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Abstract. The problem of behaviour of an( mlrx X, -bJ is consi- 
l G k 6 n  

dered when a, > 0, Ib,l < m and the sequence X = {X,, k 2 1) is 
asymptotically stationary in variation. 

X 1s said to be u~ymptotically stattonary in variation if I(9(Xn) 
-2 (X0) )1  + 0,  where X,, = [X,,,, k 2 I ] ,  wlule T(X, )  and $ a ( X O )  
denote the distributions of the sequences Xn and X" !x:, k 2 I ] ,  
- 

respectiveIy. The sequence Xo of random variables X: is statlonary 
and it is said to be a stationary representation of X .  

The main result states: under Hd"(X, , ) -9(X0)(I+0 and some 
natural conditions concerned X and X o ,  the sequence of distributions 
9 ( a n (  max Xk- b,,)) weakly converges povided the sequence of 

I <k<n 
9 ( a n (  rnax a- b,,)) weakly converges and the limits m e  the same. 

l Q k S n  

An analogous result is also formulated for the processes of exceedances. 

1. INTRODUCITON 

Let Y =  ( &, k 2 1 )  be an S-valued discrete-time process and Y, 
df 

= \Yhk = Y,+,, k 2 lj , n 2 1. S is assumed to be a Polish metric space. For the 
Bore1 a-field of subsets of a space we write iid before the symbol denoting the 
space, for the distribution of a random element (r.e.) we put 9 before the 
symbol denoting the r.e., for the total variation of the subtraction of proba- 
bility measures ,u and v on a measurable space (62, 9) we write Ilp-vll, i.e. 

l l i - v l l  = ~ s ~ P I P ( B ) - v ( ~  
B E F  

and for the weak convergence of probability measures or distribution func- 
tions (d.fs) we write - . -  *. Further Y is said to be asymptotically stationary in 
va%ation i f  there exists an ~-valued discrete-time process P = { I$', k 2 I f  such 
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that IIY(Y, ) -2{Y0)I (  +O.  The process Yo is stationary and it is called a 
stationary representation in variation of l'. 

Let X = [X,, k 2 1)  be a real-valued discrete-time process, X0 = iX,D, k 
2 11 its stationary representation in variation, M, = rnax Xk and M: 
= max X,O (1 G k < n). The main purpose of this paper is: 

(1) to give conditions under which IY (a, ( M ,  - b,))] weakly conver- 
ges provided { ~ ( a , ( ~ ; - n , ) ) )  weakly converges for some constants a, > 0 
and 6,; 

(2) to give sufficient conditions under which the behaviour of exceedan- 
ces processes defined for X and X0 is similar. 

The main results, solving the stated problems, are given in Theorems 1- 
4. A simplified version of the answer to problem (1) states: 

If IlP(X,) - 9(x0)lf -+ 0 and there exist constants a, > 0 and b, E R such 
that 9 ( a , ( M ~ - b , ) )  + v, where v is max-stable and, further, there exists a 
nondecreaslng sequence ofpositive integers k,  such that k, -+a, k,Jn + O  
and P (an (Mk ,  - b,J > X) + 0 for x > inf [ y :  v ( -  m ,  y ]  > 01, then 9 ( a ,  (M,, 
-bn))-  v. 

In the Extreme Value Theory sufficient conditions for the weak conver- 
gence of 1 ~ ( u , ( M , -  6,)) are known also in the case where X is not necessary 
stationary ([2], [S], 161, [ I ] ) .  In papers [I], [GI, and [8] this problem was 
considered in the situation when X is a homogeneous Markov chain or it is 
chain dependent. But then, under some additional natural conditions, X is 
asymptotically stationary in variation (see Section 4). Thus { 9 ( a , ( M n - b , ) ) )  
weakly converges provided {S (a,  (M:  - b,))) does (see Example 9. 

The similar fact, i.e. the asymptotic stationarity in variation, is true for 
the following processes : 

(a) a regenerative process with the aperiodic distribution of the regenera- 
tive period and with the finite expectation of this period; . 

(b) the waiting time process if the generic sequence is asymptotically 
stationary in variation [ l o ] ;  

(c) X = i f  ( Y , ) ,  k 2 I ) ,  where Y is asymptotically stationary in variation 
and f is a measurable mapping of Sm into R. 

The main results (Theorems 1-4) are proved by the method based on 
the following 

PROPOSITION 1 .  Let ,u and p, (n 3 1 )  be probability measures on 
( S ,  B(S)) ,  h, ( n  3 1 )  measurable mappings of S into a Polish metric space Sf, 
and v a probability measure on (S ' ,  d(S7) .  Then the following implications 
hold: 

(i) If I l ~ l n - ~ l l  40 ,  then l l ~ n h ~ ' - ~ h ~ ' l I  4 0 .  
(ii) If /lpn-pil + O ,  l/ph;l-vlI + O  (or ph; l+v) ,  then /Ip,h;l-vl/ +O 

(or p, h i  v ) .  
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Implication (i) follows from the inequality Ilp, h i  - ph, '11 ,< )Ip, - P I ] ,  
and (ii) is implied by the relations Ip, hi' (B) - v (B)( < Jpn h i  (B) - ph; (B)J 
+ l w K I P ) - ~ ~ B ) l  4 I I P ~ , - P I I + I ~ ~ ~ ; ~ ~ ~ ~ - v ~ ~ ) I .  

It may be worth noticing here that Proposition 1 has also other 
consequences. The following one concerns a continuity problem in the 
Extreme Value Theory: 

PROP~SITION 2. 1J for each n 2 1 ,  X ( n )  = iX,,, k 3 11 is an r.e. of R m  
such rhat 119 ( ~ ( n ) ) -  Y ( x ) ) ~  -+a and Y (a,,(M,l-b,)) 3 v, then 

2 (an ( max X,, - b,J) = v . 
l - , < k < n  

Notice that if I J ~ ( X ( ~ ) ) - Z ( X ) ( ~  40, then Proposition 2 may be also 
viewed as an other approach to the investigation of max X,, (1 < k < n). 
Similarly, Proposition 1 and the convergence /(P(x(~))- 2 ( x ) I I  -+ 0 allow us 
to find &onvergences of other than maxX,,, (1 d k ,< n) functidns of  X(n) .  
E.g., in view of Serfozo 191, we may formulate an analogue of Proposition 2 
for the extremal process or the process of exceedances. 

2 MAIN RESULTS 

To complete the set of notations from the previous section, let us 
introduce the following ones. Let [k,) denote a nondecreasing sequence of 
integers tending to infinity in such a way that k Jn +O as n + cx?, F, the df. 
of X ,  (k Z I), F the d.f, of Xy, x(v) = inf [xER: v(-co, x] > 01, where v is 
a probability measure on (R, g ( R ) ) ,  I ,  the indicator of a set A and x 
= [x,, k 2 1 )  a point of R", where xk E R .  Further, for a sequence (u,] of 
real numbers let Nn and N; ( n  2 1) be point processes defined by 

where B belongs to J ( (0 ,  11) and B , ,  = [x ER": x, > u,) . Obviously, N, 
and N,O are processes of exceedances of the level u, by the processes X and 
x*, respectively. Let, finally, ,4/ denote the space of all measures on (0, 11 
with values in the set of nonnegative integers. This space is considered with 
the vague topology (see e.g. [3], p. 11). 

Now let us formulate the following conditions: 
A19 l l a X n ) - 9 ( X 0 ) I I  -,On 
A,. There exist sequences {a,) and (b,] (a, > 0, b,  ER) such that 

Y(a,(M,O-b,J)=sv. 
A,. There exist ik.1 for which (a,] and [b,] from A, satisfy -r 1 

and a,-kn(b,-b,-kr) +0. 
A,. There exists a {k,) such that, for each x > x(v),  P {a,(&,- bJ =. x) 

+O, where :a,), ib,] and v satisfy A,. 
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A,. There exists-a (k , )  such that, for each x ;x (v ) ,  P ( a n ( M t - b , J  > x) 
-,O, where (a,), (b,)  and v satisfy A,. 

BeReviour qf { M , ] .  For a real-valued process Z = !,&, k 3 1: we have 

(1) ~ { r n a x - Z , < x )  
1 SkQn 

I =P-(thax Z; < x) -P [max  zk > x ,  max Zk < x],  
i d k e n  l G k 4 i  i < k d n  

where 1 d i < n , n 2  1 , x ~ R .  

THEOREM 1.  Let A, be satisfied and let {k , )  and [u,~] be such that 

(2) P(MkO, > u n )  + O  and P ( M , ,  > u.) -+0. 

Then 

(3) P{M;>u,)-P{M, >u, , )  -0. 

Proof,  Define mappings h,: Rg) + R (n 2 11 b y  

h , , (x )=  max xk-u,.  
1 C k G n - k ,  

I 
I These mappings are measurable. 

Rewriting relation (1) for X and x', we obtain 

P { M n  < u,) = P {h, (Xk,)  < 0) - P (Mk, > U,, h, (Xk,) < 01 
and 

P { M :  6 u,) = P ( h n ( X O )  < 0) - P  {M!n > u,, h,(X:J 6 0 ) .  

But in view of the first implication of Proposition 1, we have 

which together with (2) gives (3). 
In the case of linear normalization of M, and M ;  we obtain the 

following analogue of Theorem 1: 
THEOREM 2. Let conditions A,-A4 be satislfied, where A, and A, hold with 

the same { k , ) .  Then 

(4) Y(an(Mn-bn)) -v*  

' Proof.Define mappings h , : R m + R ( n B 1 ) b y  

h(x)  = a,( max x,-b,).  
I S k C n  

These mappings are measurable. 
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Rewriting relation (1) for X we obtain 

P [un(Ml , -bn)  < X; 

= P l a r J ~ n - ~ , ( h n - k R { ~ ~ J - a n - , n t b n - b , - , ) )  6 x]  - 

Now, by conditions A1-A, and the second implication in Proposition 1, 
we find 

if x > x ( v )  and x is a continuity point of v.  Otherwise, i.e, if x < x(v), it is 
obvious that P [a, (M, - bJ < xj. + 0. Thus the proof is complete. 

In view of this proof we can state sometlung about the necessarity of A, 
and A, in Theorem 2. 

Remark  2.1. (i) Condition Ag holds provided A,, A,, A, and (4) hoId, 
where {k,) in A, is the same as in A,. 

(ii) If XI, X,, . . . are mutually independent, then condition A4 holds, 
provided A,-A, and (4) hold, where {k,) in A, is the same as in A,. 

Notice that condition A, ought to depend only on Xo.  In the following 
it is proved that A, and A, are sufficient for A3.  

LEMMA 2.1. Let A, and A, be satisfied, Then A, holds with the same {k,) 
as in A,. 

Proof.  Rewriting relation (1) for Xo we obtain 

(5 )  P (a, ( M ;  - b3 < x) 

-P{a,(M,On-b,)>x,a,( rnax X f n + k - b , J < ~ ) .  
l S k S n - k ,  

In view of A, the left-hand side of (5) converges to v ( - a o ,  x] if 
v [xj = 0, while Y (an-kn(M~-,n - b,-kr)) 3 v .  Hence and from A, we have 
~ d a , - ~ ,  + 1 and a,-,n (b,- b,-,J +0, which completes the proof. 

As an immediate consequence of Theorem 2 and Lemma 2.1 we obtain 
THEOREM 3. Let coditions A, and A, be satisfied. Furthermore, let A, 

and A, hold wi th  the same sequelace (k,[. Then (4) holds. 
Behiour  of ttN,). We now prove 
THEOREM 4. Let A, hold and $p(N;S]) 9 ( N ) ,  where N is a point process 

an (0, 11. Furthermore, let a ( k , )  exist such that 

(6) P j Mkn > u,j +O and P {M:, > u,) -0, 

where u, is the same as in the dejinitions of N ,  and N:. Then Y ( N , )  3 di"(w. 
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Proof.  Let us define mappings g,: R") +Rm, h,: R m  +.N and H,: 
LN' + .N' (n 2 1) as 

where a x =  {ox,, k g  1 )  for ~ E R ,  y~i, and aa8-b= {min(ax-b, 1); x c B )  
for BsB(0 ,  11 and a, b > 0. 

Notice that g,, h, and H ,  are measurable and 

% hn-  k n  sti (xk,) (B) = (x) 
h <kSn 

ITnE6 

for any 3 EB ((0,1]) and x €Rm, where qn = (xkn.,,, k 2 1). Hence 

which, in view of the stationarity of Xo, gives 

2 ( H n  O h , - k n  OB~(X;,)) = 

Now define point processes fi; and f i , ~  (n < 1)  as 

and 

In view of (6) the distributions ~ ( f i , J  and 5?(fl,0) weakly converge to 
the distribution concentrated on the measure from .N' which is zero for each 
Borel subset of (0, 11. But N; = fif + Hn o hn-+ og,(X;).  Hence and since 
Y ( N ~  = P'(N), we have 

which by A, and Proposition 1 gives 

Hence, in view of the relation N n  = 8, + H,, o hn-hn og. (&J we find the 
assertion. 

Theorem 4 allows us to formulate analogues of Theorems 5.3.1 and 5.3.4 
of E3] or a behaviour of Mkk' as n -,as, where Mik) is the k-th largest of 
XI, X2,  m m . 3  Xn* 



Asymptotic stationary sequences 57 

3. EXAMINATION OF A., AND Aj 

The following obvious fact is basic for the examination of A4 and A,: 
R e m a r k  3.1. Let {c,,, k, n 2 1) be an array of real numbers such that, 

for each k 2 1, c,, 4 ck as" n 4 oo and c, 4 1 as k 4 rn . Then there exists a 
[k,) such that c,,~ + 1 as n 4 m. Moreover, if kk < k,, then c,,; + 1. 

I LEMMA 3.1. Let X be such that X I ,  X,, . . . are mutually independent and 
such that for some constant xo and for each k and each x, x > x,, we have 

Then there exists a {k, )  such that P {a,(Mkn- b,) > x) +O for each 

Proof .  Let (xkj be any decreasing sequence tending to x,. For each 
n, k 2 1 and x ER define 

Then, by (I), A , ,  + 1 as n +XI for all k. By Remark 3.1, Aqkn -, 1 as n 
+oo for some (k,j. But, for any x such that x > x,, there exists an no such 
that x > xkn for n 3 no. Hence, for x > x,, we have An,kn = A n , k n ( ~ k J  
< A,,,,(x) 4 1. This and the convergence A,,kn 1 yield A , , , k n ( ~ )  1 for each 
x > x,, which completes the proof. 

LEMMA 3.2. Let A, be satisjed and the dJ  G, corresponding to v, be max- 
stable. Then A, is satisjed. Moreover, if the convergence in A, holds with {k,), 
then it holds with any {kg) such that kk < k,, n > 1. 

Proof.  Let ix,) be any decreasing sequence of real numbers tending to 
x(v) and such that G'lk(xk) + f as k + a. Write 

Since G is max-stable, A,,, +G'Ik(xk) for each k. Hence and by Remark 
3.1, there exists a {k,j such that AGkn + 1. Now, for any x > x(v), there exists 
an' no such that x > xkn for n > no. Hence, for any x, x > x(v), A,,,(x) 
2 An,kn(~kn)  which, in turn, for x > x(v), yields A,,,,(x) + 1 as n + m.  This 
completes the proof. 

The following lemma admits more sequences (k,) in A,: 
LEMMA 3.3. Let X0 be such that X y ,  X,O, . . . are mutually independent and 

let A, be satisfied. Then A, holds with each {k,). 

Proof.  Notice that P ~ O , ( M : ~ -  b,,) > X )  = 1- (F (x/a,+ b,J)Ln. But the 
- limit of n (1 - F (x/a,  + b,,)), as n 4 rn , is tinite for each x > x (v). Hence 

- k, (1 - F (x/an+ bJ) + 0, which completes the proof. 
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It follows from Loynes work [4] that the assumption of Lemma 3.2 
holds if XO is uniformly strongly mixing (see also 131, p. 55). The following 
lemma states that X0 inherits this property from X. 

LEMMA 3.4. Let A, be satisfied. Then the property of the unqorm strong 
mixing of X implies the same for Xo. 

Proof.  Denote the vectors (X,, Xk+l, , . . , Xm) and ( X f ,  X:,,, . . ., Xl) 
by X,,, and XE,,,, respectively. The fact that X is uniformly strongly mixing 
means that 

where the supremum is taken over all k, all A f g ( R k )  and all B EB(R").  
But by A, we have 

for a11 k and rn, A €49 (Rk) and all B (R"). Hence 

-P ( x k p + l , k n + k  ; X k , + k + r n ~ ~ ) /  =a(m), 

where the supremum is taken over all k, all A E B (Rk) and all B EB(R"). 
Thus the proof is completed. 

Now we show that if X is a Markov chain or X is chain dependent, 
then, under some natural additional conditions, A, implies A,. 

X is said to be chain dependent with respect to  a homogeneous Markov 
chain J = IJ,, k 2 1 )  with a state space I being a Polish metric space if 
X I  = ~ E R  and 

for A €d(I) ,  B E ~ ( R ) ,  n 2 1 .  
Obviously, ( I ,  X) is a Markov chain. 
LEMMA 3.5. Let A, and A, be satisfied if X is eithm ( i )  a homogeneous 

Markov chain such that 1 1  9 ( X , )  - nO(J -+ 0 or (ii) chain dependent with respect 
to a homogeneous Mmkov chain J such that (12(J,)-nO1l +O, where no is a 

' probability measure on (R,  B(R))  in case ( i )  , and on ( I ,  g(I)) in case (ii). Then 
A4 is satisfied with the same [k,)  as in A,. 

Pro of. The proof is carried out parallelly in both cases.. 
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Write, in case (i), 

g,(x, y) = P {  max Xj > xJX1 = y )  
l c j c k - 1 - 1  

and, in case (ii), 

gk(x, y) = P ( max Xj > x 1 J1 = y] .  
I 

1 < j Q k + l  

I Then, in (i), 
PI max X y > x ] X ( : = y j = g k ( x , y )  a.e. 

I c j S h S  1 

and, in fii), 

Pi max X j O > x ~ ~ y = y )  =g;(x,y)a.e. 
1 < j < k +  1 

Now, rewriting relation (2.1) for %, we obtain 

(7) P ; M k > x )  = P i m a x X j > x l - P ( M i  > x ,  max X j < x i .  
i i jsk i < j S k  

I Moreover, in (i), 

I 
= (PI max X j > x I X , = y ) P \ X i ~ d y ]  =Jg , - i (x ,y )PIXi fdy)  

k l < j Q k - i + l  R 
I 
i and, in (ii), 

In a similar way we find, in (i), 

Pi max X; > x j  = fgkPi (x ,  y ) P  [ ~ f ~ d y j  
i < j < k  R 

and, in (ii), 

P (max XjO > x) = fgLPi(x, y ) P  [ J y ~ d y j .  
i < j < k  i 

m 

Define a measure ,u as 3 Y ( X 3  + 2-' Y ( X J  in case (i) and as 
i =  1 

m 

Y(J(:) ++ 2-' 9 ( J i )  in case (ii). 
i =  1 
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Obviously, the measures .2(Xi0), ,Y(Xi) and Y(J3, 9 ( J i )  are absolute- 
ly continuous with respect to ,u in both cases. 

Let p0 and pi denote the probability density functions (p.d.f.) of Y ( x ~ )  
and Y ( X i )  with respect to p defined in case (i), while qo and qi denote the 
p.d.f.'s of LZ'(J7) and 2 ( J i )  with respect to p defined in case (ii). Then, in (i), 

and, in (ii), 

JP I max Xf > xj -P rnax Xj > x]l d (ilqo(y)-qi(y)lp(d~) 
i cjBk i C j Q k  R 

The latter, next the convergences 11 24"(Xi) - Lf'(X?)ll + O in (i) and IIY(Ji) 
- 5?(Jy)i( 4 0  in (ii), as i + co, and finally jl), (2) and A, imply A, with the 
same [ k , j  as in A,. This completes the proof. 

Conditions under which X is asymptotically stationary in variation are 
here investigated in three cases: 

(a) X is a nonhomogeneous Markov chain, 
(b) X is a function of a homogeneous Markov chain, 
(c) X is disturbed by fading process. 

4.1. Case (a). Let X be a nonhomogeneous Markov chain and 
Pn,n+l(x, A) = P {X,+, EAI X, = X] for XER,  A E & ~ ( R ) ,  n 2 1. Further, let fi  
be a convex combination of the Lebesgue measure on R and a discrete 
measure on R. By ,iik the k-multiple product of the measure ,C is denoted. 

Let us introduce the following conditions: 
(i) For each n 2 1, 9(X,)  has the p.d.f. f, with respect to the measure ,Z. 
(ii) For ,C-almost all x and n 2 1, P ,,,, (x, - )  has the p.d.f. f,,,+,(x, .) 

with respect to the measure ji andf,,,, , (x, y) as a function of (x, y) is jointly 
measurable. 

(iii) f, 4 f O j7-a.e., where f O is a p.d.f. with respect to ji. 
(iv) f,,, +, + f ,C2-a.e., where, for fi-almost all x, (x, y) as a function of y . 

is a p.d.f. with respect to jl. 
Set , 

k. 

i =  2 

and 
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iff& > 0, and zero otherwise. 
LEMMA 4.1. Let conditions (i)-(iv) be satisfied and 

Then IIP(X,) - dp(Xo)(I 4 0, where X0 is a stationary homogeneous Mar- 
kotr clzain with the transition p.d.f. f ( x ,  y) ,  x, y E R ,  such tl~ut 

f O (Y)  = j-fO(x) f (x, Y) F(dx) 6-a.e. 
R 

Proof .  The proof follows by part (a) of Theorem 1 from Vostrikova 
[ll]. Indeed, for each n 2 1 detine a measurable space (a", zP), a filters Fn as 
well as probability measures P" and on the measurable space (an,  F"). 
Thus let 52" = Rm, 9" = B'(Rw) and P = i.6, k 2 03, where 9+ [@, On!,  
while .F; = G ? ( R ~ ) ,  n, k 3 1 .  Furthermore, let Pn = P = P ( x 0 )  and 
= YI(Xn), n 3 1 .  

In these notations, Z: occurring in [Ill  is equal to Z, , ,  and (Zij 
satisfies the conditions from part (a) of Theorem 1 from [ll]. Thus we find 
that - Pll + 0, which completes the proof. 

Now let us consider the case of X where X,, X,, ... are mutually 
independent. Then, by Lemma 4.1, we have 

COROLLARY 4.1. Let X be such that XI ,  X,, . . . are mutually independent 
with p.d$'s fl , f, , . . . with respect t o  ji. Furthermore, let f, + f ji-a.e. and f O be 
a p.d$ with respect to ji such that 

Then JlY(X,)-  Y(XO)II + O ,  where X0 is such that X:, X ; ,  . . . are i.i.d. 
r.v.'s with p,d$ f ' with respect to ,Z. 

It is easy to note the following 
m 

Remark  4.1. If J'I1-f,(x)/fo(x)l fo(x)p(dx)  <: co, then (2) holds. 
k=  1 R 

4.2. Case (b). Now we prove the following 
LEMMA 4.2. Let X be chain dependent with respect to a homogeneous 

Markov chain J which has values in a Polish metric space I .  Furthermore, let 
II9(J,) - xO(I -+ 0, where no is a probability measure on (1, a ( I ) ) .  Then 
l19(Jn, XJ - 2 ( J 0 ,  Xo)lJ + 0, where (JO, XO) is a stationary homogeneous 
Markov chain with the same transition probabilities as (J, X). 
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Proof.  Let (JO, XO) be a homogeneous Markov chain with the same 
transition probabilities as (J, X) and such that y ( J y )  = no. Then (,lo, XO) is a 
stationary homogeneous Markov chain. Write g ( B ,  x) = P it.!,, XI) E B  I J I  
= xl for B belonging to the product 0-field in (I x R)" and x € 1 .  Then 

Hence 

P ((J, , ,  X , ) E B )  = $ g ( B ,  x)P ( J , ~ d x ] ,  
I .  

P {(d:, X,O) E B )  = x lnO(d~) .  
i 

Set 

Hence p is a finite measure on ( I ,  B(I)). Moreover, no and T ( J , ) ,  n 
2 1, are absolutely continuous with respect to p. Thus, denoting by f O and 
f, the p.d.f.'s of no and y ( I ( J , J ,  respectively, with respect to p, we find 

where sup is taken over all B from the product a-field in (I xR)". This 
completes the proof. 

COROLLARY 4.2. Under assumptions of Lemma 4.2, 11 Y (X,) - 9 (XO)J( + 0 ,  
where XO is the second component in the Markov chain (JO, XO) defined in 
Lemma 4.2. 

COROLLARY 4.3. Let X be a homogeneous Markov chain such that 
( / Y ( X , , )  -no(( +0, where no is a probability measure on ( R ,  a ( R ) ) .  Then 
( 1  Y'(X,) - .Y'(X0)(( -+ 0, where X0 is a stationary homogeneous Markov chain 
with the same transition probabilities as X. 

Sufficient conditions for the convergence in variation of (J(JJ) with J 
being any homogeneous Markov chain gives Theorem 7.1 from Orey 171. 

4.3. Case (c). Let p and p,, n 3 1, be probability measures on ( S ,  g(S)) 
while v and v,, n 2 1, probability measures on (Sf, B(Sf)). Further let p xv 
denote the product measure of p and v.  

LEMMA 4.3. If I/pCLn-p/( +O and Ilv,-v/l +O, then ((p, xv,-,u xv(( 4 0 .  



Proof .  For A € : 8 ( S x S f )  let A , =  ; y s S 1 : ( x ,  y ) ~ A j  and A'= IxES: 
(x, y) E A ~ ,  where x ES, y €Sf. Note that 

IP?, x vv,, (A) - ~1 x v (A)I 6 x v,, ( A )  - ,u x v,, (A)I + ( p  x v,, (A) - p x x (A)j 
G ]' \P,(A') -P(A')I v,bly)+ [Iv,(A,)- v(A31 ~ ( d s )  G IIp,,-dl + Ifv,,-vll, 

S' S 

which completes the proof. 
As an immediate consequence of Lemma 4.3 and Proposition 1 we have 
COROLLARY 4.4. Let X and Y be independent sequences of r.v.'s such that 

11 Y'(X,) - y(Xo)ll +O arrd IJP'(Y,)- Y (Yo)ll +0, where X0 ami Y o  are mutual- 
ly indepe ,endent. 

Tllm 11 1/'(X., Y,)- Y(XO,  Yo)ll + O  and l lY(Xn+ XI- .Y'(XO+ Yo)ll -+O. 
To see the usefulness of Corollary 4.4 let us colis~der  he l'ollowing 

model of disturbance described by 'I: Let tv,) be any sequence of probability 
measures on (R ,  &l(R)) which are absolutely continuous with respect to the 
Lebesgue measure I, and 6, the probability measure concentrated at zero. 
Denote by g,, k 2 1, the p.d.f. of v k  with respect to I .  Further, let Y be a 
sequence of independent r.v.'s Yl, Y2, . . . such that Y ,  has the distribution 
f ibo+(l-pk)vk, k 2 1, where O < p k  < 1. 

m 

LEMMA 4.4. If (1 - pk) is .finite, then 1(6p(YJ - S?(Y0)1( + 0, where 

Proof .  Writing ji = +a0+ $1, we see that do and v, are absolutely 
continuous with respect to ii. Moreover, their p.d.f.'s with respect to are 
equal to 2 ~ ,  and 2(1 -~,)-g,, respectively, where 31, (x) = 1 if x = 0, and zero 
otherwise. Hence the p.d.f.'s of Y(&) and ,.Y(Y;) with respect to jI are 
equal to f, = 2pk x0 + 2 (1 - p,) (1 -1,) gk and f O = 2x0, respectively. Therefore 
(11-SJfOlfOdF= I-P,. 
R 

Hence and ib view of Remark 4.1 and the assumed condition we obtain 
the assertion. 

5. EXAMPLES OF X FOR WHICH THEOREMS 1-4 HOLD 

5.1. Dependence case. Let us present some examples. 
Example  1. Let I.'= Y,, k 2 1) be an asymptotic stationary in varia- 

tion sequence of r.v.'s (it is not assumed the mutual independence of 
Y,, Y2, . . .) such that Yl + Y2 + ... + Y, 4 - cc in probability. Furthermore, let 
its stationary representation Yo be such that Y?, + YT2 + . . . + Y 3  4 - a 
a.s., where (&*, - co < k < co) is a stationary sequence of r.v.'s such that 
Y((&*, k k 11) = 9 ( p ) .  Define r.v.'s X,, k 2 1, by 

where XI is any nonnegative r.v. 



In Queueing Theory the sequence X is well known as the process of 
waiting time and it is denoted by wt = :wk. k 2 1:. We have shown ([lo], 
Theorem 3a) that under above assumptions this process is asymptotically 
stationary in variation. Thus, if Ik,] and :unj are such that P IMf,, > u,; 4 0  
and P lMkn  > u,) 4 0 ,  then by Theorem 1 we have P [ M f  > u,] 
- P  ( M ,  > u,,j +O.  

Ex a m p  1 e 2. Let X = Z + where Z and Y are mutually independent 
sequences of r.v.'s such that Z is stationary and Y is a sequence of mutually 
independent r.v.'s Y l ,  Y,, ,. . Assume that 9(&) = pk &+(I -pk)vk, k 3 1, 
where probability measures v,, k 3 1, are absolutely continuous with respect 
to the Lebesgue measure and z(1 -p,) < m (k = 1, 2 ,  . . .). Then 

(a) If Z is such that, for some lu,] and ( k , ) ,  

P (2  rnax Z ,  > u,] + O  and P 12 rnax > u,) + 0, 
1 C k i k ,  l S k S k ,  

then 

P I rnax Zk  > u,) - P i  rnax X, > u,) +O. 
l S k 6 n  i d k i n  

(b) If Z satisfies condition A, and, for some (k,,). and each x > x(v) ,  

P12a,(max Zk-bn )>x j  4 0  and Pi2an( rnax E;r-bn)>x)  +O, 
l i k i k , ,  I Qkdk,  

then Y (a, (Mi - b3) + v. 
Indeed, in view of Lemma 4.4 and Corollary 4.4, Z is a stationary 

representation in variation of X, i.e. 1 1  9 ( X , )  - $a(Z)JI + 0. Furthermore, 

This and Theorems 1 and 2 give implications (a) and (b). 
Example  3. Let X be either (i) a homogeneous Markov chain such that 

- IIYI(X,)-xOll + O  or (ii) a chain dependent with respect to a homogeneous 
Markov chain J such that IjY(J,) - xOl( -t 0, where no is a probability 
measure on (R, B(R)) in case (i) and on (I, 93 ( I ) )  in case (ii). Then, in view of 
Lemma 4.2 and Corollary 4.3, X is asymptotically stationary in variation in 
both cases. Moreover, 

(a) If, for some {u,) and Ik,), P ( M L  > un) +0, then 

(b) If A, and A, hold, then Y(a,(M,- 6,)) + v. 
Indeed, implication (a) follows from Lemma 3.5 and Theorem 1, while 

- (b) follows from Lemma 3.5 and Theorem 3. 
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5.2. Independence case. Let X be such that X,, X,, ... are mutually 
independent with p.d.f.'s f,, k 2 1, with respect to the Lebesgue measure. 

Ex a m p le 4 (exponential distribution disturbed by a normal distribu- 
tion). Let f O be the exponential p.df. with the parameter A and f ,  = f IJ *g , ,  k 
2 1, where g, is the normal p. d.f. with the mean zero and the variance 
u,Z > 0, while * denotes the convolution. Furthermore, suppose that for some 
a, a <1, 

(1) Co$<m. 
k 

Then llY(XJ-9(X0)H 4 0 .  Moreover, with a, = A  and b, = a-llogn . .  - 
the limiting d.f.'s of a,(M,-b& and a,(Mi-b , )  are equal to the d . f . - ~  which * 
is G ( x )  = exp(-e-7 for X E R .  

Indeed, note that 

where @ denotes the standard normal dl .  Hence 

Denote the integral part of the right-hand side of (2) by B and consider 
it for such k that a, < 1 .  Then decomposing 10, CQ) in [O, ck] and (c,, a), 
where ck = 3,c; + 6, k 2 1, we have 

where mi is the i-th moment of @, 2i > a/(l -a), and c is some constant 
depending on k and A. Hence the right-hand side of (2) does not exceed (c 
+ exp(a))& where a = A2 sup e,2/2. This, in view of (I), Remark 4.1 and 
Corollary 4.1, implies JJY(X,) - 2 (XO))l + 0. 

Now notice that Fk (x/a, + bJ = Fk ((x +log n)/?,) for each x and n, k 2 1. 

- 
Hence, for each k and x E R, F, (x/a, + b,,) -, 1 as n + co . This and Lemmas 
3.1 and 3.3 as well as Theorem 3 and Example 1.7.2 from [3] prove the 
correctness of the example. 

I wish to express my thanks to Professor B. Kopocinski for his valuable 
comments. I am also grareiu1 to Dr W.-Dziubdziela for his helpful remarks. 
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