of r.v.'s such that $\mathscr{L}\left(\left\{Y_{k}^{*}, k \geqslant 1\right\}\right)=\mathscr{L}\left(Y^{0}\right)$. Define r.v.'s $X_{k}, k \geqslant 1$, by

$$
X_{k+1}=\max \left(0, X_{k}+Y_{k}\right), k \geqslant 1,
$$

where X_{1} is any nonnegative r.v.

In Queueing Theory the sequence X is well known as the process of waiting time and it is denoted by $\boldsymbol{w}=\left\{w_{k}, k \geqslant 1\right\}$. We have shown ([10], Theorem 3a) that under above assumptions this process is asymptotically stationary in variation. Thus, if $\left\{k_{n}\right\}$ and $\left\{u_{n}\right\}$ are such that $\mathrm{P}\left\{M_{k_{n}}^{0}>u_{n}\right\} \rightarrow 0$ and $\mathrm{P}\left\{M_{k_{n}}>u_{n}\right\} \rightarrow 0$, then by Theorem 1 we have $\mathrm{P}\left\{M_{n}^{0}>u_{n}\right\}$ $-\mathrm{P}\left\{M_{n}>u_{n}\right\} \rightarrow 0$.

Example 2. Let $X=Z+Y$, where Z and Y are mutually independent sequences of r.v.'s such that Z is stationary and Y is a sequence of mutually independent r.v.'s Y_{1}, Y_{2}, \ldots Assume that $\mathscr{L}\left(Y_{k}\right)=p_{k} \delta_{0}+\left(1-p_{k}\right) v_{k}, k \geqslant 1$, where probability measures $v_{k}, k \geqslant 1$, are absolutely continuous with respect to the Lebesgue measure and $\sum\left(1-p_{k}\right)<\infty(k=1,2, \ldots)$. Then
(a) If \boldsymbol{Z} is such that, for some $\left\{u_{n}\right\}$ and $\left\{k_{n}\right\}$,

$$
\mathrm{P}\left\{2 \max _{1 \leqslant k \leqslant k_{n}} Z_{k}>u_{n}\right\} \rightarrow 0 \quad \text { and } \quad \mathrm{P}\left\{2 \max _{1 \leqslant k \leqslant k_{n}} Y_{k}>u_{n}\right\} \rightarrow 0,
$$

then

$$
\mathrm{P}\left\{\max _{1 \leqslant k \leqslant n} Z_{k}>u_{n}\right\}-\mathrm{P}\left\{\max _{1 \leqslant k \leqslant n} X_{k}>u_{n}\right\} \rightarrow 0 .
$$

(b) If \boldsymbol{Z} satisfies condition A_{2} and, for some $\left\{k_{n}\right\}$ and each $x>x(v)$,

$$
\mathrm{P}\left\{2 a_{n}\left(\max _{1 \leqslant k \leqslant k_{n}} Z_{k}-b_{n}\right)>x\right\} \rightarrow 0 \quad \text { and } \quad \mathrm{P}\left\{2 a_{n}\left(\max _{1 \leqslant k \leqslant k_{n}} Y_{k}-b_{n}\right)>x\right\} \rightarrow 0,
$$ then $\mathscr{L}\left(a_{n}\left(M_{n}^{*}-b_{n}\right)\right) \Rightarrow v$.

Indeed, in view of Lemma 4.4 and Corollary 4.4, \boldsymbol{Z} is a stationary representation in variation of X, i.e. $\left\|\mathscr{L}\left(X_{n}\right)-\mathscr{L}(Z)\right\| \rightarrow 0$. Furthermore,

$$
\mathrm{P}\left\{M_{k_{n}}>x\right\} \leqslant \mathrm{P}\left\{\max _{1 \leqslant k \leqslant k_{n}} Z_{k}>\frac{x}{2}\right\}+\mathrm{P}\left\{\max _{1 \leqslant k \leqslant k_{n}} Y_{k}>\frac{x}{2}\right\} .
$$

This and Theorems 1 and 2 give implications (a) and (b).
Example 3. Let \boldsymbol{X} be either (i) a homogeneous Markov chain such that $\left\|\mathscr{L}\left(X_{n}\right)-\pi^{0}\right\| \rightarrow 0$ or (ii) a chain dependent with respect to a homogeneous Markov chain J such that $\left\|\mathscr{L}\left(J_{n}\right)-\pi^{0}\right\| \rightarrow 0$, where π^{0} is a probability measure on ($R, \mathscr{B}(R)$) in case (i) and on ($I, \mathscr{B}(I)$) in case (ii). Then, in view of Lemma 4.2 and Corollary 4.3, X is asymptotically stationary in variation in both cases. Moreover,
(a) If, for some $\left\{u_{n}\right\}$ and $\left\{k_{n}\right\}, P\left\{M_{k_{n}}^{0}>u_{n}\right\} \rightarrow 0$, then

$$
\mathrm{P}\left\{M_{n}^{0}>u_{n}\right\}-\mathrm{P}\left\{M_{n}>u_{n}\right\} \rightarrow 0
$$

(b) If A_{2} and A_{5} hold, then $\mathscr{L}\left(a_{n}\left(M_{n}-b_{n}\right)\right) \Rightarrow v$.

Indeed, implication (a) follows from Lemma 3.5 and Theorem 1, while - (b) follows from Lemma 3.5 and Theorem 3.
5.2. Independence case. Let X be such that X_{1}, X_{2}, \ldots are mutually independent with p.d.f's $f_{k}, k \geqslant 1$, with respect to the Lebesgue measure.

Example 4 (exponential distribution disturbed by a normal distribution). Let f^{0} be the exponential p.d.f. with the parameter λ and $f_{k}=f^{0} * g_{k}, k$ $\geqslant 1$, where g_{k} is the normal p. d.f. with the mean zero and the variance $\sigma_{k}^{2}>0$, while $*$ denotes the convolution. Furthermore, suppose that for some $\alpha, \alpha<1$,

$$
\begin{equation*}
\sum_{k} \sigma_{k}^{\alpha}<\infty . \tag{1}
\end{equation*}
$$

Then $\left\|\mathscr{L}\left(\boldsymbol{X}_{n}\right)-\mathscr{L}\left(\boldsymbol{X}^{0}\right)\right\| \rightarrow 0$. Moreover, with $a_{n}=\lambda$ and $b_{n}=\lambda^{-1} \log n$ the limiting d.f.'s of $a_{n}\left(M_{n}-b_{n}\right)$ and $a_{n}\left(M_{n}^{0}-b_{n}\right)$ are equal to the d.f. G which is $G(x)=\exp \left(-e^{-x}\right)$ for $x \in R$.

Indeed, note that

$$
f^{0} * g_{k}(x)=\lambda \exp \left(-\lambda x+\lambda^{2} \sigma_{k}^{2} / 2\right) \Phi\left(x / \sigma_{k}-\lambda \sigma_{k}\right),
$$

where Φ denotes the standard normal d.f. Hence

$$
\begin{gather*}
\int_{-\infty}^{\infty}\left|1-f_{k}(x) / f^{0}(x)\right| f^{0}(x) d x=\int_{-\infty}^{\infty}\left|1-\exp \left(\lambda^{2} \sigma_{k}^{2} / 2\right) \Phi\left(x / \sigma_{k}-\lambda \sigma_{k}\right)\right| f^{0}(x) d x \tag{2}\\
\leqslant \exp \left(\lambda^{2} \sigma_{k}^{2} / 2\right)-1+\int_{-\infty}^{\infty}\left|1-\Phi\left(x / \sigma_{k}-\lambda \sigma_{k}\right)\right| f^{0}(x) d x
\end{gather*}
$$

Denote the integral part of the right-hand side of (2) by B and consider it for such k that $\sigma_{k}<1$. Then decomposing $[0, \infty)$ in $\left[0, c_{k}\right]$ and $\left(c_{k}, \infty\right)$, where $c_{k}=\lambda \sigma_{k}^{2}+\sigma_{k}^{\alpha}, k \geqslant 1$, we have

$$
\begin{aligned}
B & \leqslant 2 \int_{0}^{c_{k}} f^{0}(x) d x+1-\Phi\left(\sigma_{k}^{\alpha-1}\right) \leqslant 2\left(1-\exp \left(-\lambda\left(\lambda \sigma_{k}^{2}+\sigma_{k}^{\alpha}\right)\right)\right)+1-\Phi\left(\sigma_{k}^{\alpha-1}\right) \\
& \leqslant 2 \lambda(\lambda+1) \sigma_{k}^{\alpha}+m_{2 i} \sigma_{k}^{2 i(1-\alpha)} \leqslant c \sigma_{k}^{\alpha},
\end{aligned}
$$

where m_{i} is the i-th moment of $\Phi, 2 i>\alpha /(1-\alpha)$, and c is some constant depending on k and λ. Hence the right-hand side of (2) does not exceed (c $+\exp (a)) \sigma_{k}^{\alpha}$, where $a=\lambda^{2} \sup \sigma_{k}^{2} / 2$. This, in view of (1), Remark 4.1 and Corollary 4.1, implies $\left\|\mathscr{L}\left(\boldsymbol{X}_{n}\right)-\mathscr{L}\left(\boldsymbol{X}^{0}\right)\right\| \rightarrow 0$.

Now notice that $F_{k}\left(x / a_{n}+b_{n}\right)=F_{k}((x+\log n) / \lambda)$ for each x and $n, k \geqslant 1$. Hence, for each k and $x \in R, F_{k}\left(x / a_{n}+b_{n}\right) \rightarrow 1$ as $n \rightarrow \infty$. This and Lemmas 3.1 and 3.3 as well as Theorem 3 and Example 1.7.2 from [3] prove the correctness of the example.

I wish to express my thanks to Professor B. Kopociński for his valuable comments. I am also gratetul to Dr W. Dziubdziela for his helpful remarks.

W. Szczotka

REFERENCES

[1] E. G. Denzel and G. L. O'Brien, Limit theorems for extreme values of chain dependent process, Ann. Prob. 3 (1975), p. 773-780.
[2] R. Durret and S. I. Resnick, Functional limit theorems for dependent variables, ibidem 6 (1978), p. 829-846.
[3] M. R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and related properties of random sequences and processes, Springer-Verlag, New York 1982.
[4] M. R. Loynes, Extreme values in uniformly mixing stationary stochastic processes, Ann. Math. Statist. 36 (1965), p. 993-999.
[5] G. L. O'Brien, Limit theorems for sums of chain dependent processes, J. Appl. Prob. 11 (1974), p. 582-587.
[6] - The limiting distribution of maxima of random variables defined on a denumerable Markov chain, Ann. Prob. 2 (1974), p. 103-111.
[7] S. Orey, Lecture notes on limit theorems for Markov chain transition probabilities, Van Nostrand and Reinhold, London 1971.
[8] S. I. Resnick and M. F. Neuts, Limit laws for maxima of sequence of random variables defined on a Markov chain, Advances Appl. Prob. 2 (1970), p. 323-343.
[9] R. Serfozo, Functional limit theorems for extreme values of arrays of independent random variables, Ann. Prob. 10 (1982), p. 172-177.
[10] W. Szczotka, Stationary representation of queues, I, Advances Appl. 18 (1986), p. 815-848.
[11] J. Yu. Vostrikova, On necessary and sufficient conditions for convergence of probability measures in variation, Stoch. Processes and their Appl. 18 (1984), p. 99-112.

Wrocław University
Institute of Mathematics
Pl. Grunwaldzki 2/4
50-384 Wrocław, Poland

Received on 8. 12. 1986

