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ON THE RATE OF CONVERGENCE -
IN A RANDOM CENTRAL LIMIT THEOREM

BY
K. S. KUBACKI anp D. SZYNAL (LuBLIN)

Abstract. We extend the random central limit theorem of Rényi
[8] and theorems on the convergence rate for random summation of
[3] and [1] to the case where a larger class of random indices is
considered.

1. Let {X,, k > 1} be a sequence of independent random variables (r.v.'s)
with EX, = 0, EX? = 6} < o0, k > 1. Suppose that there exists a probability
measure p such that
(1.1) Y,:=8,/s,=u, n—oo (converges weakly),
where

n n
2 —2
= Z Xk’ S" = Z O'k < 0
k=1 k=1

for all n, and s2 > 00, n > .

We are going to prove the following results:

TueoreM 1. Let {X,, k = 1} be a sequence of independent r.v.’s with EX,
=0, EX? =02, k=1, sansfylng (1.1), and let {N,, n>1} be a sequence of
positive znteger-valued r.u.’s such that
(1.2) SN ,/suv,,] 1, n—o0 (converges in probability),

where A is a positive r.v. having a discrete distribution, and {v,,n> 1} is a
sequence of positive integer-valued ruv’s independent of |4, X, k> 1} with
v,,Loo, n—o0. Then
(1.3) Yy, =Sn/Sn,=u, n—o0.

THEOREM 2. Let |X,, k> 1! be a sequence of independent ruv’s with
EX, =0, EX? =02, k > 1, satisfying the following conditions:
(1.4 E|IX, > =Bt <o, k=1, for some0<d<1
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(1.5) " B2*°=0(s?), where B}*?= Z BE*e;

there exist positive numbers by and b, such that, for every positive integers
n>kz=1,
(1.6) by P[S,—S, = 0] < P[S,—S8, <0]<b,P[S,—S, =0].

Suppose that {N,,n> 1} is a sequence of positive integer-valued r.v’s
such that, for a constant C,,

(1.7) : P[ls3 /s2 — 11> Cye,] = 0(/z,),

where {v,, n> 1} is a sequence of positive integer-valued r.v.’s independent of
1 X, k= 1} with

(1.8) - P[sZ <Cpe V] = O(\/.s:) for a constant C,,

and {g,, n = 1) is a sequence of positive numbers with &, =0, n —o0. Then
(L9) sup|P[Sy, <xs,]1-®(| = 0(./z)

and _ _

(1.10)  sup|P[Sy <xsy1-P(0) = 0( /e

where @ denotes the standard normal distribution function.
From Theorem 1 we get a generalization of Rényi’s result [8].

‘CoroLLARY 1. Let {X;, k > 1} be a'sequence of independent and identical-
ly distributed rv’s with EX, =0, EX} =0%>>0, and let {N,,n>1} be a
sequence of positive integer-valued r.v.’s such that

(1.11) N, DA, now,

where A is a positive r.v. having a discrete distribution, and {v,, n > 1} is a
sequence of positive integer-valued r.v’s independent of {4, Xp, k= 1} with
v, —>oo n—>o0. Then

(1.12) . Sy, [0/ Ny= ANy, n—00.

Theoreqp 2 gives us the following generalization of the Callaert and
Janssen’s result [17:

CoroLLARY 2. Let {X,, k> 1} be a sequence of independent and identical-
ly distributed r.v.’s with EX, =0, EX} =02 >0, E|X,]>7% < o0 for some 0
<08 <1 andlet {N,, n> 1} be a sequence of positive integer-valued r.v’.s such

‘that, for a constant C,,
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%’—"-1’>clsn]=0(\/§,,), :

n

(1.13) P[

where {v,, n> 1) is a sequence of positive integer-valued r.v.s independent o
l q D g P
Xy, k2 1} with,

(1.14) P[v, < C,e, %] = 0(./¢,) for a constant C,,

and {e,, n = 1) is a sequence of positive numbers with &, >0, n > co. Then
(1.15) sup|P [Sy, < x0 \/v,]1-®()| = 0(,/z,)

and '

(1.16) sup P (S, <xa /N N,]—®(x)| = O(\/_)

2. In order to prove Theorems 1 and 2 we need the foHowmg auxiliary
results.

LemMa 1. Let {X,, k> 1} be a sequence of independent rv’s with EX,
=0, EX? = o} <00, k > 1, satisfying (1.1), and let A be a positive r.v. having
a discrete distribution. If {v,, n =1} is a sequence of positive integer-valued
ru.’s independent of A, X, k > 1} with v, 5o, n—> o0, then

2.1)  Yaa=hs n—w.
Moreover, the sequence {Y,, n > 1} satisfies the Anscombe random condi-

tion ((A**) of [2]) with norming sequence is,, n> 1} and filtering sequence
{[Av,], n = 1}, ie, for every ¢ > 0 there exists a 6 >0 such that

(2.2) lim supP[maxIY Yl = el <e,

n—w

where I = li: |sf —sf, 4| < 53[“”“

LEMMA 2. Let 'Xk, k> 1} be a sequence of independent ruv’s with
EX, =0, EX? = a2, E|X,)?*® =ﬁ,3+" < oo for some 0 <6< 1, k>=1. Then
there exists a constant C such that, for every positive integers n and k and for
every X,

- (23) P[S X; Span 2 X1 < CABYYYsiH o4 [(sten—sD)s?)

and

(24 P[S, 2 x; ;i < C{Bz+é/52+5+\/(5n+k 2)/5}

~Proof of Lemma 1. Since for every n the r.v. v, is mdependent of
{4, Xk, k> 1}, we have

P[¥, <x1= Y P[v, =kIP[¥uy <x].
R k=1

7 ~ Probability ...
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But, by Lemma 6 of [2],
k=0

for every continuity point x of F, where F(-) = u{(—0, *)}. Furthermore,

since v,,Loo, n —» oo, we have
lim P[v,=%k] =0 for every k>1

n—+o

Thus, by Toeplitz lemma (cf. [5T, p. 238)
lim P[Y[)_‘,n] < x] = F(x)

for every continuity point x of F, which proves (2.1).
For the proof of (2.2) let us note that, for arbitrarily fixed M >0,
P[max|Y,— Y, 3| > el < P[v, < M]+ ), P[v,=k] P[max|Y Yl = €],
1 k>M
—S[).k]i B 55“,‘], and lim P[Vn < M]

n—o

where I = lsiz"'s[zi.v,,]l < 55[21\;,,], I, =|s}
= 0. Moreover, by Lemma 7 of [2], we can choose M so large that -

P[max|Y— Yyl 2 €] < for all k> M.
12

Hence we get the desired result (2.2)
Proof of Lemma 2. Since (2.4) follows from (2.3) by replacing X, by

—X,, we prove (2.3) only. .
We put D(n; x) = P[S, < x; S,+; = x]. Then, by the theorem of Fubbi-

ni, we obtain

D(n; x) = {...[dFyx (xy)...dFx , (X.ss)
Ey

n+k
={...[P[S,<x; 8, + Z;le > x|dFy,, , (Xus1).--dFx, , (Xpir)
' n+tk .
=j...jP[x—.—Z+1xi<S,, x]den+l( ,,+1)...dFXn+k(x,,+k),

n+k

_where E; = [Z x; < x; Z x; = x]. Hence

a X | X
D(n; x) = IEZJ{P[ESEJ_Q(E;)_}_
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n+k
X X i=nz+1 i ] '
+9 S_ -@ ;_—ﬂ—s- dFXn+1(xn+1)"'dFX"+k(xv|+k)s
n+k \
where E, =[ Y x =0].
i=nt1

Since, for every ¢q (cf. [7], inequality (3.4) on p. 143),
Sup|¢()'+Q) D) <lgl/y/2n

and, by Berry-Esseen inequality (cf. [7], Theorem 6 on p. 144)

(2.5) sup
y

S,
P[s- < J’]— 45()’)’ = O(B2*9/s2*9),
there exists a constant C such that |

D(n; x) < C{BZ*%s2*%+ \J(sErx—sD)/sE x

nt+k ’
2 X
=l de,,H(an) dFXn+k(xn+k)}‘

n+k '—S

But ‘
n+k
PR

j'- j __,:_214,1—2 dFX,,+1 (Xn+ 1)-"dFX"+k(xn+k)
N/ Su+k— S -

Sn+k _Sn

Soii—S, \?
: - SE”Z( n:k. nz =1,
Sh+k — Sp Si+k—Sn

=E

Therefore, we get the desired result (2.3). The proof of Lemma 2 is
complete.

Proof of Theorem 1. The proof is easily based on Lemma 1 and
Corollary 2 of [2] and is not detailed here.

Proof of Theorem 2. The proof contains some ideas of [4] and bases
on Lemma 2 and Lemma 6.1 of [9].
First we observe that

2.6 suplP[S < xs, ]—d’(x)|=0(\/£_).

Indeed, by (1.5), (2.5) and the fact that v, is independent of {X,, k > 1}
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we obtain
27 sup|P[S, <xs, 1—®(x)

8

< ) Plv, =k] supIP[Sk < x$;] — @ (x)|

k=1

<CY Pl =KI{BE s+ < CE sy,

k=1

~where C and C are some constants independent of n and k. But, by (1.8), we
have (with the assumption 62 > 0)

(28) E{s;% =E{s;°I[s <Cpes o) 45,0152, > Cye; M7}
<o7°P[s? < Ce; ]+ (Cre; V)92 = 0(\/a).

" Combining (2.7) and (2.8) we get the desired result (2.6).
Now let us put

= {k:(1-Cy&)s?, <sE<(1+Cye)s2)
and
1,,,,=-{I«',:(I—C;-e.,,)s,2 < st (1+Cle,,)s,,, r=1.
By (1.7) we have
P[ max S, <xs, 1-0(/z,) < < P[Sy, <x5,] < P[ min S, <xs, 1+0( /e,

ksl,, vy kel, Vg
- Furthermore, ,
P[ max S, <xs, ] < P[S,, <xs, 1< P[ min §; <xs, -
kelp, Vp kel, Yn

Hence, and by (2.6), we obtain
(29) sup|P[Sy, <xs, ]—®(x)

0(\/_)+sup|P[mm Si < xs,,]~P[ max §, <xs,,]|.

‘ kel,, vy ksI" .
Let
pp = min {k: sf > (1-C,¢,)s?}
and

g, = max {k: s <(1+C,e¢,)s2}.
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“Then

(2.10) P[mm S < xs, ]—P[ max §; <xs,]= Z P[v, —r]K,,,,,

kelp,y, kelyy,
where
K,, = P[ min S, < xs,]—P[ max S,, < xs,].
AT A Pp$kSay
According to Lemma 6.1 of [9] there exists a constant C, 1ndependent of -
n, r and x, such that

211)  K,, < C{P[S,r < xs,; S > xs,]+P[S;r > xs,5 S, < xs,]}.

For the completeness of the proof we repeat here the proof of inequality (2.11).
First we note that K, = P[S; < xs,; S, = xs,, for some j and k, p,<j, k < 4.1 = P(4),
say. Furthermore, -

P(A) = P(A NSy < xs,; S < x5, )+ P(AN[S,y <x5,5 S > x5, +
+P(A NSy 2 xs,385,; > xs,)+P(AN[Sy = xs,5 Sr < xs,])
SPAN[Sy <x5,:87 < Jcs,])l+P[S,,;-l < x5, Sr = xs.]+
+P(A NSy = x5,;8y > x5,1)+ P[Sy, = x5,; §gr, < x5,].

. Hence it is sufficient to prove that there exists a constant C (independent of n, r and x)
such that

(2.12) . P(AN[S,; <xs,; Sg < x5]) < C-P[Sy < X538 > xs,]
and
(2.13) P(AN[Sy > xs,; 5 > x5,]) < C-P[S 2 x5,; 8¢, < x5,)-

Define, for pi+1 <k < g, A, =[S, <xs, for p, <j<k—1;8, > xs,]. Then

q -1
P(A NS, <xs,; Sy < xs,]) = Y P n[Sy < xs,])
kwpn+1
-1 dp~1
< )Y P, N[Sy—S. <0) = y P(4)P[Sr—S < 0]
k= p:,+i o k=ppt1
q -1
. S PUYPS;-S,>0]  (by (6)
l"p"+1 :
a1 FAS
2 2, P4 H[S'—St>0])<bz Z P4y NSy = x5, D)
g-,,,+1 ; v k=pl+1

< b, P[Sy < x8,; 8, o = xs,] <bzP[S xs,,Sqr?xs,],

which proves (2.12).
Inequality (2.13) follows similarly. Thus we get (2.11).
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Using (2.11) and Lemma 2 we have, for a constant C,
K,,sC {B;;*"’/si{“-{- vV (S;;_Siz)/sf,;}',
where, by (1.5),

248/ 243 2 21/e2
By Ty e syl

< Csp?+ /14 Cre)s?—(1-Cye)s7}/(1-Cye))s]

< C(1—C,e) 570+ . /2C e, /(1—C,e,) < C; s,'"+0(\/;—:_,,)

for some constants C and C, independent of n and r. Hence and by (2.8) we
obtain, for a constant C,

EQEP[V,,IF]KM CE{s“’}-f—O(\/_)_O(\/‘)

r=1

which, combined with (2.9) and (2.10), yields (1 9).
Further on, by (1.7), (1.9) and Lemma-1 of [6], stating that if {X,,, n
=1} and |Y,, n> 1] are sequences of r.v.s such that

sup|P[X, <x]-®(x)) =0(a,) and P[|Y,—1]>a,]=0(a,),

then
sup|P[X, <xY,]-@(x)| = O(a,),

we obtain (1.10). The proof of Theorem 2 is’ complete.

Remark. One can see that each sequence {X,, k >1} of independent
and identically distributed r.v.’s, with EX, =0 and ¢? X, = ¢2 < o0, satis-

‘ fies (1».6) ([91, p. 95). This observation and Theorem 2 imply Corollary 2. )
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