ON THE LAW OF LARGE NUMBERS OF THE HSU-ROBBINS TYPE

BY

A. KUCZMASZEWSKA AND D. SZYNAL (Lublin)

Abstract. There are given the laws of large numbers of the Hsu-Robbins type which generalize some results of [1] and [2].

1. Introduction. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of i.i.d. random variables, and let $S_{n}=X_{1}+\ldots+X_{n}(n \geqslant 1)$. In studying the rate of convergence in the weak law of large numbers, the convergence of the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathrm{P}\left[\left|S_{n}\right| \geqslant n \varepsilon\right] \tag{1}
\end{equation*}
$$

for some $\varepsilon>0$, was found to be connected with the existence of the second moment of X (cf. [6], [3] or [7]). Some conditions, which guarantee the convergence of series (1) in the case of nonidentically distributed random variables, have been given in [2]. The paper [1] considers the convergence of series of type (1) with the index of summation restricted to a subsequence. That problem was reduced to investigating the convergence of series

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} \mathrm{P}\left[\left|S_{n}\right| \geqslant \varepsilon b_{n}\right] \tag{2}
\end{equation*}
$$

where $\left\{c_{n}, n \geqslant 1\right\}$ and $\left\{b_{n}, n \geqslant 1\right\}$ are sequences of positive integers such that $1 \leqslant c_{n}<\infty, n \geqslant 1,1 \leqslant b_{1}<b_{2}<\ldots$ From Theorem 1 of [1] it follows that if X_{1}, X_{2}, \ldots are independent random variables with $\mathrm{E} X_{i}=0, i \geqslant 1$, and for some sequence $\left\{\lambda_{n}, n \geqslant 1\right\}$ with $0<\lambda_{n} \leqslant 1$, we have $\mathrm{E}\left|X_{i}\right|^{1+\lambda}<\infty, i \geqslant 1$, where $\lambda=\sup \lambda_{n}$, and, moreover, the sequences $\left\{c_{n}\right\}$ and $\left\{b_{n}\right\}$ satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} b_{n}^{-1-\lambda_{n}} \sum_{i=1}^{b_{n}} \mathrm{E}\left|X_{i}\right|^{1+\lambda_{n}}<\infty \tag{3}
\end{equation*}
$$

then, for every $\varepsilon>0$,

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} \mathrm{P}\left[\left|S_{b_{n}}\right| \geqslant b_{n} \varepsilon\right]<\infty \tag{4}
\end{equation*}
$$

Note that if X_{1}, X_{2}, \ldots are i.i.d. random variables with $\mathrm{E} X_{1}=0$ and $\mathrm{E} X_{1}^{2}=\sigma^{2}<\infty$, then series (3) diverges for $c_{n}=1(n \geqslant 1), b_{n}=n(n \geqslant 1)$ and $\lambda_{n}=1(n \geqslant 1)$, though the series (1) (or (4)) converges by the Hsu-Robbins theorem [6]. Thus we conclude that condition (3) is too strong for (4).

This paper investigates the convergence of the series (4) under weaker conditions than condition (3). Moreover, we extend our result to 2 dimensional arrays of independent random variables.
2. Sufficient conditions for complete convergence with the index of summation restricted to subsequences. Let $\left\{X_{i}, i \geqslant 1\right\}$ be a sequence of independent random variables, $\mathrm{E} X_{i}=0, i \geqslant 1$. Let $\delta>0$ and put $X_{i}^{\prime}=X_{i} I_{\left[\left|X_{i}\right|<b_{n} \delta\right]}$ and $X_{i}^{\prime \prime}=X_{i} I_{\left[\left|X_{i}\right| \geqslant b_{n} \delta\right]}, 1 \leqslant i \leqslant b_{n}$, where $I[\cdot]$ denotes the indicator function and $\left\{b_{n}, n \geqslant 1\right\}$ is a strictly increasing sequence of positive integers. Write

$$
Y_{i}=X_{i}^{\prime}-\mathrm{E} X_{i}^{\prime}, \quad S_{k}^{\prime}=\sum_{i=1}^{k} X_{i}, \quad S_{k}^{*}=\sum_{i=1}^{k} Y_{i}
$$

Note that
(5) $\left(\sum_{i=1}^{b_{n}} x_{i}\right)^{4}=\sum_{i=1}^{b_{n}} x_{i}^{4}+6 \sum_{i=2}^{b_{n}} x_{i}^{2} \sum_{j=1}^{i-1} x_{j}^{2}+$

$$
\begin{aligned}
&+12 \sum_{i=1}^{b_{n}} x_{i}^{2} \sum_{\substack{j=2 \\
j \neq i}}^{b_{n}} x_{j} \sum_{\substack{k=1 \\
k \neq i}}^{j-1} x_{k}+4 \sum_{i=2}^{b_{n}} x_{i} \sum_{j=1}^{i-1} x_{j}^{3}+ \\
&+4 \sum_{i=2}^{b_{n}} x_{i}^{3} \sum_{j=1}^{i-1} x_{j}+24 \sum_{i=4}^{b_{n}} x_{i} \sum_{j=3}^{i-1} x_{j} \sum_{k=2}^{j-1} x_{k} \sum_{l=1}^{k-1} x_{l} .
\end{aligned}
$$

Using (3) we get

$$
\mathrm{E}\left(S_{b_{n}}^{*}\right)^{4}=\sum_{i=1}^{b_{n}} \mathrm{E} Y_{i}^{4}+6 \sum_{i=2}^{b_{n}} \sigma^{2} X_{i}^{\prime} \sum_{j=1}^{i-1} \sigma^{2} X_{j}^{\prime}
$$

and, moreover, we obtain the inequality
(6) $\mathrm{E}\left[S_{b_{n}}^{4} /\left(S_{b_{n}}^{4}+b_{n}^{4} \varepsilon^{4}\right)\right]$
$\leqslant \mathrm{E}\left[S_{b_{n}}^{4} /\left(S_{b_{n}}^{4}+b_{n}^{4} \varepsilon^{4}\right)\right] I_{\left[S_{b_{n}}=s_{b_{n}}^{\prime}\right.}+\mathrm{P}\left[S_{b_{n}} \neq S_{b_{n}}^{\prime}\right]$
$\leqslant \mathrm{E}\left(S_{b_{n}}^{\prime}\right)^{4} / b_{n}^{4} \varepsilon^{4}+\sum_{i=1}^{b_{n}} \mathrm{P}\left[\left|X_{i}\right| \geqslant b_{n} \delta\right]$
$\leqslant 8\left(\mathrm{E}\left(S_{b_{n}}^{*}{ }^{4} / b_{n}^{4} \varepsilon^{4}+\left(\mathrm{ES}_{b_{n}}^{\prime}\right)^{4} / b_{n}^{4} \varepsilon^{4}\right)+\sum_{i=1}^{b_{n}} \mathrm{P}\left[\left|X_{i}\right| \geqslant b_{n} \delta\right]\right.$
$=8 b_{n}^{-4} \varepsilon^{-4}\left[\sum_{i=1}^{b_{n}} \mathrm{E} Y_{i}^{4}+6 \sum_{i=2}^{b_{n}} \sigma^{2} X_{i}^{\prime} \sum_{j=1}^{i-1} \sigma^{2} X_{j}^{\prime}+\left(\mathrm{ES}_{b_{n}}^{\prime}\right)^{4}\right]+\sum_{i=1}^{b_{n}} \mathrm{P}\left[\left|X_{i}\right| \geqslant b_{n} \delta\right]$.

Hence, one can get the following estimate:

$$
\begin{align*}
& \mathrm{P}\left[\left|S_{b_{n}}\right| \geqslant b_{n} \varepsilon\right] \leqslant 2 \mathrm{E}\left[S_{b_{n}}^{4}\left(S_{b_{n}}^{4}+b_{n}^{4} \varepsilon^{4}\right)\right] \tag{7}\\
\leqslant & 16 b_{n}^{-4} \varepsilon^{-4}\left[\sum_{i=1}^{b_{n}} \mathrm{E} Y_{i}^{4}+6 \sum_{i=2}^{b_{n}} \sigma^{2} X_{i}^{\prime} \sum_{j=1}^{i-1} \sigma^{2} X_{j}^{\prime}+\left(\mathrm{ES}_{b_{n}}^{\prime}\right)^{4}\right]+2 \sum_{i=1}^{b_{n}} \mathrm{P}\left[\left|X_{i}\right| \geqslant b_{n} \delta\right] .
\end{align*}
$$

Taking into account (7), we can state the following
Theorem 1. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of independent random variables with $\mathrm{E} X_{n}=0, n \geqslant 1$. Suppose that $\left\{c_{n}, n \geqslant 1\right\}$ is a sequence of positive real numbers and $\left\{b_{n}, n \geqslant 1\right\}$ is a strictly increasing sequence of positive integers. If

$$
\begin{gather*}
\sum_{n=1}^{\infty} c_{n} b_{n}^{-4} \sum_{i=1}^{b_{n}} \mathrm{E} Y_{i}^{4}<\infty \tag{i}\\
\sum_{n=1}^{\infty} c_{n} b_{n}^{-4} \sum_{i=2}^{b_{n}} \sigma^{2} X_{i}^{\prime} \sum_{j=1}^{i-1} \sigma^{2} X_{j}^{\prime}<\infty
\end{gather*}
$$

(iii)

$$
\begin{gathered}
\sum_{n=1}^{\infty} c_{n} b_{n}^{-4}\left(\mathrm{ES}_{b_{n}}^{\prime}\right)^{4}<\infty, \\
\sum_{n=1}^{\infty} c_{n} \sum_{i=1}^{b_{n}} \mathrm{P}\left[\left|X_{i}\right| \geqslant b_{n} \delta\right]<\infty,
\end{gathered}
$$

then the sequence $\left\{X_{n}, n \geqslant 1\right\}$ satisfies (4).
For independent identically distributed random variables we can state
Corollary 1. Let $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of i.i.d. random variables with $\mathrm{E} X_{1}=0$. Suppose that $\left\{c_{n}, n \geqslant 1\right\}$ is a sequence of positive real numbers and $\left\{b_{n}, n \geqslant 1\right\}$ is a strictly increasing sequence of positive integers. If, for any given $\delta>0$,
(i) ${ }_{1}$

$$
\sum_{n=1}^{\infty} c_{n} b_{n}^{-3} \mathrm{E}\left|X_{1}\right|^{4} I_{\left[\left|X_{1}\right|<b_{n} \delta\right]}<\infty
$$

(ii) ${ }_{1}$

$$
\sum_{n=1}^{\infty} c_{n} b_{n}^{-2} \sigma^{4}\left(X_{1} I_{\left[\left|X_{1}\right|<b_{n} \delta\right]}\right)<\infty
$$

(iii) ${ }_{1}$

$$
\begin{aligned}
& \sum_{n=1}^{\infty} c_{n} \mathrm{E}^{4}\left(X_{1} I_{\left[\left|X_{1}\right|<b_{n} \delta\right]}\right)<\infty \\
& \sum_{n=1}^{\infty} c_{n} b_{n} \mathrm{P}\left[\left|X_{1}\right| \geqslant b_{n} \delta\right]<\infty
\end{aligned}
$$

(iv) ${ }_{1}$
then the sequence $\left\{X_{n}, n \geqslant 1\right\}$ satisfies (4).
Proof. It is not difficult to verify that under the conditions of Corollary 1 conditions (i)-(iv) reduce to (i) $)_{1}$ (iv) ${ }_{1}$.

We now note that condition (3), p. 85, implies the statement of Theorem 1.

Corollary 2. Let X_{1}, X_{2}, \ldots be a sequence of independent random variables with $\mathrm{E} X_{i}=0$.

Assume that, for some sequence $\left\{\lambda_{n}\right\}$ with $0<\lambda_{n} \leqslant 1$, we have $E\left|X_{i}\right|^{1+\lambda}$ $<\infty, i \geqslant 1$, where $\lambda=\sup \lambda_{n}$, and the sequences $\left\{c_{n}, n \geqslant 1\right\}$ and $\left\{b_{n}, n \geqslant 1\right\}$ satisfy condition (3). Then (4) holds.

Proof. It is enough to prove that (3) implies conditions (i)-(iv). Indeed, by (3), we have
(i)

$$
\begin{aligned}
\sum_{n=1}^{\infty} c_{n} b_{n}^{-4} \sum_{i=1}^{b_{n}} \mathrm{E} Y_{i}^{4} & \leqslant 8 \sum_{n=1}^{\infty} c_{n} b_{n}^{-4} \sum_{i=1}^{b_{n}} \mathrm{E}\left(X_{i}^{\prime}\right)^{4} \\
& =16 \sum_{n=1}^{\infty} c_{n} b_{n}^{-4} \sum_{i=1}^{b_{n}} \mathrm{E} X_{i}^{4} I_{\left[\left|X_{i}\right|<b_{n} \delta\right]} \\
& \leqslant 16 \delta^{3-\lambda} \sum_{n=1}^{\infty} c_{n} b_{n}^{-1-\lambda_{n}} \sum_{i=1}^{b_{n}} \mathrm{E}\left|X_{i}\right|^{1+\lambda_{n}}<\infty
\end{aligned}
$$

(ii) $\sum_{n=1}^{\infty} c_{n} b_{n}^{-4} \sum_{i=2}^{b_{n}} \sigma^{2} X_{i}^{\prime} \sum_{j=1}^{i-1} \sigma^{2} X_{j}^{\prime}$

$$
\begin{aligned}
& \leqslant \sum_{n=1}^{\infty} c_{n} b_{n}^{-4} \sum_{i=2}^{b_{n}} \mathrm{E}\left|X_{i}\right|^{2} I_{\left[\left|X_{i}\right|<b_{n} \delta\right]} \sum_{j=1}^{i-1} \mathrm{E}\left|X_{j}\right|^{2} I_{\left[\left|X_{j}\right|<b_{n} \delta\right]} \\
& \leqslant \delta^{2(1-\lambda)} \sum_{n=1}^{\infty} c_{n} b_{n}^{-2\left(1+\lambda_{n}\right.} \sum_{i=2}^{b_{n}} \mathrm{E}\left|X_{i}\right|^{1+\lambda_{n}} \sum_{j=1}^{i-1} \mathrm{E}\left|X_{j}\right|^{1+\lambda_{n}} \\
& \leqslant \delta^{2(1-\lambda)} \sum_{n=1}^{\infty} c_{n} b_{n}^{-2\left(1+\lambda_{n}\right)}\left(\sum_{i=1}^{b_{n}} \mathrm{E}\left|X_{i}\right|^{1+\lambda_{n}}\right)^{2}<\infty
\end{aligned}
$$

(iii) $\sum_{n=1}^{\infty} c_{n} b_{n}^{-4}\left(\mathrm{ES}_{b_{n}}^{\prime}\right)^{4}=\sum_{n=1}^{\infty} c_{n} b_{n}^{-4}\left(-\sum_{i=1}^{b_{n}} \mathrm{E} X_{i} I_{\left[\left|X_{i}\right| \geqslant b_{n}\right]}\right)^{4}$

$$
\leqslant \sum_{n=1}^{\infty} c_{n} b_{n}^{-4\left(1+\lambda_{n}\right)}\left(\sum_{i=1}^{b_{n}} \mathrm{E}\left|X_{i}\right|^{1+\lambda_{n}}\right)^{4}<\infty
$$

(iv) $\quad \sum_{n=1}^{\infty} c_{n} \sum_{i=1}^{b_{n}} \mathrm{P}\left[\left|X_{i}\right| \geqslant b_{n} \delta\right] \leqslant \delta^{1-\lambda} \sum_{n=1}^{\infty} c_{n} b_{n}^{-1-\lambda_{n}} \sum_{i=1}^{b_{n}} \mathrm{E}\left|X_{i}\right|^{1+\lambda_{n}}<\infty$.

It easy to get the following
Corollary 3: Assume that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.i.d. random variables with $\mathrm{E} X_{1}=0$ and such that $\mathrm{E}\left|X_{1}\right|^{1+\lambda}<\infty$ for some $\lambda, 0<\lambda \leqslant 1$. If
the sequences $\left\{c_{n}, n \geqslant 1\right\}$ and $\left\{b_{n}, n \geqslant 1\right\}$ satisfy the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n} b_{n}^{-\lambda}<\infty \tag{8}
\end{equation*}
$$

then (4) holds.
3. Complete convergence for 2 -dimensional arrays of independent random variables. Let now $\left\{X_{m n}, m \geqslant 1, n \geqslant 1\right\}$ be a double sequence of independent random variables. The aim of this section is to extend Theorem 1 to double sequences of independent random variables.

Assume that $\left\{c_{m n}, m \geqslant 1, n \geqslant 1\right\}$ is a sequence of positive real numbers, and $\left\{a_{n}, n \geqslant 1\right\},\left\{b_{n}, n \geqslant 1\right\}$ be strictly increasing sequences of positive integers.

Let $\delta>0$, and put

$$
\begin{array}{cl}
X_{i j}^{\prime}=X_{i j} I_{\left[\left|X_{i j}\right|<a_{m} b_{n} \delta\right]}, X_{i j}^{\prime \prime}=X_{i j} I_{\left[\left|X_{i j}\right| \geqslant a_{m} b_{n} \delta\right]} & \left(1 \leqslant i \leqslant a_{m}, 1 \leqslant j \leqslant b_{n}\right), \\
Y_{i j}=X_{i j}^{\prime}-\mathrm{E} X_{i j}^{\prime}, \quad S_{k l}^{\prime}=\sum_{i=1}^{k} \sum_{j=1}^{l} X_{i j}, \quad S_{k l}^{*}=\sum_{i=1}^{k} \sum_{j=1}^{l} Y_{i j} .
\end{array}
$$

Note that
(9). $\quad\left(\sum_{i=1}^{a_{m}} \sum_{j=1}^{b_{n}} x_{i j}\right)^{4}=\sum_{i=1}^{a_{m}}\left(\sum_{j=1}^{b_{n}} x_{i j}^{4}\right)+$

$$
\begin{aligned}
& +6 \sum_{i=1}^{a_{m}}\left(\sum_{j=2}^{b_{n}} x_{i j}^{2} \sum_{k=1}^{j-1} x_{i k}^{2}\right)+12 \sum_{i=1}^{a_{m}}\left(\sum_{j=1}^{b_{n}} x_{i j}^{2} \sum_{\substack{k=2 \\
k \neq j}}^{b_{n}} x_{i k} \sum_{\substack{l=1 \\
l \neq j}}^{k-1} x_{i l}+\right. \\
& +4 \sum_{i=1}^{a_{m}}\left(\sum_{j=2}^{b_{n}} x_{i j} \sum_{k=1}^{j-1} x_{i k}^{3}\right)+4 \sum_{i=1}^{a_{m}}\left(\sum_{j=2}^{b_{n}} x_{i j}^{3} \sum_{k=1}^{j-1} x_{i k}\right)+ \\
& +24 \sum_{i=1}^{a_{m}}\left(\sum_{j=4}^{b_{n}} x_{i j} \sum_{k=3}^{j-1} x_{i k} \sum_{l=2}^{k-1} x_{i l} \sum_{s=1}^{l-1} x_{i s}\right)+ \\
& +6 \sum_{i=2}^{a_{m}}\left(\sum_{j=1}^{b_{n}} x_{i j}^{2}\right) \sum_{k=1}^{i-1}\left(\sum_{l=1}^{b_{n}} x_{k l}^{2}\right)+ \\
& +12 \sum_{i=2}^{a_{m}}\left(\sum_{j=1}^{b_{n}} x_{i j}^{2}\right) \sum_{k=1}^{i-1}\left(\sum_{l=2}^{b_{n}} x_{k l} \sum_{t=1}^{l-1} x_{k t}\right)+ \\
& +12 \sum_{i=2}^{a_{m}}\left(\sum_{j=2}^{b_{n}} x_{i j} \sum_{s=1}^{j-1} x_{i s}\right)_{k=1}^{i-1}\left(\sum_{l=1}^{b_{n}} x_{k l}^{2}\right)+ \\
& +24 \sum_{i=2}^{a_{m}}\left(\sum_{j=2}^{b_{n}} x_{i j} \sum_{s=1}^{j-1} x_{i s}\right) \sum_{k=1}^{i-1}\left(\sum_{l=2}^{b_{n}} x_{k l}^{l-1} \sum_{t=1}^{l-1} x_{k t}\right)+ \\
& +12 \sum_{i=1}^{a_{m}}\left(\sum_{j=1}^{b_{n}} x_{i j}\right)^{2} \sum_{\substack{k=2}}^{a_{m}}\left(\sum_{j=1}^{b_{n}} x_{k j}\right) \sum_{\substack{l=1 \\
l=1}}^{k-1}\left(\sum_{j=1}^{b_{n}} x_{l j}\right)+ \\
& l_{j \neq i}
\end{aligned}
$$

$$
\begin{aligned}
& +4 \sum_{i=2}^{a_{m}}\left(\sum_{j=1}^{b_{n}} x_{i j}\right)^{i-1}\left(\sum_{k=1}^{b_{n}} x_{k j}\right)^{3}+ \\
& +4 \sum_{i=2}^{a_{m}}\left(\sum_{j=1}^{b_{n}} x_{i j}\right)^{i} \sum_{k=1}^{i-1}\left(\sum_{j=1}^{b_{n}} x_{k j}\right)+ \\
& +24 \sum_{i=4}^{a_{m}}\left(\sum_{j=1}^{b_{n}} x_{i j}\right)^{i-1}\left(\sum_{k=3}^{b_{n}} x_{j=1}\right)^{k-1} \sum_{l=2}^{b_{n}}\left(\sum_{j=1}^{l} x_{l j}\right)^{l-1}\left(\sum_{s=1}^{b_{n}} x_{j=1}\right) .
\end{aligned}
$$

Using (9) we get

$$
\begin{aligned}
& \mathrm{E}\left(S_{a_{m} b_{n}}^{*}\right)^{4}=\sum_{i=1}^{a_{m}} \sum_{j=1}^{b_{n}} \mathrm{E} Y_{i j}^{4}+6 \sum_{i=1}^{a_{m}}\left(\sum_{j=2}^{b_{n}} \sigma^{2} X_{i j}^{\prime} \sum_{l=1}^{j-1} \sigma^{2} X_{i l}^{\prime}\right)+ \\
&+6 \sum_{i=2}^{a_{m}}\left(\sum_{j=1}^{b_{n}} \sigma^{2} X_{i j}^{\prime}\right) \sum_{k=1}^{i-1}\left(\sum_{l=1}^{b_{n}} \sigma^{2} X_{k l}^{\prime}\right) .
\end{aligned}
$$

Moreover, it is not difficult to see that

$$
\begin{aligned}
& \mathrm{E}\left[S_{a_{m^{b}}{ }^{b}}^{4} /\left(S_{a_{m^{b}}}^{4}+\left(a_{m} b_{n}\right)^{4} \varepsilon^{4}\right)\right] I_{\left[S_{a_{m} b_{n}}=S_{a_{m} b_{n}}^{\prime}\right]}+\mathrm{P}\left[S_{a_{m} b_{n}} \neq S_{a_{m^{b}} b_{n}}^{\prime}\right] \\
& \leqslant 8\left(a_{m} b_{n}\right)^{-4} \varepsilon^{-4}\left[\sum_{i=1}^{a_{m}} \sum_{j=1}^{b_{n}} \mathrm{E} Y_{i j}^{4}+6 \sum_{i=1}^{a_{m}}\left(\sum_{j=1}^{b_{n}} \sigma^{2} X_{i j}^{\prime} \sum_{l=1}^{j-1} \sigma^{2} X_{i l}^{\prime}\right)+\right. \\
& \left.+6 \sum_{i=2}^{a_{m}}\left(\sum_{j=1}^{b_{n}} \sigma^{2} X_{i j}^{\prime}\right) \sum_{k=1}^{i-1}\left(\sum_{l=1}^{b_{n}} \sigma^{2} X_{k l}^{\prime}\right)+\mathrm{E}^{4} S_{a_{m} b_{n}}^{\prime}\right]+ \\
& +\sum_{i=1}^{a_{m}} \sum_{j=1}^{b_{n}} \mathrm{P}\left[\left|X_{i j}\right| \geqslant a_{m} b_{n} \delta\right] .
\end{aligned}
$$

Hence, we have the estimate

$$
\begin{align*}
& \mathrm{P}\left[\left|S_{a_{m} b_{n}}\right| \geqslant a_{m} b_{n} \varepsilon\right] \leqslant 2 \mathrm{E}\left[\mathrm{~S}_{a_{m} b_{n}}^{4} /\left(S_{a_{m^{b}} b_{n}}^{4}+a_{m}^{4} b_{n}^{4} \varepsilon^{4}\right)\right] \tag{10}\\
& \leqslant 16 a_{m}^{-4} b_{n}^{-4} \varepsilon^{-4}\left[\sum_{i=1}^{a_{m}} \sum_{j=1}^{b_{n}} \mathrm{E} Y_{i j}^{4}+6 \sum_{i=1}^{b_{n}}\left(\sum_{j=2}^{\sigma^{2}} \sigma^{2} X_{i j}^{\prime} \sum_{l=1}^{j-1} \sigma^{2} X_{i l}^{\prime}\right)+\right. \\
& \left.+6 \sum_{i=2}^{a_{m}}\left(\sum_{j=1}^{b_{n}} \sigma^{2} X_{i j}^{\prime}\right) \sum_{k=1}^{i-1}\left(\sum_{l=1}^{b_{n}} \sigma^{2} X_{k l}^{\prime}\right)+\mathrm{E}^{4} S_{a_{m} b_{n}}^{\prime}\right]+\sum_{i=1}^{a_{m}} \sum_{j=1}^{b_{n}} \mathrm{P}\left[\left|X_{i j}\right| \geqslant a_{m} b_{n} \delta\right] .
\end{align*}
$$

Taking into account (10) we can state the following
Theorem 2. Let $\left\{X_{m n}, m \geqslant 1, n \geqslant 1\right\}$ be a double sequence of independent random variables with $\mathrm{E} X_{m n}=0, m \geqslant 1, n \geqslant 1$. Suppose that $\left\{c_{m n}, m \geqslant 1, n\right.$ $\geqslant 1\}$ is a double sequence of positive real numbers and let $\left\{a_{m}, m \geqslant 1\right\}$ and $\left\{b_{n}, n \geqslant 1\right\}$ be strictly increasing sequences of positive integers. If

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m n}\left(a_{m} b_{n}\right)^{-4}\left(\sum_{i=1}^{a_{m}} \sum_{j=1}^{b_{n}} \mathrm{E} Y_{i j}^{4}\right)<\infty \tag{I}
\end{equation*}
$$

(II) $\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m n}\left(a_{m} b_{n}\right)^{-4}\left[\sum_{i=1}^{a_{m}}\left(\sum_{j=2}^{b_{n}} \sigma^{2} X_{i j}^{\prime} \sum_{l=1}^{j-1} \sigma^{2} X_{i l}^{\prime}\right)+\right.$

$$
\left.+\sum_{i=2}^{a_{m}}\left(\sum_{j=1}^{b_{n}} \sigma^{2} X_{i j}^{\prime}\right) \sum_{k=1}^{i-1}\left(\sum_{l=1}^{b_{n}} \sigma^{2} X_{k l}^{\prime}\right)\right]<\infty,
$$

$$
\begin{gather*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m n}\left(a_{m} b_{n}\right)^{-4}\left(\mathrm{ES}_{a_{m} b_{n}}^{\prime}\right)^{4}<\infty, \tag{III}\\
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m n} \sum_{i=1}^{a_{m}} \sum_{j=1}^{b_{n}} \mathrm{P}\left[\left|X_{i j}\right| \geqslant a_{m} b_{n} \delta\right]<\infty, \tag{IV}
\end{gather*}
$$

then the double sequence $\left\{X_{m n}, m \geqslant 1, n \geqslant 1\right\}$ satisfies

$$
\begin{equation*}
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m n} \mathrm{P}\left[\left|S_{a_{m} b_{n}}\right| \geqslant a_{m} b_{n} \varepsilon\right]<\infty . \tag{11}
\end{equation*}
$$

For independent identically distributed random variables we can state the following

Corollary 1. Let $\left\{X_{m n}, m \geqslant 1, n \geqslant 1\right\}$ be a double sequence of i.i.d. random variables with $\mathrm{E} X_{11}=0$. Suppose that $\left\{c_{m n}, m \geqslant 1, n \geqslant 1\right\}$ is a double sequence of positive real numbers and let $\left\{a_{m}, m \geqslant 1\right\}$ and $\left\{b_{n}, n \geqslant 1\right\}$ be strictly increasing sequences of positive integers. If
(I)

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m n}\left(a_{m} b_{n}\right)^{-3} \mathrm{E}\left|X_{11}\right|^{4} I_{\left[\left|X_{11}\right|<a_{m} b_{n} \delta\right]}<\infty,
$$

(II) ${ }_{1}$

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m n}\left(a_{m} b_{n}\right)^{-2} \sigma^{4}\left(X_{11} I_{\left[\left|X_{11}\right|<a_{m} b_{n}\right] \mid}\right)<\infty,
$$

(III) ${ }_{1}$

$$
\begin{align*}
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m n}\left[\mathrm{E} X_{11} I_{\left[\left|X_{11}\right|<a_{m} b_{n} \delta\right]}\right]^{4}<\infty, \\
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m n}\left(a_{m} b_{n}\right) \mathrm{P}\left[\left|X_{11}\right| \geqslant a_{m} b_{n} \delta\right]<\infty, \tag{IV}
\end{align*}
$$

then (10) holds.
Proof of Corollary 1 follows from the considerations of the proof of Corollary 1 after Theorem 1.

Corollary 2. Let $\left\{X_{m n}, m \geqslant 1, n \geqslant 1\right\}$ be a double sequence of i.i.d. random variables with $\mathrm{E} X_{11}=0$ and $\mathrm{E}\left|X_{11}\right|^{2} \log ^{+}\left|X_{11}\right|<\infty$. Then

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathrm{P}\left[\left|S_{m n}\right| \geqslant m n \varepsilon\right]<\infty .
$$

Proof. Letting $a_{n}=n, b_{m}=m, c_{m n}=1, m \geqslant 1$ and $n \geqslant 1$ in Corollary 1,
we see that (I) $)_{1}$-(IV) $)_{1}$ are satisfied. Indeed, if we let d_{k} to be the cardinality of $\{(m, n): m n=k\}$, and $F(x)$ be the distribution of X_{11}, then

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(m n)^{-3} \mathrm{E}\left|X_{11}\right|^{4} I_{\left[\left|X_{11}\right|<m n\right]}=\sum_{k=1}^{\infty}\left(d_{k} / k^{3}\right) \mathrm{E}\left|X_{11}\right|^{4} I_{\left[\left|X_{11}\right|<k\right]} \\
= & \sum_{k=1}^{\infty}\left(d_{k} / k^{3}\right) \int_{-k}^{k} x^{4} d F(x) \\
\leqslant & \sum_{i=1}^{\infty} 1 /(i+1) \sum_{k=i+1}^{\infty}\left(d_{k} / k^{2}\right)\left(\int_{-(i+1)}^{-i} x^{4} d F(x)+\int_{i}^{i+1} x^{4} d F(x)\right) \\
\leqslant & C \sum_{i=1}^{\infty} \log i /(i+1)^{2}\left(\int_{-(i+1)}^{-i} x^{4} d F(x)+\int_{i}^{i+1} x^{4} d F(x)\right) \\
\leqslant & C \sum_{i=1}^{\infty} \log i\left(\int_{-(i+1)}^{-i} x^{2} d F(x)+\int_{i}^{i+1} x^{2} d F(x)\right) \leqslant C \mathrm{E}\left|X_{11}\right|^{2} \log ^{+}\left|X_{11}\right|<\infty,
\end{aligned}
$$

where

$$
\sum_{k=i+1}^{\infty}\left(d_{k} / k^{2}\right)=O(\log i /(i+1))
$$

$\log ^{+} a=\log (\max (a, 1))$, and C is a positive constant.
Thus (I) ${ }_{1}$ is satisfied. Moreover, we have

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(m n)^{-2} \sigma^{4}\left(X_{11} I_{\left[\left|X_{11}\right|<m n\right]}\right)<\infty, \\
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathrm{E}^{4} X_{11} I_{\left[\left|X_{11}\right|<m n\right]}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathrm{E}^{4} X_{11} I_{\left[\left|X_{11}\right| \geqslant m n\right]} \\
& \leqslant \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mathrm{E}^{4} X_{11}^{2} /(m n) I_{\left[\left|X_{11}\right| \geqslant m n\right]}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}(m n)^{-4} \mathrm{E}^{4} X_{11}^{2} I_{\left[\left|X_{1 \mid}\right| \geqslant m n\right]}<\infty
\end{aligned}
$$ and

$$
\begin{aligned}
\sum_{m=1}^{\infty} & \sum_{n=1}^{\infty} m n \mathrm{P}\left[\left|X_{11}\right| \geqslant m n\right]=\sum_{k=1}^{\infty} k d_{k} \mathrm{P}\left[\left|X_{11}\right| \geqslant k\right] \\
& =\sum_{i=1}^{\infty}\left(\sum_{k=1}^{i} k d_{k}\right)\left(\int_{-(i+1)}^{-i} d F(x)+\int_{i}^{i+1} d F(x)\right) \\
& \leqslant \sum_{i=1}^{\infty} i \sum_{k=1}^{i} d_{k}\left(\int_{-(i+1)}^{-i} d F(x)+\int_{i}^{i+1} d F(x)\right) \\
& \leqslant C \sum_{i=1}^{\infty} i^{2} \log i\left(\int_{-(i+1)}^{-i} d F(x)+\int_{i}^{i+1} d F(x)\right) \leqslant C E X_{11}^{2} \log ^{+}\left|X_{11}\right|<\infty,
\end{aligned}
$$

where $\sum_{k=1}^{i} d_{k} \sim i \log i([5], \mathrm{p} .263), C$ is a positive constant.

The last estimates complete the proof of Corollary 2.
Our considerations lead us to the following extension of Theorem 1 [1] to the case of double sequences of independent random variables:

Theorem 3. Let $\left\{X_{m n}, m \geqslant 1, n \geqslant 1\right\}$ be a double sequence of independent random variables with $\mathrm{E} X_{m n}=0, m \geqslant 1, n \geqslant 1$, and let, for some sequence $\left\{\lambda_{m n}, m \geqslant 1, n \geqslant 1\right\}$ with $0<\lambda_{m n} \leqslant 1$, be $\mathrm{E}\left|X_{m n}\right|^{i+\lambda}<\infty, m \geqslant 1, n \geqslant 1$, where $\lambda=\sup _{m, n} \lambda_{m n}$. Suppose that $\left\{c_{m n}, m \geqslant 1, n \geqslant 1\right\}$ is a double sequence of positive real numbers and let $\left\{a_{m}, m \geqslant 1\right\}$ and $\left\{b_{n}, n \geqslant 1\right\}$ be strictly increasing sequences of positive integers. If

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} c_{m n}\left(a_{m} b_{n}\right)^{-1-\lambda_{m n}} \sum_{i=1}^{a_{m}} \sum_{j=1}^{b_{n}} \mathrm{E}\left|X_{i j}\right|^{1+\lambda_{m n}}<\infty
$$

then (10) holds.
The results of Section 3 generalize results of [4].

REFERENCES

[1] R. Bartoszyński and P. S. Puri, On the rate convergence for the weak law of large numbers, Prob. Math. Statist. 5. 1 (1985), p. 91-97.
[2] R. Duncan and D. Szynal, A note on the weak and Hsu-Robbins law of large numbers, Bull. Polish Acad. Sci., Mathematics, 32, No. 11-12 (1984), p. 729-735.
[3] P. Erdös, On a theorem of Hsu and Robbins, Annals Math. Statist. 20 (1949), p. 286-291.
[4] N. Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. verw. Geb. 55 (1981), p. 119-122.
[5] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford, Clarendon 1960.
[6] P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. USA 33. 2 (1947), p. 25-31.
[7] P. Révész, The law of large numbers, Academic Press, New York 1968.

