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Abstract. We extend the random centrd limit theorem of Renyi 
[8] and theorems on the convergence rate for random summation 01 
[3] and [l] to the case where a larger class of random indicas is 
considered. 

, 1. Let {X,, k 3 1 )  be a sequence of independent random variables (r.v.'s) 
with EX, = 0, EX: = L T ~  < m ,  k 2 1.  Suppose that there exists a probability 
measure p such that 

11.1) Y, : = SJs,  p, n + co (converges weakly); 
where 

n n 

S , =  C X,, s:= CLT; ,Zm 
k =  1 k =  1 

for all n, and s i  + CO, n + m .  
We are going to prove the following results: 
THEOREM 1.  Let {x,, k 2 11 be a sequence of independent r.v.'s with EX, 

= 0, EX; = a:, k 2 1 ,  satisfying (1.1), and let N,, n 2 1 )  be a sequence of 
positive integer-valued r.v.'s sucl? that 

(1.2) 5 1 ,  n + a. (converges in probability), 

where R is a positive r.v. having a discrete distribution, and (v,, n 2 1)- is a 
sequence of-positive integer-valued r.v.'s independent qf [ I ,  X,, k 2 1 )  with 

P 
V, --+XI, n +co. Then 

(1.3) YN, = SNJsN, * p, n co . 
THEOREM 2. Let (X,, k 2 1;  be a sequence of independent r.u.'s with 

EX, = 0, EX: = a:, k 2 1 ,  satisfying the following conditions: 

(1 -4) E I X , ~ ~ + ~ ,  flk 2 + a  < m ,  ka1, f o r s o m e O < S < l ;  



96 K. S. Kubacki  and D .  S z  y n a l  

n 

(1.5) ~ , 2 + ~  = 0 (s:), where B:'" 1 jlta; 
k= 1 

there exist positive numbers b,  and b ,  such that, for every positiue integers 
n > k a l ,  

Suppose that iN,, n 2 1 )  is a sequence of positive integer-valued r.v.'s 
such that, for a constant C1, 

where {v,, n 3 1)- is a sequence of positive integer-valued r.v.'s independent of 
[X,, k 2 1 )  with 

(1 -8) P [s:, < C, e; 11'] = 0 (A) for n constant C2, 

and (E,, n 2 1 )  is a sequence of positive numbers with E, +0, n + m. Then 

and 

(1.10) SUP IP IS," < xs J - G ( x ) ~  = o (JE.)~ 
x 

where @ denotes the standard normal distribution function. 
From Theorem 1 we get a generalization of Rinyi's result [8]. 
COROLLARY 1. Let {X,, k 2 1)  be a sequence of independent and identical- 

ly distributed r.v.'s with EX, = 0, EX: = a2 > 0, and let (N , ,  n 2 1) be a 
sequence of positive integer-valued r.v.'s such that 

where A is a positive r.v. having a discrete distribution, and {v;, n 2 1 )  is a 
sequence 01- positive integer-valued r.v.'s independent of { A ,  X,,  k 2 1) with 

P ' 
v, + GO, n + co . Then 

Theoreq 2 gives us the following generalization of the Callaert and 
Janssen's result [I]: 

COROLLARY 2. Let {X,, k > 1) be a sequence of independent and identical- 
ly distributed r.v.'s with E X ,  = 0, EX; = a2 > 0, E IX1j2+' < co for some 0 
< 6 < 1 and.1et (N, ,  n > 1 )  be a sequence of positive integer-valued r.v'.s such 
that, for a constant C , ,  



where {v,, n 2 1) is a sequence of positive integer-valued r.v.'s independent of 
{X,, k 3 1)  with. 

(1.14) P [v. c C2 E; 'q = 0 (A) for a constant c,, 
and (E,, n 2 1 1 is a sequence of positive numbers with E, 4 0, n + a. Then 

(1.15) s"PIPIS~n < x. &~-@(x)l  = O(&I 
X 

" .. 
and 

2. In order to prove Theorems 1 and 2 we need the following auxiliary 
results. 

LEMMA 1. Let (Xk, k 2 I )  be a sequence of independent r.v.'s with E X ,  
= 0, EX: = a: K a, k 3 1 ,  satisfying (1.11, and let A be a positive r.u. having 
a. discrete distribution. If Iv., n 2 1 )  is a sequence of positive integer-uallsed 

P 
r.v.'s independent of ( A ,  X,, k 3 1) with v,  +a, n . + m ,  then 

Moreover, the sequence { x ,  n 2 1 )  satisfies the Anscornbe random condi- 
tion ((A*") of [2 ] )  with norming sequence (s,, n 2 1) and ,filtering sequence 
([Av,], n 2 11, i.e., for every E > 0 there exists a 6 > 0 such that 

lim sup P [max I - Z;,,nl( 2 E ]  < E ,  
n-oo I 

2 where I = ii: ]si2- shvd( < S S [ ~ ~ , ] )  . 
LEMMA 2. Let (X,, k 2 1) be a sequence of independent r.v.'s with 

EXk=O, EX:=U:, E I X ~ ( ~ + ~ = / ~ ~ + ' < C O  fo r someO<S<1 ,  k 3 1 .  Then 
there exists a constant C such that,for every positive integers n and k and for 
every X, 

and 

Proof of Lemma 1. Since for every n the r.v. v, is independent of 
{A, X,, k >  I), we have 

- m 

7 - Probability ... 
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But, by Lemma 6 of [Z], 

lim P [FAk1 < X] = F (x) 
k -t m 

for every continuity point x of F, where F ( . )  = p ((-m, a ) ] .  Furthermore, 
P 

since vn  4 m, n -, m , we have 
lirn P [v, = k ]  = 0 for every k 2 1. 

I I  -m 

Thus, by Toeplitz lemma (cf. [5 ] ,  p. 238), 

lim P [q,,, 4 X I  = F ( x )  
n-CL) 

for every continuity point x of F, which proves (2.1). 
For the proof of (2.2) let us note that, for arbitrarily fixed A4 > 0, 

2 2 2 2 2 where I ,  = Isi -saVJI C i2 = Isi - ~ ~ ~ ~ l  8 6sfAk1, and n-ra lim P [v. < M ]  

= 0. Moreover, by Lemma 7 of [2], we can choose M so large that . 

P[rnaxl&-I.; , , , l>,~]<~ for all k > M .  
12 

Hence we get the desired result (2.2) 
P r o  of of Lemma 2. Since (2.4) follows from (2.3) by replacing Xk by 

-Xk, we prove (2.3) only. 
We put D (n; X )  = P [Sn < X;  Sntk 2 x]. Then, by the theorem of Fubbi- 

ni, we obtain 
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n + k  

where E2 = [ xi 3 01. 
i = n +  1 

Since, for every q (cf. [?Iy inequality (3.4) on p. 1431, 

and, by Berry-Esseen inequality (cf. [73, Theorem 6 on p. 144), . 

there exists a constant C such that 

But 

Therefore, we get the desired result (2.3). The proof of Lemma 2 is 
complete. 

Proof  of Theorem 1. The proof is easily based on Lemma 1 and 
Corollary 2 of [2j and is not detailed here. 

P r o  of o f T h eo re  rn 2. The proof contains some ideas of [4] and base's 
on Lemma 2 and Lemma 6.1 of [9 ] .  

First we observe that 

Indeed, by (1.5), (2.5) and the fact that vn is independent of 1 Xk, k 3 1 j 
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.- .. 
we obtain 

- 

(2.7) SUP IP IS,, < x s v n I  - @ (41 
I 

where C and C are some constants independent of n and k. But, by (1.8), we 
have (with the assumption a: > 0) 

Combining (2.7) and (2.8) we get the desired result (2.6). 
Now let us put 

I , ,  = {k: (1 - C1 6 J s:,, 6 S: 4 (1 + C1 E,) s t )  

and 

.Jn,r = [ k :  ( I - C ~ E J S , ~  <s:  <(1i-C1~,,)s,2~.,  r 2 I .  

By (1.7) we have 
- 

P [ max S k  < xsVJ - 0 (&) < P [SNn < xsVn] < P [ rnin S, < xsvn] + 0 (,/E.)- 
k ~ 1 n . v "  k ~ l . , , ~  

Furthermore, 

P [ max S, < XS,,] < P [Sv, < xsVn] G P [ min S, < xsvn]. 
k ~ l i , , , ~  ~ P I . , v "  

Hence, and by (2.6), we obtain 

b 0 (Jcn) + sup lP [ min Sk < xsvn] - P [ max Sk < xsvn]l. 
X k ~ l n * v n  k ~ 1 n , v ,  

Let 

p', = rnin {k: s t  2 (1-C, E,)S;) 

and 

q; = max {k: s i  < (1 + C1 E,)S;). 
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Then 
m 

(2.10) P [ min S, < xsy,] - P [ max S, < XS,,] = P [v,, = r ]  Kns, 
keln ,vn kslrsvn r= 1 

where 

K , , : = P [  min S, <xs,]-P[ max S, <xs,]. 
& G R ~ ,  P~G~SP', 

According to Lemma 6.1 of [9] there exists a constant C, independent of 
n, r and x, such that 

For the completeness of the proof we repeat here the proof of inequality (2.11). 
First we note that K,, = P[S, < xs,; S; 3 xs,, for some j and k, p', d j ,  k G QJ = P(A), 

say. Furthermore, 

P(A) = P(A n [S,; < xs,; S,; G xs,])+ P(A n [S,; < xs,; S,; > xs,]) + 
I + P(A n [S,; 2 xs,; ! q ~  > xg]) -t- PIA n [S,; 3 xs,; S,; B xs,l) 

< P(A n [S,; < mr; S$n < xs,],l)+ P [Sp; < xs,; Sq; 2 XS,] + 
+P(An[S,; 3 xs,;S.,; > xsrl)+P[S6, 3 xs,; S,; S =,I. 

Hence it is sufficient to prove that there exists a constant C (independent of 4 r and x) 
such that 

(2.12) P(A n ESP', < xs,; Sq; < xs,]) < c .  P [S,; < xsr; s,:, 2 xs,] 

and 

(2.13) P(A n [Sp ;  3 xs,; S,; > xs,]) < C m P [ S ~  2 xs,; S,; < xs,]. 

Define, for 6 , $ 1  < k < q ' , ,  A, =[S, <xs, for p ' , < j < k - 1 ; S k 2 x s , ] .  Then 

which proves (2.12). - 
Inequality (2.1 3) follows similarly. Thus we get (2.11). 
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Using (2.11) and Lemma 2 we have, for a constant C, 

where, by (1.51, 

for some constants and El independent of n and r. Hence and by (2.8) we 
obtain, for a constant C, 

which, combined with (2.9) and (2.101, yields (1.9). 
Further on, by (1.71, (1.9) and Lernma.1 of [6], stating that if (X,, n 

3 I j and [Y,, ra 3 11 are sequences of r.v.'s such that 

supIP[X,<x]-@(x)l=O(a,) and P[IY,-l~>a,]=O(u,), 
x 

then 

- 

we obtain (1.10). The proof of Theorem 2 is complete. 
R e  m ark.  One can see that each sequence [X,, k 3 1 )- of independent 

and identically distributed r.v.'s, with EX, = 0 and a2 XI = a2 < CQ, satis- - 
fies (1.6) ([9], p. 95). This observation and Theorem 2 imply Corollary 2. 
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