PROBABILITY AND MATHEMATICAL STATISTICS Vol. 9, Fasc. 2 (1988), p. 51-66

EXTREME VALUE THEORY FOR ASYMPTOTIC STATIONARY SEQUENCES

BY

WŁADYSŁAW SZCZOTKA (WROCŁAW)

Abstract. The problem of behaviour of $a_n (\max X_k - b_n)$ is consi-

dered when $a_n > 0$, $|b_n| < \infty$ and the sequence $X = \{X_k, k \ge 1\}$ is asymptotically stationary in variation.

X is said to be asymptotically stationary in variation if $||\mathscr{L}(X_n) - \mathscr{L}(X^0)|| \to 0$, where $X_n = \{X_{n+k}, k \ge 1\}$, while $\mathscr{L}(X_n)$ and $\mathscr{L}(X^0)$ denote the distributions of the sequences X_n and $X^0 = \{\overline{X}_k^0, k \ge 1\}$, respectively. The sequence X^0 of random variables X_k^0 is stationary and it is said to be a stationary representation of X.

The main result states: under $||\mathscr{L}(X_n) - \mathscr{L}(X^0)|| \to 0$ and some natural conditions concerned X and X^0 , the sequence of distributions $\mathscr{L}(a_n(\max_{1 \le k \le n} X_k - b_n))$ weakly converges provided the sequence of

 $\mathscr{L}(a_n(\max_{1 \leq k \leq n} X_k^0 - b_n))$ weakly converges and the limits are the same.

An analogous result is also formulated for the processes of exceedances.

1. INTRODUCTION

Let $Y = \{Y_k, k \ge 1\}$ be an S-valued discrete-time process and $Y_n = \{Y_{n,k} \stackrel{\text{df}}{=} Y_{n+k}, k \ge 1\}$, $n \ge 1$. S is assumed to be a Polish metric space. For the Borel σ -field of subsets of a space we write \mathscr{B} before the symbol denoting the space, for the distribution of a random element (r.e.) we put \mathscr{L} before the symbol denoting the r.e., for the total variation of the subtraction of probability measures μ and ν on a measurable space (Ω, \mathscr{F}) we write $||\mu - \nu||$, i.e.

$$\||\mu - \nu|| = 2 \sup_{B \in \mathscr{F}} |\mu(B) - \nu(B)|$$

and for the weak convergence of probability measures or distribution functions (d.fs) we write \Rightarrow . Further Y is said to be asymptotically stationary in variation if there exists an S-valued discrete-time process $\mathbb{Y}^0 = \{Y_k^0, k \ge 1\}$ such

that $||\mathscr{L}(Y_n) - \mathscr{L}(Y^0)|| \to 0$. The process Y^0 is stationary and it is called a stationary representation in variation of Y.

Let $X = \{X_k, k \ge 1\}$ be a real-valued discrete-time process, $X^0 = \{X_k^0, k \ge 1\}$ its stationary representation in variation, $M_n = \max X_k$ and $M_n^0 = \max X_k^0$ ($1 \le k \le n$). The main purpose of this paper is:

(1) to give conditions under which $\{\mathscr{L}(a_n(M_n-b_n))\}\$ weakly converges provided $\{\mathscr{L}(a_n(M_n^0-n_n))\}\$ weakly converges for some constants $a_n > 0$ and b_n ;

(2) to give sufficient conditions under which the behaviour of exceedances processes defined for X and X^0 is similar.

The main results, solving the stated problems, are given in Theorems 1– 4. A simplified version of the answer to problem (1) states:

If $||\mathscr{L}(X_n) - \mathscr{L}(X^0)|| \to 0$ and there exist constants $a_n > 0$ and $b_n \in \mathbb{R}$ such that $\mathscr{L}(a_n(M_n^0 - b_n)) \Rightarrow v$, where v is max-stable and, further, there exists a nondecreasing sequence of positive integers k_n such that $k_n \to \infty$, $k_n/n \to 0$ and $P\{a_n(M_{k_n} - b_n) > x\} \to 0$ for $x > \inf\{y: v(-\infty, y] > 0\}$, then $\mathscr{L}(a_n(M_n - b_n)) \Rightarrow v$.

In the Extreme Value Theory sufficient conditions for the weak convergence of $\mathscr{L}(a_n(M_n-b_n))$ are known also in the case where X is not necessary stationary ([2], [8], [6], [1]). In papers [1], [6], and [8] this problem was considered in the situation when X is a homogeneous Markov chain or it is chain dependent. But then, under some additional natural conditions, X is asymptotically stationary in variation (see Section 4). Thus $\{\mathscr{L}(a_n(M_n-b_n))\}$ weakly converges provided $\{\mathscr{L}(a_n(M_n^0-b_n))\}$ does (see Example 6).

The similar fact, i.e. the asymptotic stationarity in variation, is true for the following processes:

(a) a regenerative process with the aperiodic distribution of the regenerative period and with the finite expectation of this period;

(b) the waiting time process if the generic sequence is asymptotically stationary in variation [10];

(c) $X = \{f(Y_k), k \ge 1\}$, where Y is asymptotically stationary in variation and f is a measurable mapping of S^{∞} into R.

The main results (Theorems 1-4) are proved by the method based on the following

PROPOSITION 1. Let μ and μ_n $(n \ge 1)$ be probability measures on $(S, \mathscr{B}(S))$, h_n $(n \ge 1)$ measurable mappings of S into a Polish metric space S', and ν a probability measure on $(S', \mathscr{B}(S'))$. Then the following implications hold:

(i) If $||\mu_n - \mu|| \to 0$, then $||\mu_n h_n^{-1} - \mu h_n^{-1}|| \to 0$.

(ii) If $||\mu_n - \mu|| \to 0$, $||\mu h_n^{-1} - \nu|| \to 0$ (or $\mu h_n^{-1} \Rightarrow \nu$), then $||\mu_n h_n^{-1} - \nu|| \to 0$ (or $\mu_n h_n^{-1} \Rightarrow \nu$).

Implication (i) follows from the inequality $||\mu_n h_n^{-1} - \mu h_n^{-1}|| \le ||\mu_n - \mu||$, and (ii) is implied by the relations $|\mu_n h_n^{-1}(B) - \nu(B)| \le |\mu_n h_n^{-1}(B) - \mu h_n^{-1}(B)|$ $+ |\mu h_n^{-1}(B) - \nu(B)| \le ||\mu_n - \mu|| + |\mu h_n^{-1}(B) - \nu(B)|.$

It may be worth noticing here that Proposition 1 has also other consequences. The following one concerns a continuity problem in the Extreme Value Theory:

PROPOSITION 2. If, for each $n \ge 1$, $X(n) = \{X_{n,k}, k \ge 1\}$ is an r.e. of \mathbb{R}^{∞} such that $\|\mathscr{L}(X(n)) - \mathscr{L}(X)\| \to 0$ and $\mathscr{L}(a_n(M_n - b_n)) \Rightarrow v$, then

$$\mathscr{L}(a_n(\max_{1\leq k\leq n}X_{n,k}-b_n))\Rightarrow v.$$

Notice that if $||\mathscr{L}(X(n)) - \mathscr{L}(X)|| \to 0$, then Proposition 2 may be also viewed as an other approach to the investigation of $\max X_{n,k}$ $(1 \le k \le n)$. Similarly, Proposition 1 and the convergence $||\mathscr{L}(X(n)) - \mathscr{L}(X)|| \to 0$ allow us to find convergences of other than $\max X_{n,k}$ $(1 \le k \le n)$ functions of X(n). E.g., in view of Serfozo [9], we may formulate an analogue of Proposition 2 for the extremal process or the process of exceedances.

2. MAIN RESULTS

To complete the set of notations from the previous section, let us introduce the following ones. Let $\{k_n\}$ denote a nondecreasing sequence of integers tending to infinity in such a way that $k_n/n \to 0$ as $n \to \infty$, F_k the d.f. of X_k ($k \ge 1$), F the d.f. of X_1^0 , $x(v) = \inf \{x \in \mathbb{R} : v(-\infty, x] > 0\}$, where v is a probability measure on (\mathbb{R} , $\mathscr{B}(\mathbb{R})$), I_A the indicator of a set A and x $= \{x_k, k \ge 1\}$ a point of \mathbb{R}^∞ , where $x_k \in \mathbb{R}$. Further, for a sequence $\{u_n\}$ of real numbers let N_n and N_n^0 ($n \ge 1$) be point processes defined by

$$N_n(B) = \sum_{\substack{1 \le k \le n \\ k/n \in B}} I_{B_{n,k}}(X), \qquad N_n^0(B) = \sum_{\substack{1 \le k \le n \\ k/n \in B}} I_{B_{n,k}}(X^0),$$

where B belongs to $\mathscr{B}((0, 1])$ and $B_{n,k} = \{x \in \mathbb{R}^{\infty} : x_k > u_n\}$. Obviously, N_n and N_n^0 are processes of exceedances of the level u_n by the processes X and X^0 , respectively. Let, finally, \mathscr{N} denote the space of all measures on (0, 1] with values in the set of nonnegative integers. This space is considered with the vague topology (see e.g. [3], p. 11).

Now let us formulate the following conditions:

 $\mathbf{A}_1 \cdot \left\| \mathscr{L}(X_n) - \mathscr{L}(X^0) \right\| \to 0.$

A₂. There exist sequences $\{a_n\}$ and $\{b_n\}$ $(a_n > 0, b_n \in \mathbb{R})$ such that $\mathscr{L}(a_n(M_n^0 - b_n)) \Rightarrow v$.

 \overline{A}_3 . There exist $\{k_n\}$ for which $\{a_n\}$ and $\{b_n\}$ from A_2 satisfy $a_n/a_{n-k_n} \to 1$ and $a_{n-k_n}(b_n-b_{n-k_n}) \to 0$.

A₄. There exists a $\{k_n\}$ such that, for each x > x(v), P $\{a_n(M_{k_n} - b_n) > x\}$ $\rightarrow 0$, where $\{a_n\}$, $\{b_n\}$ and v satisfy A₂.

A₅. There exists a $\{k_n\}$ such that, for each x > x(v), P $\{a_n(M_{k_n}^0 - b_n) > x\}$ $\rightarrow 0$, where $\{a_n\}$, $\{b_n\}$ and v satisfy A₂.

Behaviour of $\{M_n\}$. For a real-valued process $\mathbb{Z} = \{Z_k, k \ge 1\}$ we have (1) $P\{\max_{1 \le k \le n} Z_k \le x\}$

$$= \mathbf{P} \{ \max_{\substack{i < k \leq n}} Z_k \leq x \} - \mathbf{P} \{ \max_{\substack{1 \leq k \leq i}} Z_k > x, \max_{\substack{i < k \leq n}} Z_k \leq x \},\$$

where $1 \leq i < n, n \geq 1, x \in \mathbb{R}$.

THEOREM 1. Let A_1 be satisfied and let $\{k_n\}$ and $\{u_n\}$ be such that

(2)
$$P\{M_{k_n}^0 > u_n\} \to 0 \quad and \quad P\{M_{k_n} > u_n\} \to 0.$$

Then

(3)

$$\mathbf{P}\left\{M_n^0 > u_n\right\} - \mathbf{P}\left\{M_n > u_n\right\} \to 0.$$

Proof. Define mappings $h_n: \mathbb{R}^{\infty} \to \mathbb{R}$ $(n \ge 1)$ by

$$h_n(\mathbf{x}) = \max_{1 \leq k \leq n-k_n} x_k - u_n$$

These mappings are measurable.

Rewriting relation (1) for X and X^0 , we obtain

$$\mathbf{P}\left\{M_n \leq u_n\right\} = \mathbf{P}\left\{h_n(X_{k_n}) \leq 0\right\} - \mathbf{P}\left\{M_{k_n} > u_n, \ h_n(X_{k_n}) \leq 0\right\}$$

and

$$P\{M_n^0 \leq u_n\} = P\{h_n(X^0) \leq 0\} - P\{M_{k_n}^0 > u_n, h_n(X_{k_n}^0) \leq 0\}.$$

But in view of the first implication of Proposition 1, we have

$$\mathbf{P}\left\{h_n(X_{k_n}) \leq 0\right\} - \mathbf{P}\left\{h_n(X^0) \leq 0\right\} \to 0,$$

which together with (2) gives (3).

In the case of linear normalization of M_n and M_n^0 we obtain the following analogue of Theorem 1:

THEOREM 2. Let conditions $A_1 - A_4$ be satisfied, where A_3 and A_4 hold with the same $\{k_n\}$. Then

4)
$$\mathscr{L}(a_n(M_n-b_n)) \Rightarrow v.$$

Proof. Define mappings $h_n: \mathbb{R}^\infty \to \mathbb{R}$ $(n \ge 1)$ by

$$h_n(\mathbf{x}) = a_n(\max_{1 \leq k \leq n} x_k - b_n).$$

These mappings are measurable.

Rewriting relation (1) for X we obtain

$$P \{a_n(M_n - b_n) \leq x\}$$

= $P \{a_n/a_{n-k_n}(h_{n-k_n}(X_{k_n}) - a_{n-k_n}(b_n - b_{n-k_n})) \leq x\} - P \{a_n(M_{k_n} - b_n) > x, a_n(\max_{1 \leq k \leq n-k_n} X_{k_n+k} - b_n) \leq x\}$

Now, by conditions $A_1 - A_4$ and the second implication in Proposition 1, we find

$$P\{a_n(M_n-b_n) \leq x\} \rightarrow v(-\infty, x]$$

if x > x(v) and x is a continuity point of v. Otherwise, i.e. if x < x(v), it is obvious that $P\{a_n(M_n - b_n) \le x\} \to 0$. Thus the proof is complete.

In view of this proof we can state something about the necessarity of A_3 and A_4 in Theorem 2.

Remark 2.1. (i) Condition A_3 holds provided A_1 , A_2 , A_4 and (4) hold, where $\{k_n\}$ in A_3 is the same as in A_4 .

(ii) If X_1, X_2, \ldots are mutually independent, then condition A_4 holds, provided A_1-A_3 and (4) hold, where $\{k_n\}$ in A_4 is the same as in A_3 .

Notice that condition A_3 ought to depend only on X^0 . In the following it is proved that A_2 and A_5 are sufficient for A_3 .

LEMMA 2.1. Let A_2 and A_5 be satisfied. Then A_3 holds with the same $\{k_n\}$ as in A_5 .

Proof. Rewriting relation (1) for X^0 we obtain

(5)
$$\mathbf{P}\left\{a_n(M_n^0-b_n)\leqslant x\right\}$$

$$= P \{a_{n}/a_{n-k_n} (a_{n-k_n}(M_{n-k_n}^0 - b_{n-k_n}) - a_{n-k_n}(b_n - b_{n-k_n})) \leq x\} - P \{a_n(M_{k_n}^0 - b_n) > x, a_n(\max_{1 \leq k \leq n-k_n} X_{k_n+k}^0 - b_n) \leq x\}.$$

In view of A₂ the left-hand side of (5) converges to $v(-\infty, x]$ if $v\{x\} = 0$, while $\mathscr{L}(a_{n-k_n}(M^0_{n-k_n}-b_{n-k_n})) \Rightarrow v$. Hence and from A₅ we have $a_n/a_{n-k_n} \to 1$ and $a_{n-k_n}(b_n-b_{n-k_n}) \to 0$, which completes the proof.

As an immediate consequence of Theorem 2 and Lemma 2.1 we obtain THEOREM 3. Let conditions A_1 and A_2 be satisfied. Furthermore, let A_4 and A_5 hold with the same sequence $\{k_n\}$. Then (4) holds.

Behaviour of $\{N_n\}$. We now prove

THEOREM 4. Let A_1 hold and $\mathscr{L}(N_n^0) \Rightarrow \mathscr{L}(N)$, where N is a point process on (0, 1]. Furthermore, let a $\{k_n\}$ exist such that

(6)
$$P\{M_{k_n} > u_n\} \rightarrow 0 \quad and \quad P\{M_{k_n}^0 > u_n\} \rightarrow 0,$$

where u_n is the same as in the definitions of N_n and N_n^0 . Then $\mathcal{L}(N_n) \Rightarrow \mathcal{L}(N)$.

Proof. Let us define mappings $g_n: \mathbb{R}^\infty \to \mathbb{R}^\infty$, $h_n: \mathbb{R}^\infty \to \mathcal{N}$ and $H_n: \mathcal{N} \to \mathcal{N}$ $(n \ge 1)$ as

$$g_n(\mathbf{x}) = (u_{n-k_n}/u_n) \mathbf{x}, \qquad h_n(\mathbf{x})(B) = \sum_{\substack{1 \le k \le n \\ k/n \in B}} I_{B_{n,k}}(\mathbf{x}),$$
$$(H_n \gamma)(B) = \gamma (n/(n-k_n) B - k_n/(n-k_n)),$$

where $ax = \{ax_k, k \ge 1\}$ for $a \in \mathbb{R}$, $\gamma \in \mathcal{N}$, and $aB - b = \{\min(ax - b, 1); x \in B\}$ for $B \in \mathscr{B}(0, 1]$ and a, b > 0.

Notice that g_n , h_n and H_n are measurable and

$$H_n \circ h_{n-k_n} \circ g_n(\mathbf{x}_{k_n})(B) = \sum_{\substack{k_n \leq k \leq n \\ k/n=B}} I_{B_{n,k}}(\mathbf{x})$$

for any $B \in \mathscr{B}((0,1])$ and $x \in \mathbb{R}^{\infty}$, where $x_{k_n} = \{x_{k_n+k}, k \ge 1\}$. Hence

$$\sum_{\substack{k_n \leq k \leq n \\ k/n \in B}} I_{B_{n,k}}(X^0) = H_n \circ h_{n-k_n} \circ g_n(X^0_{k_n})(B),$$

which, in view of the stationarity of X^0 , gives

$$\mathscr{L}(H_n \circ h_{n-k_n} \circ g_n(X^0_{k_n})) = \mathscr{L}(H_n \circ h_{n-k_n} \circ g_n(X^0)).$$

Now define point processes \tilde{N}_n and \tilde{N}_n^0 $(n \leq 1)$ as

$$\tilde{N}_n(B) = \sum_{\substack{1 \le k \le k_n \\ k/n \in B}} I_{B_{n,k}}(X)$$

and

$$\widetilde{N}_n^0(B) = \sum_{\substack{1 \le k \le k_n \\ k/n \in R}} I_{B_{n,k}}(X^0).$$

In view of (6) the distributions $\mathscr{L}(\tilde{N}_n)$ and $\mathscr{L}(\tilde{N}_n^0)$ weakly converge to the distribution concentrated on the measure from \mathscr{N} which is zero for each Borel subset of (0, 1]. But $N_n^0 = \tilde{N}_n^0 + H_n \circ h_{n-k_n} \circ g_n(X_{k_n}^0)$. Hence and since $\mathscr{L}(N_n^0) \Rightarrow \mathscr{L}(N)$, we have

$$\mathscr{L}(H_n \circ h_{n-k_n} \circ g_n(X^0)) \Rightarrow \mathscr{L}(N),$$

which by A_1 and Proposition 1 gives

$$\mathscr{L}(H_n \circ h_{n-k_n} \circ g_n(X_{k_n})) \Rightarrow \mathscr{L}(N).$$

Hence, in view of the relation $N_n = \tilde{N}_n + H_n \circ h_{n-k_n} \circ g_n(X_{k_n})$ we find the assertion.

Theorem 4 allows us to formulate analogues of Theorems 5.3.1 and 5.3.4 of [3] or a behaviour of $M_n^{(k)}$ as $n \to \infty$, where $M_n^{(k)}$ is the k-th largest of X_1, X_2, \ldots, X_n .

3. EXAMINATION OF A₄ AND A₅

The following obvious fact is basic for the examination of A_4 and A_5 :

Remark 3.1. Let $\{c_{n,k}, k, n \ge 1\}$ be an array of real numbers such that, for each $k \ge 1$, $c_{n,k} \rightarrow c_k$ as $n \rightarrow \infty$ and $c_k \rightarrow 1$ as $k \rightarrow \infty$. Then there exists a $\{k_n\}$ such that $c_{n,k_n} \rightarrow 1$ as $n \rightarrow \infty$. Moreover, if $k'_n \le k_n$, then $c_{n,k'_n} \rightarrow 1$.

LEMMA 3.1. Let X be such that $X_1, X_2, ...$ are mutually independent and such that for some constant x_0 and for each k and each $x, x > x_0$, we have

(1)
$$F_k(x/a_n+b_n) \to 1 \quad as \quad n \to \infty.$$

Then there exists a $\{k_n\}$ such that $P\{a_n(M_{k_n}-b_n) > x\} \to 0$ for each $x > x_0$.

Proof. Let $\{x_k\}$ be any decreasing sequence tending to x_0 . For each $n, k \ge 1$ and $x \in \mathbb{R}$ define

$$A_{n,k}(x) = \prod_{i=1}^{k} F_i(x/a_n + b_n)$$
 and $A_{n,k} = A_{n,k}(x_k)$.

Then, by (1), $A_{n,k} \to 1$ as $n \to \infty$ for all k. By Remark 3.1, $A_{n,k_n} \to 1$ as $n \to \infty$ for some $\{k_n\}$. But, for any x such that $x > x_0$, there exists an n_0 such that $x > x_{k_n}$ for $n \ge n_0$. Hence, for $x > x_0$, we have $A_{n,k_n} = A_{n,k_n}(x_{k_n}) \le A_{n,k_n}(x) \le 1$. This and the convergence $A_{n,k_n} \to 1$ yield $A_{n,k_n}(x) \to 1$ for each $x > x_0$, which completes the proof.

LEMMA 3.2. Let A_2 be satisfied and the d.f. G, corresponding to v, be maxstable. Then A_5 is satisfied. Moreover, if the convergence in A_5 holds with $\{k_n\}$, then it holds with any $\{k'_n\}$ such that $k'_n \leq k_n$, $n \geq 1$.

Proof. Let $\{x_k\}$ be any decreasing sequence of real numbers tending to x(v) and such that $G^{1/k}(x_k) \to 1$ as $k \to \infty$. Write

$$A_{n,k}(x) = P\{M_{[n/k]}^0 \leq x/a_n + b_n\}$$
 and $A_{n,k} = A_{n,k}(x_k)$.

Since G is max-stable, $A_{n,k} \to G^{1/k}(x_k)$ for each k. Hence and by Remark 3.1, there exists a $\{k_n\}$ such that $A_{n,k_n} \to 1$. Now, for any x > x(v), there exists an' n_0 such that $x > x_{k_n}$ for $n > n_0$. Hence, for any x, x > x(v), $A_{n,k_n}(x) \ge A_{n,k_n}(x_{k_n})$ which, in turn, for x > x(v), yields $A_{n,k_n}(x) \to 1$ as $n \to \infty$. This completes the proof.

The following lemma admits more sequences $\{k_n\}$ in A₅:

LEMMA 3.3. Let X^0 be such that X_1^0, X_2^0, \ldots are mutually independent and let A_2 be satisfied. Then A_5 holds with each $\{k_n\}$.

Proof. Notice that $P\{a_n(M_{k_n}^0 - b_n) > x\} = 1 - (F(x/a_n + b_n))^{k_n}$. But the limit of $n(1 - F(x/a_n + b_n))$, as $n \to \infty$, is finite for each x > x(v). Hence $k_n(1 - F(x/a_n + b_n)) \to 0$, which completes the proof.

It follows from Loynes work [4] that the assumption of Lemma 3.2 holds if X^0 is uniformly strongly mixing (see also [3], p. 55). The following lemma states that X^0 inherits this property from X.

LEMMA 3.4. Let A_1 be satisfied. Then the property of the uniform strong mixing of X implies the same for X^0 .

Proof. Denote the vectors $(X_k, X_{k+1}, ..., X_m)$ and $(X_k^0, X_{k+1}^0, ..., X_m^0)$ by $X_{k,m}$ and $\overline{X}_{k,m}^0$, respectively. The fact that X is uniformly strongly mixing means that

$$\alpha(m) \stackrel{\mathrm{dl}}{=} \sup \left| \mathbf{P} \left\{ \bar{X}_{1,k} \in A, X_{k+m} \in B \right\} - \mathbf{P} \left\{ \bar{X}_{1,k} \in A \right\} \mathbf{P} \left\{ X_{k+m} \in B \right\} \right| \to 0$$

as $m \to \infty$,

where the supremum is taken over all k, all $A \in \mathscr{B}(\mathbb{R}^k)$ and all $B \in \mathscr{B}(\mathbb{R}^\infty)$. But by A_1 we have

$$P \{ \bar{X}_{1,k} \in A, X_m^0 \in B \} = \lim P \{ \bar{X}_{k_n+1,k_n+k} \in A, X_{k_n+m} \in B \}$$

for all k and m, $A \in \mathscr{B}(\mathbb{R}^k)$ and all $B \in \mathscr{B}(\mathbb{R}^\infty)$. Hence

$$\sup | P \{ \bar{X}_{1,k}^{0} \in A, X_{k+m}^{0} \in B \} - P \{ \bar{X}_{1,k}^{0} \in A \} P \{ X_{k+m}^{0} \in B \} |$$

$$\leq \overline{\lim_{n}} \sup | P \{ \bar{X}_{k_{n}+1,k_{n}+k} \in A, X_{k_{n}+k+m} \in B \} -$$

$$- P \{ \bar{X}_{k_{n}+1,k_{n}+k} \in A \} P \{ X_{k_{n}+k+m} \in B \} | = \alpha(m),$$

where the supremum is taken over all k, all $A \in \mathscr{B}(\mathbb{R}^k)$ and all $B \in \mathscr{B}(\mathbb{R}^\infty)$. Thus the proof is completed.

Now we show that if X is a Markov chain or X is chain dependent, then, under some natural additional conditions, A_5 implies A_4 .

X is said to be *chain dependent* with respect to a homogeneous Markov chain $J = \{J_k, k \ge 1\}$ with a state space I being a Polish metric space if $X_1 = a \in R$ and

$$P \{J_{n+1} \in A, X_{n+1} \in B | J_1, X_1, ..., J_n, X_n\} = P \{J_{n+1} \in A, X_{n+1} \in B | J_n\}$$
 a.e.

for $A \in \mathscr{B}(I), B \in \mathscr{B}(R), n \ge 1$.

Obviously, (J, X) is a Markov chain.

LEMMA 3.5. Let A_1 and A_5 be satisfied if X is either (i) a homogeneous Markov chain such that $||\mathscr{L}(X_n) - \pi^0|| \to 0$ or (ii) chain dependent with respect to a homogeneous Markov chain J such that $||\mathscr{L}(J_n) - \pi^0|| \to 0$, where π^0 is a probability measure on $(R, \mathscr{B}(R))$ in case (i), and on $(I, \mathscr{B}(I))$ in case (ii). Then A_4 is satisfied with the same $\{k_n\}$ as in A_5 .

Proof. The proof is carried out parallelly in both cases.

Asymptotic stationary sequences

Write, in case (i),

$$g_k(x, y) = \mathbf{P} \{ \max_{1 \le j \le k+1} X_j > x \, | \, X_1 = y \}$$

and, in case (ii),

$$g'_k(x, y) = P\left\{\max_{1 \le j \le k+1} X_j > x \,|\, J_1 = y\right\}$$

Then, in (i),

$$P\{\max_{1 \le j \le k+1} X_j^0 > x \mid X_1^0 = y\} = g_k(x, y) \text{ a.e.}$$

and, in (ii),

$$P\{\max_{1 \le j \le k+1} X_j^0 > x | J_1^0 = y\} = g'_k(x, y) \text{ a.e.}$$

Now, rewriting relation (2.1) for X, we obtain

(7)
$$\mathbf{P}\{M_k > x\} = \mathbf{P}\{\max_{i < j \le k} X_j > x\} - \mathbf{P}\{M_i > x, \max_{i < j \le k} X_j \le x\}.$$

Moreover, in (i),

$$P\left\{\max_{\substack{i < j \leq k}} X_j > x\right\} = \int_{R} P\left\{\max_{\substack{i < j \leq k}} X_j > x \mid X_i = y\right\} P\left\{X_i \in dy\right\}$$

$$= \int_{R} \mathbf{P} \left\{ \max_{1 \le j \le k-i+1} X_j > x \, | \, X_1 = y \right\} \mathbf{P} \left\{ X_i \in dy \right\} = \int_{R} g_{k-i}(x, y) \, \mathbf{P} \left\{ X_i \in dy \right\}$$

and, in (ii),

$$P\left\{\max_{i \le i \le k} X_j > x\right\} = \int_I P\left\{\max_{i \le j \le k} X_j > x \mid J_i = y\right\} P\left\{J_i \in dy\right\}$$

$$= \int_{I} g'_{k-i}(x, y) \mathbf{P} \{J_i \in dy\}.$$

In a similar way we find, in (i),

(8)
$$P\{M_k^0 > x\} = P\{\max_{i < j \le k} X_j^0 > x\} + P\{M_i^0 > x, \max_{i < j \le k} X_j^0 \le x\},\$$

$$P\{\max_{i < j \leq k} X_j^0 > x\} = \int_R g_{k-i}(x, y) P\{X_i^0 \in dy\}$$

and, in (ii),

$$\mathbf{P} \{ \max_{i < j \leq k} X_j^0 > x \} = \int_I g'_{k-i}(x, y) \, \mathbf{P} \{ J_1^0 \in dy \}.$$

Define a measure μ as $\frac{1}{2} \mathscr{L}(X_1^0) + \frac{1}{2} \sum_{i=1}^{\infty} 2^{-i} \mathscr{L}(X_i)$ in case (i) and as $\frac{1}{2} \mathscr{L}(J_1^0) + \frac{1}{2} \sum_{i=1}^{\infty} 2^{-i} \mathscr{L}(J_i)$ in case (ii).

Obviously, the measures $\mathscr{L}(X_i^0)$, $\mathscr{L}(X_i)$ and $\mathscr{L}(J_i^0)$, $\mathscr{L}(J_i)$ are absolutely continuous with respect to μ in both cases.

Let p^0 and p_i denote the probability density functions (p.d.f.) of $\mathscr{L}(X_1^0)$ and $\mathscr{L}(X_i)$ with respect to μ defined in case (i), while q^0 and q_i denote the p.d.f.'s of $\mathscr{L}(J_1^0)$ and $\mathscr{L}(J_i)$ with respect to μ defined in case (ii). Then, in (i),

$$|\mathbf{P}\{\max_{i < j \leq k} X_j^0 > x\} - \mathbf{P}\{\max_{i < j \leq k} X_j > x\}| \leq \int_{R} |p^0(y) - p_i(y)| \,\mu(dy)$$
$$= ||\mathcal{L}(X_1^0) - \mathcal{L}(X_i)||$$

and, in (ii),

$$|\mathbf{P}\{\max_{i < j \leq k} X_j^0 > x\} - \mathbf{P}\{\max_{i < j \leq k} X_j > x\}| \leq \int_{R} |q^0(y) - q_i(y)| \, \mu(dy)$$
$$= ||\mathcal{L}(J_1^0) - \mathcal{L}(J_i)||.$$

The latter, next the convergences $||\mathscr{L}(X_i) - \mathscr{L}(X_1^0)|| \to 0$ in (i) and $||\mathscr{L}(J_i) - \mathscr{L}(J_1^0)|| \to 0$ in (ii), as $i \to \infty$, and finally (1), (2) and A_5 imply A_4 with the same $\{k_n\}$ as in A_5 . This completes the proof.

4. ASYMPTOTIC STATIONARITY IN VARIATION

Conditions under which X is asymptotically stationary in variation are here investigated in three cases:

(a) X is a nonhomogeneous Markov chain,

(b) X is a function of a homogeneous Markov chain,

(c) X is disturbed by fading process.

4.1. Case (a). Let X be a nonhomogeneous Markov chain and $P_{n,n+1}(x, A) = P\{X_{n+1} \in A \mid X_n = x\}$ for $x \in R$, $A \in \mathscr{B}(R)$, $n \ge 1$. Further, let $\tilde{\mu}$ be a convex combination of the Lebesgue measure on R and a discrete measure on R. By $\tilde{\mu}^k$ the k-multiple product of the measure $\tilde{\mu}$ is denoted.

Let us introduce the following conditions:

(i) For each $n \ge 1$, $\mathscr{L}(X_n)$ has the p.d.f. f_n with respect to the measure $\tilde{\mu}$.

(ii) For $\tilde{\mu}$ -almost all x and $n \ge 1$, $P_{n,n+1}(x, \cdot)$ has the p.d.f. $f_{n,n+1}(x, \cdot)$ with respect to the measure $\tilde{\mu}$ and $f_{n,n+1}(x, y)$ as a function of (x, y) is jointly measurable.

(iii) $f_n \to f^0 \tilde{\mu}$ -a.e., where f^0 is a p.d.f. with respect to $\tilde{\mu}$.

(iv) $f_{n,n+1} \to f \tilde{\mu}^2$ -a.e., where, for $\tilde{\mu}$ -almost all x, f(x, y) as a function of y is a p.d.f. with respect to $\tilde{\mu}$.

Set

$$f_{1,k}^{0}(x_1, x_2, \dots, x_k) = f^{0}(x_1) \prod_{i=2}^{k} f(x_{i-1}, x_i)$$

and

$$Z_{n,k}(x_1, x_2, \ldots, x_k) = f_{n+1}(x_1) \prod_{i=2}^{k} f_{n-1+i,n+i}(x_{i-1}, x_i) / f_{1,k}^0(x_1, x_2, \ldots, x_k)$$

if $f_{1,k}^0 > 0$, and zero otherwise.

LEMMA 4.1. Let conditions (i)-(iv) be satisfied and

(1)
$$\sup_{1 \leq k < \infty} \int_{\mathbb{R}^k} |1 - Z_{n,k}| f_{1,k}^0 d\tilde{\mu}^k \to 0.$$

Then $||\mathscr{L}(X_n) - \mathscr{L}(X^0)|| \to 0$, where X^0 is a stationary homogeneous Markov chain with the transition p.d.f. $f(x, y), x, y \in \mathbb{R}$, such that

$$f^{0}(y) = \int_{R} f^{0}(x) f(x, y) \widetilde{\mu}(dx) \qquad \widetilde{\mu}\text{-}a.e.$$

Proof. The proof follows by part (a) of Theorem 1 from Vostrikova [11]. Indeed, for each $n \ge 1$ define a measurable space $(\Omega^n, \mathscr{F}^n)$, a filter F^n as well as probability measures P^n and \tilde{P}^n on the measurable space $(\Omega^n, \mathscr{F}^n)$. Thus let $\Omega^n = R^\infty$, $\mathscr{F}^n = \mathscr{B}(R^\infty)$ and $F^n = \{\mathscr{F}^n_k, k \ge 0\}$, where $\mathscr{F}^n_0 = \{\emptyset, \Omega^n\}$, while $\mathscr{F}^n_k = \mathscr{B}(R^k)$, $n, k \ge 1$. Furthermore, let $P^n = P = \mathscr{L}(X^0)$ and $\tilde{P}^n = \mathscr{L}(X_n)$, $n \ge 1$.

In these notations, Z_k^n occurring in [11] is equal to $Z_{n,k}$ and $\{Z_k^n\}$ satisfies the conditions from part (a) of Theorem 1 from [11]. Thus we find that $\|\tilde{P}^n - P\| \to 0$, which completes the proof.

Now let us consider the case of X where X_1, X_2, \ldots are mutually independent. Then, by Lemma 4.1, we have

COROLLARY 4.1. Let X be such that X_1, X_2, \ldots are mutually independent with p.d.f.'s f_1, f_2, \ldots with respect to $\tilde{\mu}$. Furthermore, let $f_n \to f^0 \tilde{\mu}$ -a.e. and f^0 be a p.d.f. with respect to $\tilde{\mu}$ such that

(2) $\sup_{1 \leq k < \infty} \int_{\mathbb{R}^k} \left| 1 - \prod_{i=1}^k f_{n+i}(x_i) / f^0(x_i) \right| \prod_{i=1}^k f^0(x_i) \widetilde{\mu}^k(dx_1, dx_2, \dots, dx_k) \to 0,$

Then $||\mathscr{L}(X_n) - \mathscr{L}(X^0)|| \to 0$, where X^0 is such that X_1^0, X_2^0, \ldots are i.i.d. r.v.'s with p.d.f. f^0 with respect to $\tilde{\mu}$.

It is easy to note the following

Remark 4.1. If
$$\sum_{k=1}^{\infty} \int_{R} |1-f_k(x)/f^0(x)| f^0(x) \tilde{\mu}(dx) < \infty$$
, then (2) holds.

4.2. Case (b). Now we prove the following

LEMMA 4.2. Let X be chain dependent with respect to a homogeneous Markov chain J which has values in a Polish metric space I. Furthermore, let $||\mathscr{L}(J_n) - \pi^0|| \to 0$, where π^0 is a probability measure on $(I, \mathscr{B}(I))$. Then $||\mathscr{L}(J_n, X_n) - \mathscr{L}(J^0, X^0)|| \to 0$, where (J^0, X^0) is a stationary homogeneous Markov chain with the same transition probabilities as (J, X).

Proof. Let (J^0, X^0) be a homogeneous Markov chain with the same transition probabilities as (J, X) and such that $\mathcal{L}(J_1^0) = \pi^0$. Then (J^0, X^0) is a stationary homogeneous Markov chain. Write $g(B, x) = P\{(J_1, X_1) \in B | J_1 = x\}$ for B belonging to the product σ -field in $(I \times R)^{\infty}$ and $x \in I$. Then

$$P \{(J_n, X_n) \in B | J_n = x\} = P \{(J_n^0, X_n^0) \in B | J_n^0 = x\} = g(B, x) \text{ a.e.}$$

Hence

$$P \{ (J_n, X_n) \in B \} = \int_I g(B, x) P \{ J_n \in dx \},$$
$$P \{ (J_n^0, X_n^0) \in B \} = \int_I g(B, x) \pi^0(dx).$$

Set

$$\mu = \frac{1}{2}\pi^{0} + \frac{1}{2}\sum_{k=1}^{\infty} 2^{-k} \mathscr{L}(J_{k}).$$

Hence μ is a finite measure on $(I, \mathcal{B}(I))$. Moreover, π^0 and $\mathcal{L}(J_n)$, $n \ge 1$, are absolutely continuous with respect to μ . Thus, denoting by f^0 and f_n the p.d.f.'s of π^0 and $\mathcal{L}(J_n)$, respectively, with respect to μ , we find

$$\begin{aligned} \|\mathscr{L}(\boldsymbol{J}_n, \boldsymbol{X}_n) - \mathscr{L}(\boldsymbol{J}^0, \boldsymbol{X}^0)\| &= 2\sup_{\boldsymbol{B}} \left| \int_{\boldsymbol{I}} g\left(\boldsymbol{B}, \boldsymbol{x}\right) \left(f_n(\boldsymbol{x}) - f^0(\boldsymbol{x}) \right) \mu(d\boldsymbol{x}) \right| \\ &\leq 2\int_{\boldsymbol{I}} |f_n(\boldsymbol{x}) - f^0(\boldsymbol{x})| \cdot \mu(d\boldsymbol{x}) = 2 ||\mathscr{L}(\boldsymbol{J}_n) - \pi^0||, \end{aligned}$$

where sup is taken over all B from the product σ -field in $(I \times R)^{\infty}$. This completes the proof.

COROLLARY 4.2. Under assumptions of Lemma 4.2, $||\mathscr{L}(X_n) - \mathscr{L}(X^0)|| \to 0$, where X^0 is the second component in the Markov chain (J^0, X^0) defined in Lemma 4.2.

COROLLARY 4.3. Let X be a homogeneous Markov chain such that $||\mathscr{L}(X_n) - \pi^0|| \to 0$, where π^0 is a probability measure on $(R, \mathscr{B}(R))$. Then $||\mathscr{L}(X_n) - \mathscr{L}(X^0)|| \to 0$, where X^0 is a stationary homogeneous Markov chain with the same transition probabilities as X.

Sufficient conditions for the convergence in variation of $\{\mathscr{L}(J_n)\}$ with J being any homogeneous Markov chain gives Theorem 7.1 from Orey [7].

4.3. Case (c). Let μ and μ_n , $n \ge 1$, be probability measures on $(S, \mathscr{B}(S))$ while ν and ν_n , $n \ge 1$, probability measures on $(S', \mathscr{B}(S'))$. Further let $\mu \times \nu$ denote the product measure of μ and ν .

LEMMA 4.3. If $||\mu_n - \mu|| \to 0$ and $||v_n - v|| \to 0$, then $||\mu_n \times v_n - \mu \times v|| \to 0$.

Proof. For $A \in \mathscr{B}(S \times S')$ let $A_x = \{y \in S' : (x, y) \in A\}$ and $A^y = \{x \in S : (x, y) \in A\}$, where $x \in S$, $y \in S'$. Note that

$$\begin{aligned} |\mu_n \times \nu_n(A) - \mu \times \nu(A)| &\leq |\mu_n \times \nu_n(A) - \mu \times \nu_n(A)| + |\mu \times \nu_n(A) - \mu \times \nu(A)| \\ &\leq \int_{S'} |\mu_n(A^y) - \mu(A^y)| \, \nu_n(dy) + \int_{S} |\nu_n(A_x) - \nu(A_x)| \, \mu(dx) \leq ||\mu_n - \mu|| + ||\nu_n - \nu||, \end{aligned}$$

which completes the proof.

As an immediate consequence of Lemma 4.3 and Proposition 1 we have

COROLLARY 4.4. Let X and Y be independent sequences of r.v.'s such that $||\mathscr{L}(X_n) - \mathscr{L}(X^0)|| \to 0$ and $||\mathscr{L}(Y_n) - \mathscr{L}(Y^0)|| \to 0$, where X^0 and Y^0 are mutually independent.

Then $||\mathscr{L}(X_n, Y_n) - \mathscr{L}(X^0, Y^0)|| \to 0$ and $||\mathscr{L}(X_n + Y_n) - \mathscr{L}(X^0 + Y^0)|| \to 0$.

To see the usefulness of Corollary 4.4 let us consider the following model of disturbance described by Y. Let $\{v_n\}$ be any sequence of probability measures on $(R, \mathcal{B}(R))$ which are absolutely continuous with respect to the Lebesgue measure l, and δ_0 the probability measure concentrated at zero. Denote by $g_k, k \ge 1$, the p.d.f. of v_k with respect to l. Further, let Y be a sequence of independent r.v.'s Y_1, Y_2, \ldots such that Y_k has the distribution $p_k \delta_0 + (1-p_k) v_k, k \ge 1$, where $0 \le p_k \le 1$.

LEMMA 4.4. If $\sum_{k=1}^{\infty} (1-p_k)$ is finite, then $||\mathscr{L}(Y_n) - \mathscr{L}(Y^0)|| \to 0$, where $Y^0 = (0, 0, \ldots)$.

Proof. Writing $\tilde{\mu} = \frac{1}{2}\delta_0 + \frac{1}{2}l$, we see that δ_0 and v_k are absolutely continuous with respect to $\tilde{\mu}$. Moreover, their p.d.f.'s with respect to $\tilde{\mu}$ are equal to $2\chi_0$ and $2(1-\chi_0)g_k$, respectively, where $\chi_0(x) = 1$ if x = 0, and zero otherwise. Hence the p.d.f.'s of $\mathscr{L}(Y_k)$ and $\mathscr{L}(Y_1^0)$ with respect to $\tilde{\mu}$ are equal to $f_k = 2p_k\chi_0 + 2(1-p_k)(1-\chi_0)g_k$ and $f^0 = 2\chi_0$, respectively. Therefore $\int |1-f_k/f^0| f^0 d\tilde{\mu} = 1-p_k$.

Hence and in view of Remark 4.1 and the assumed condition we obtain the assertion.

5. EXAMPLES OF X FOR WHICH THEOREMS 1-4 HOLD

5.1. Dependence case. Let us present some examples.

Example 1. Let $Y = \{Y_k, k \ge 1\}$ be an asymptotic stationary in variation sequence of r.v.'s (it is not assumed the mutual independence of Y_1, Y_2, \ldots) such that $Y_1 + Y_2 + \ldots + Y_k \to -\infty$ in probability. Furthermore, let its stationary representation Y^0 be such that $Y_{-1}^* + Y_{-2}^* + \ldots + Y_{-k}^* \to -\infty$ a.s., where $\{Y_k^*, -\infty < k < \infty\}$ is a stationary sequence of r.v.'s such that $\mathscr{L}(\{Y_k^*, k \ge 1\}) = \mathscr{L}(Y^0)$. Define r.v.'s $X_k, k \ge 1$, by

$$X_{k+1} = \max(0, X_k + Y_k), k \ge 1,$$

where X_1 is any nonnegative r.v.

In Queueing Theory the sequence X is well known as the process of waiting time and it is denoted by $w = \{w_k, k \ge 1\}$. We have shown ([10], Theorem 3a) that under above assumptions this process is asymptotically stationary in variation. Thus, if $\{k_n\}$ and $\{u_n\}$ are such that $P\{M_{k_n}^0 > u_n\} \rightarrow 0$ and $P\{M_{k_n} > u_n\} \rightarrow 0$, then by Theorem 1 we have $P\{M_n^0 > u_n\} \rightarrow -P\{M_n > u_n\} \rightarrow 0$.

Example 2. Let X = Z + Y, where Z and Y are mutually independent sequences of r.v.'s such that Z is stationary and Y is a sequence of mutually independent r.v.'s Y_1, Y_2, \ldots Assume that $\mathscr{L}(Y_k) = p_k \delta_0 + (1-p_k) v_k, k \ge 1$, where probability measures $v_k, k \ge 1$, are absolutely continuous with respect to the Lebesgue measure and $\sum (1-p_k) < \infty$ $(k = 1, 2, \ldots)$. Then

(a) If Z is such that, for some $\{u_n\}$ and $\{k_n\}$,

$$P\left\{2\max_{1\leq k\leq k_n}Z_k>u_n\right\}\to 0 \quad \text{and} \quad P\left\{2\max_{1\leq k\leq k_n}Y_k>u_n\right\}\to 0,$$

then

$$\mathbf{P}\left\{\max_{1\leq k\leq n}Z_k>u_n\right\}-\mathbf{P}\left\{\max_{1\leq k\leq n}X_k>u_n\right\}\to 0.$$

(b) If Z satisfies condition A₂ and, for some $\{k_n\}$ and each x > x(v),

 $P\left\{2a_n\left(\max_{1\leq k\leq k_n}Z_k-b_n\right)>x\right\}\to 0 \quad \text{and} \quad P\left\{2a_n\left(\max_{1\leq k\leq k_n}Y_k-b_n\right)>x\right\}\to 0,$

then $\mathscr{L}(a_n(M_n - b_n)) \Rightarrow v$.

Indeed, in view of Lemma 4.4 and Corollary 4.4, Z is a stationary representation in variation of X, i.e. $||\mathscr{L}(X_n) - \mathscr{L}(Z)|| \to 0$. Furthermore,

$$\mathbf{P}\left\{M_{k_n} > x\right\} \leqslant \mathbf{P}\left\{\max_{1 \leq k \leq k_n} Z_k > \frac{x}{2}\right\} + \mathbf{P}\left\{\max_{1 \leq k \leq k_n} Y_k > \frac{x}{2}\right\}.$$

This and Theorems 1 and 2 give implications (a) and (b).

Example 3. Let X be either (i) a homogeneous Markov chain such that $||\mathscr{L}(X_n) - \pi^0|| \to 0$ or (ii) a chain dependent with respect to a homogeneous Markov chain J such that $||\mathscr{L}(J_n) - \pi^0|| \to 0$, where π^0 is a probability measure on $(R, \mathscr{B}(R))$ in case (i) and on $(I, \mathscr{B}(I))$ in case (ii). Then, in view of Lemma 4.2 and Corollary 4.3, X is asymptotically stationary in variation in both cases. Moreover,

(a) If, for some $\{u_n\}$ and $\{k_n\}$, $P\{M_{k_n}^0 > u_n\} \rightarrow 0$, then

$$P\{M_n^0 > u_n\} - P\{M_n > u_n\} \to 0.$$

(b) If A₂ and A₅ hold, then $\mathscr{L}(a_n(M_n - b_n)) \Rightarrow v$.

Indeed, implication (a) follows from Lemma 3.5 and Theorem 1, while - (b) follows from Lemma 3.5 and Theorem 3.

5.2. Independence case. Let X be such that X_1, X_2, \ldots are mutually independent with p.d.f.'s $f_k, k \ge 1$, with respect to the Lebesgue measure.

Example 4 (exponential distribution disturbed by a normal distribution). Let f^0 be the exponential p.d.f. with the parameter λ and $f_k = f^0 * g_k$, $k \ge 1$, where g_k is the normal p. d.f. with the mean zero and the variance $\sigma_k^2 > 0$, while * denotes the convolution. Furthermore, suppose that for some $\alpha, \alpha < 1$,

(1)
$$\sum_{k} \sigma_{k}^{\alpha} < \infty.$$

Then $||\mathscr{L}(X_n) - \mathscr{L}(X^0)|| \to 0$. Moreover, with $a_n = \lambda$ and $b_n = \lambda^{-1} \log n$ the limiting d.f.'s of $a_n(M_n - b_n)$ and $a_n(M_n^0 - b_n)$ are equal to the d.f. \overline{G} which is $G(x) = \exp(-e^{-x})$ for $x \in \mathbb{R}$.

Indeed, note that

$$f^{0} * g_{k}(x) = \lambda \exp(-\lambda x + \lambda^{2} \sigma_{k}^{2}/2) \Phi(x/\sigma_{k} - \lambda \sigma_{k}),$$

where Φ denotes the standard normal d.f. Hence

(2)
$$\int_{-\infty}^{\infty} |1-f_k(x)/f^0(x)| f^0(x) dx = \int_{-\infty}^{\infty} |1-\exp(\lambda^2 \sigma_k^2/2) \Phi(x/\sigma_k - \lambda \sigma_k)| f^0(x) dx$$
$$\leq \exp(\lambda^2 \sigma_k^2/2) - 1 + \int_{-\infty}^{\infty} |1-\Phi(x/\sigma_k - \lambda \sigma_k)| f^0(x) dx.$$

Denote the integral part of the right-hand side of (2) by B and consider it for such k that $\sigma_k < 1$. Then decomposing $[0, \infty)$ in $[0, c_k]$ and (c_k, ∞) , where $c_k = \lambda \sigma_k^2 + \sigma_k^a$, $k \ge 1$, we have

$$B \leq 2 \int_{0}^{c_{k}} f^{0}(x) dx + 1 - \Phi(\sigma_{k}^{\alpha-1}) \leq 2 \left(1 - \exp\left(-\lambda(\lambda\sigma_{k}^{2} + \sigma_{k}^{\alpha})\right)\right) + 1 - \Phi(\sigma_{k}^{\alpha-1})$$

$$\leq 2\lambda(\lambda+1) \sigma_{k}^{\alpha} + m_{2i} \sigma_{k}^{2i(1-\alpha)} \leq c\sigma_{k}^{\alpha},$$

where m_i is the *i*-th moment of Φ , $2i > \alpha/(1-\alpha)$, and *c* is some constant depending on *k* and λ . Hence the right-hand side of (2) does not exceed ($c + \exp(a)$) σ_k^{α} , where $a = \lambda^2 \sup \sigma_k^2/2$. This, in view of (1), Remark 4.1 and Corollary 4.1, implies $||\mathscr{L}(X_n) - \mathscr{L}(X^0)|| \to 0$.

Now notice that $F_k(x/a_n + b_n) = F_k((x + \log n)/\lambda)$ for each x and $n, k \ge 1$. Hence, for each k and $x \in \mathbb{R}$, $F_k(x/a_n + b_n) \to 1$ as $n \to \infty$. This and Lemmas 3.1 and 3.3 as well as Theorem 3 and Example 1.7.2 from [3] prove the correctness of the example.

I wish to express my thanks to Professor B. Kopociński for his valuable comments. I am also grateful to Dr W. Dziubdziela for his helpful remarks.

5 - 'Pams. 9.2.

REFERENCES

- [1] E. G. Denzel and G. L. O'Brien, Limit theorems for extreme values of chain dependent process, Ann. Prob. 3 (1975), p. 773-780.
- [2] R. Durret and S. I. Resnick, Functional limit theorems for dependent variables, ibidem 6 (1978), p. 829-846.
- [3] M. R. Leadbetter, G. Lindgren and H. Rootzen, Extremes and related properties of random sequences and processes, Springer-Verlag, New York 1982.
- [4] M. R. Loynes, Extreme values in uniformly mixing stationary stochastic processes, Ann. Math. Statist. 36 (1965), p. 993-999.
- [5] G. L. O'Brien, Limit theorems for sums of chain dependent processes, J. Appl. Prob. 11 (1974), p. 582-587.
- [6] The limiting distribution of maxima of random variables defined on a denumerable Markov chain, Ann. Prob. 2 (1974), p. 103–111.
- [7] S. Orey, Lecture notes on limit theorems for Markov chain transition probabilities, Van Nostrand and Reinhold, London 1971.
- [8] S. I. Resnick and M. F. Neuts, Limit laws for maxima of sequence of random variables defined on a Markov chain, Advances Appl. Prob. 2 (1970), p. 323-343.
- [9] R. Serfozo, Functional limit theorems for extreme values of arrays of independent random variables, Ann. Prob. 10 (1982), p. 172–177.
- [10] W. Szczotka, Stationary representation of queues, I, Advances Appl. 18 (1986), p. 815–848.
- [11] J. Yu. Vostrikova, On necessary and sufficient conditions for convergence of probability measures in variation, Stoch. Processes and their Appl. 18 (1984), p. 99-112.

Wrocław University Institute of Mathematics Pl. Grunwaldzki 2/4 50-384 Wrocław, Poland

Received on 8. 12. 1986