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Abstract. There are given the laws of large numbers of the 
Hsu-Robbins type which generalize some results of [I] and [2]. 

1. Introduction. Let {X,, n 3 I ]  be a sequence of i.i.d. random variables, 
I and let S ,  = XI + . . . +X, (n 2 1). In studying the rate of convergence in the 

weak law of large numbers, the coivergence of the series 
I m .  

for some E > 0, was found to be connected with the existence of the second 
moment of X (cf. [6] ,  [3] or [7]). Some conditions, which guarantee the 
convergence of series (1) in the case of nonidentically distributed random 
variables, have been given in [2]. The paper [I] considers the convergence of 
series of type (1) with the index bf summation restricted to a subsequence. 
That problem was reduced to investigating the convergence of series 

m 

(2) C cn P CISnl 2 ~ b n l ,  
n = l  . 

where (c,, n 11 and {b,,  n 2 1) are sequences of positive integers such that 
i < ' c ,  < od, n 2 1, 1 g b ,  < b2 < . . . ~ r o k  Theorem 1 of [I] it follows that 
if XI, X,, . . . are independent random variables with EX, = 0, i 2 1, and for 
some sequence {A,, n 2 1) with 0 < L, < 1, we have E IX,ll +" a , i 2 1, 
where R = supl,,, and, moreover, the sequences (c,)  and (b,} satisfy the 

h I 

condition 

then, for every E > 0, 
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CC 

(41 C cnPCISb,l 2 b n ~ l  < CO. 
11- 1  

Note that if X,,  X,, ... are i.i.d. random variables with EX, = 0 and 
EX: = a2 < m , then series (3) diverges for c, = 1 ( n  2 I), b ,  = n (n 3 1) and 
An = 1(n 2 I), though the series (1) (or (4)) converges by the Hsu -Robbins 
theorem [6]. Thus we conclude that condition (3) is too strong for (4). 

This paper investigates the convergence of the series ('4) under weaker 
conditions than condition (3). Moreover, we extend om result to 2 -  
dimensional arrays of independent random variables. 

2. Sufficient conditions for complete convergence with the index of sum- 
mation restricted to subquences. Let ( X i ,  i 2 1) be a sequence of indepen- 
dent random variables, E X i  = 0, i 2 1 .  Let 6 > 0 and put XI = X i  
and Xi' = Xi Illxi! 1 6 i < hn, where I [.I denotes the indicator function 
and jh,, n 3 1) is a strictly increasing sequence of positive integers. Write 

k k 

Note that 
4, b n bm i - 1  

bn bn  j - 1  bn i - 1  

+ 1 2 C  xf  C xj c x,+4C xi C x;+ 
i=1  j = 2  k = l  i = 2  j = l  

j k +i 

b n  i -  1  bm i - 1  j - 1  k - 1  

+4 C xf 1 xj+24C xi C x j  1 xk 1 XI. 
i = 2  j=1  i = 4  j x 3  k = Z  [=1  

Using (3) we get 
b n b n i-1 

E(S,*)4 = C EK4+6 C a2XI C a 2 X j  
i= 1 i =  2  j=  1  

and, moreover, we obtain the inequality 

(6) E [St,/@& + b: c4)1 
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Hence, one can get the following estimate: 

Taking into account (71, we can state the following 
THEOREM 1. Let (X,, n 2 1 j be a sequence of independent randonz variab- 

k s  with E X ,  = 0, n 2 1.  Suppose that (c,, n 2 11 is a sequence of positive reaE 
numbers and ;b,, n 2 1 ) is a strictly increasing sequence r7f positive integers. I f  

(iii) 

then the sequence X,, n 2 1 saris fies (4). 
For independent identically distributed random variables we can state 
COROLLARY 1. Let ',Xn, n 2 1 )  be a sequence of i.i.d. random variables 

with E X l  = 0. Suppose that {c,, n 2 1 )  is a sequence of positive real numbers 
and :bn, n 2 1 )  is a strictly increasing sequence of positive integers. I x  for any 
given 6 > 0 ,  

then the sequence [X, ,  n 2 1) satisfies (4). 
Proof. It is not difficult to verify that under the conditions of Corollary 1 

conditions (i) -(iv) reduce to (i), -(iv), . 
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We now note that condition (3, p. 85, implies the statement of The- 
orem 1. 

COROLLARY 2. Let X l ,  Xf, . . . be a Sequence of indepelIdsnt random 
variables with E X ,  = 0. 

Assume that, for some sequence (1,) with 0 < A, < 1, we have EIXiJ'+IZ 
< co, i 2 1, where 1 = supin, and the sequences {c, ,  n B 1 )  and {b,, n 2 1 )  

n 

satisfy condition (3). Then (4) holds. 
Pro of. It is enough to prove that (3) implies conditions (i) - (iv). Indeed, 

by (31, we have 

m bn rn b n 

(iv) en z PIIXil > b.61 g dl-" cnb i l -"  ~ I X ~ J ' ' "  < m. 
n = l  i= l  n= 1 i =  1 

It easy to get the following 

COROLLARY 3 .  Assume that {X,, n 2 1) is a sequence of i.i.d. random 
variables with EX, = 0 and such that E IX1llf" cc for some A, 0 < 1 < 1 .  If 
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the sequences {cn, n 2 1 )  and {b,, n 2 1 )  satisfy the condition 

(8) C c n b c d  < m, 
n= 1 

then ( 4 )  holds. . 

3. Complete convergence for 2 -  dimensional arrays of independent random 
variables. Let now {X,,, rn 2 1 ,  n 3 1) be a double sequence of independent 
random variables.  he aim of this sectiofi is to extend Theorem 1 to double 
sequences of independent random variables: 

Assume that [em,, m 2 1, n 3 1 )  is a sequence of positive real numbers, and 
{a,, n 3 11, {b,,  n 2 1 )  be strictly increasing sequences of positive inlegers. 

Let S > 0, and put 

Note that 
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' m  bm i - i  bn 

Using (9) we get 

Moreover, it is not difficult to see that 

Hence, we have the estimate 

+ i Z 2  ( j= I D' x;) 2 ( 1 0' Xi,)+ E4 s&bn] + z 2 P [lXij(  2 a,,, b, 61. 
k = l  1=1 i =  1 j= 1 

Taking into account (10) we can state the following 
THEOREM 2. Let (X,,, rn 2 1 ,  n 2 1 )  be a double sequence of independent 

random uariables with EX,, = 0, rn 2 1 ,  n 2 1 .  Suppose that [c,,, rn 2 1 ,  n 
2 11 is a double sequence of positive real numbers and let {am, m 2 1 )  and 
{b,, n 2 1) be strictly increasing sequences of positive integers. If 
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then the double sequence [X,,, m 3 1,  n 3 I] satisfies 

For independent identically distributed random variables we can state 
the following 

COROLLARY 1. Let {X,,, rn 2 1,  n 2 1) be a double sequence of i.i.d. 
random vnriables with EX,, = 0. Suppose that {cmn, m 2 1 ,  n 2 1) is a double 
sequence of positive real numbers and let {a,, m 2 1) and (h , ,  n 2 11 be 
strictly increasing sequences of positive integers. If 

then (10) holds. 
Proof of Corollary 1 follows from the considerations of the proof of 

Corollary 1 after Theorem 1. 
COROLLARY 2. Let (Xmn, rn 2 1 ,  n 2 1) be a double sequence of i.i.d. 

random variables with EX,, = 0 and E IXl112 logf IXllI < co. Then 

Proof. Letting a, = n, b,  = rn, em, = 1 ,  rn > 1 and n 2 1 in Corollary 1, 
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we see that (I), -(IV), are satisfied. Indeed, if we let d, to be the cardinality of 
({m, n): mn = k), and F (x) be the distribution of X I , ,  then 

. . 

gr CQ m 

6 C l/(i f 1) (ddk2) ( j x4 dF (x) + j x4 dF (x)) 
i =  1 k = i + l  - ( i+ l )  I 

ro - i i +  1 

< C log i/{i + ( j x4 dF.(x) -I- . j x4 dF (x)) 

where 

2 (d  j k 2 )  = o (log i / ( i  + I)), 
k = i + l  

log+ a = log(max(a, I)), and C is a positive constant. 
Thus (I), is satisfied. Moreover, we have 

m m 

and 
m m 

1 

where dk - i log i ( [ 5 ] ,  p. 263), C -is a positive constant. 
k= 1 
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The last estimates complete the proof of Corollary 2. 
Our considerations lead us to the following extension of Theorem 1 [I] 

to the case of double sequences of independent random variables: 
' 

THEOREM 3. Let {X, , ,  m 2 1, n 2 1 )  be a double sequence of independent 
random uariabks with EX,, = 0, pn 3 1, n >, 1 ,  and let, Jor some sequence 
( R , , , r n > l , n 8 . 1 )  with O < d , , < I , . b e  E I X , , ~ ~ ~ ' < C Q ,  m 3 1 ,  n 2 1 ,  
where ,I = sup A,,. Suppose that (c,,, m 3 1,  n 3 1 )  is a double sequence 

m. ti 

of positive real numbers and Iet {a,, rn 3 1 )  and {b,, n 2 I )  be strictly increas- 
ing sequences of positive integers. If 

then (10) holds. 
The results of Section 3 generalize results of [4]. 
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